51
|
Ruiz MT, Matheos D, Price GB, Zannis-Hadjopoulos M. OBA/Ku86: DNA binding specificity and involvement in mammalian DNA replication. Mol Biol Cell 1999; 10:567-80. [PMID: 10069804 PMCID: PMC25188 DOI: 10.1091/mbc.10.3.567] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1998] [Accepted: 12/29/1998] [Indexed: 12/21/2022] Open
Abstract
Ors-binding activity (OBA) was previously semipurified from HeLa cells through its ability to interact specifically with the 186-basepair (bp) minimal replication origin of ors8 and support ors8 replication in vitro. Here, through competition band-shift analyses, using as competitors various subfragments of the 186-bp minimal ori, we identified an internal region of 59 bp that competed for OBA binding as efficiently as the full 186-bp fragment. The 59-bp fragment has homology to a 36-bp sequence (A3/4) generated by comparing various mammalian replication origins, including the ors. A3/4 is, by itself, capable of competing most efficiently for OBA binding to the 186-bp fragment. Band-shift elution of the A3/4-OBA complex, followed by Southwestern analysis using the A3/4 sequence as probe, revealed a major band of approximately 92 kDa involved in the DNA binding activity of OBA. Microsequencing analysis revealed that the 92-kDa polypeptide is identical to the 86-kDa subunit of human Ku antigen. The affinity-purified OBA fraction obtained using an A3/4 affinity column also contained the 70-kDa subunit of Ku and the DNA-dependent protein kinase catalytic subunit. In vitro DNA replication experiments in the presence of A3/4 oligonucleotide or anti-Ku70 and anti-Ku86 antibodies implicate Ku in mammalian DNA replication.
Collapse
Affiliation(s)
- M T Ruiz
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
52
|
Chan DW, Ye R, Veillette CJ, Lees-Miller SP. DNA-dependent protein kinase phosphorylation sites in Ku 70/80 heterodimer. Biochemistry 1999; 38:1819-28. [PMID: 10026262 DOI: 10.1021/bi982584b] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ku antigen is composed of 70 and 82 kDa subunits (Ku70 and Ku80, respectively) that together bind with high affinity to ends of double-stranded DNA and other DNA structures in vitro. When bound to DNA, the Ku 70/80 heterodimer enhances the kinase activity of the catalytic subunit of the DNA-dependent protein kinase, DNA-PKcs. Ku and DNA-PKcs are required for V(D)J recombination and DNA double-strand break repair in vivo and may also play a role in regulation of transcription. Ku is phosphorylated by DNA-PKcs in vitro, and cells that lack DNA-PKcs are deficient in Ku phosphorylation in vitro, suggesting that Ku may be a physiological target for DNA-PK. Here we have identified the sites of DNA-PK phosphorylation in human Ku protein. We find that Ku70 is phosphorylated at a single serine residue, serine 6, located in the putative transcriptional activation domain, and Ku80 is phosphorylated at serines 577 and 580 and at threonine 715. Interestingly, none of the phosphorylation sites identified in Ku correspond to the serine-glutamine consensus for DNA-PK phosphorylation, consistent with previous reports that DNA-PK can recognize additional phosphorylation motifs.
Collapse
Affiliation(s)
- D W Chan
- Department of Biological Sciences, University of Calgary, Canada
| | | | | | | |
Collapse
|
53
|
Abstract
DNA double-strand breaks (DSBs) are major threats to the genomic integrity of cells. If not taken care of properly, they can cause chromosome fragmentation, loss and translocation, possibly resulting in carcinogenesis. Upon DSB formation, cell-cycle checkpoints are triggered and multiple DSB repair pathways can be activated. Recent research on the Nijmegen breakage syndrome, which predisposes patients to cancer, suggests a direct link between activation of cell-cycle checkpoints and DSB repair. Furthermore, the biochemical activities of proteins involved in the two major DSB repair pathways, homologous recombination and DNA end-joining, are now beginning to emerge. This review discusses these new findings and their implications for the mechanisms of DSB repair.
Collapse
Affiliation(s)
- R Kanaar
- Dept of Cell Biology and Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | |
Collapse
|
54
|
Abstract
Mammalian cells defective in DNA end-joining are highly sensitive to ionizing radiation and are immunodeficient because of a failure to complete V(D)J recombination. By using cell-free extracts prepared from human lymphoblastoid cell lines, an in vitro system for end-joining has been developed. Intermolecular ligation was found to be accurate and to depend on DNA ligase IV/Xrcc4 and requires Ku70, Ku86, and DNA-PKcs, the three subunits of the DNA-activated protein kinase DNA-PK. Because these activities are involved in the cellular resistance to x-irradiation and V(D)J recombination, the development of this in vitro system provides an important advance in the study of the mechanism of DNA end-joining in human cells.
Collapse
Affiliation(s)
- P Baumann
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | | |
Collapse
|
55
|
Torrance H, Giffin W, Rodda DJ, Pope L, Haché RJ. Sequence-specific binding of Ku autoantigen to single-stranded DNA. J Biol Chem 1998; 273:20810-9. [PMID: 9694826 DOI: 10.1074/jbc.273.33.20810] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid-induced transcription of mouse mammary tumor virus is repressed by Ku antigen/DNA-dependent protein kinase (DNA-PK) through a DNA sequence element (NRE1) in the viral long terminal repeat. Nuclear factors binding to the separated single strands of NRE1 have been identified that may also be important for transcriptional regulation through this element. We report the separation of the upper-stranded NRE1 binding activity in Jurkat T cell nuclear extracts into two components. One component was identified as Ku antigen. The DNA sequence preference for Ku binding to single-stranded DNA closely paralleled the sequence requirements of Ku for double-stranded DNA. Recombinant Ku bound the single, upper strand of NRE1 with an affinity that was 3-4-fold lower than its affinity for double-stranded NRE1. Sequence-specific single-stranded Ku binding occurred rapidly (t1/2 on = 2.0 min) and was exceptionally stable, with an off rate of t1/2= 68 min. While Ku70 cross-linked to the upper strand of NRE1 when Ku was bound to double-stranded and single-stranded DNAs, the Ku80 subunit only cross-linked to single-stranded NRE1. Intriguingly, addition of Mg2+ and ATP, the cofactors required for Ku helicase activity, induced the cross-linking of Ku80 to a double-stranded NRE1-containing oligonucleotide, without completely unwinding the two strands.
Collapse
Affiliation(s)
- H Torrance
- Graduate Program in Biochemistry, University of Ottawa, Loeb Institute for Medical Research, Ottawa Civic Hospital, Ottawa, Ontario K1Y 4E9, Canada
| | | | | | | | | |
Collapse
|
56
|
Paull TT, Gellert M. The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1998; 1:969-79. [PMID: 9651580 DOI: 10.1016/s1097-2765(00)80097-0] [Citation(s) in RCA: 660] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
MRE11 and RAD50 are known to be required for nonhomologous joining of DNA ends in vivo. We have investigated the enzymatic activities of the purified proteins and found that Mre11 by itself has 3' to 5' exonuclease activity that is increased when Mre11 is in a complex with Rad50. Mre11 also exhibits endonuclease activity, as shown by the asymmetric opening of DNA hairpin loops. In conjunction with a DNA ligase, Mre11 promotes the joining of noncomplementary ends in vitro by utilizing short homologies near the ends of the DNA fragments. Sequence identities of 1-5 base pairs are present at all of these junctions, and their diversity is consistent with the products of nonhomologous end-joining observed in vivo.
Collapse
Affiliation(s)
- T T Paull
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health Bethesda, Maryland 20892-0540, USA
| | | |
Collapse
|
57
|
Dynan WS, Yoo S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 1998; 26:1551-9. [PMID: 9512523 PMCID: PMC147477 DOI: 10.1093/nar/26.7.1551] [Citation(s) in RCA: 263] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ku protein-DNA-dependent protein kinase system is one of the major pathways by which cells of higher eukaryotes respond to double-strand DNA breaks. The components of the system are evolutionarily conserved and homologs are known from a number of organisms. The Ku protein component binds directly to DNA ends and may help align them for ligation. Binding of Ku protein to DNA also nucleates formation of an active enzyme complex containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The interaction between Ku protein, DNA-PKcs and nucleic acids has been extensively investigated. This review summarizes the results of these biochemical investigations and relates them to recent molecular genetic studies that reveal highly characteristic repair and recombination defects in mutant cells lacking Ku protein or DNA-PKcs.
Collapse
Affiliation(s)
- W S Dynan
- Program in Gene Regulation, Institute of Molecular Medicine and Genetics, Room CB-2803, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA.
| | | |
Collapse
|
58
|
Abstract
DNA double-strand breaks formed by ionizing irradiation or other stresses are repaired by homologous recombination or DNA end-joining. This review focuses on the mechanism of double-strand break repair mediated by DNA end-joining, in which many factors have recently been identified. After DNA double-strand breakage, DNA end-joining takes place between the DNA ends that have nonhomologous sequences or very short regions ofhomology. The broken DNA is repaired if the DNA end-joining occurs in the same molecule, while it causes chromosome aberrations such as deletions, insertions, translocations and inversions if it occurs between different molecules. Rad50 and its relatives, Ku-proteins, DNA ligase VI and silencing factors, are involved in DNA end-joining in yeast and mammalian cells. These findings led us to propose a model in which the formation of a heterochromatin-like complex at broken ends is an important element in DNA end-joining.
Collapse
Affiliation(s)
- Y Tsukamoto
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, Japan
| | | |
Collapse
|
59
|
Abstract
Ku protein, a heterodimer of 70 and 83 kDa polypeptides, is the regulatory component of the DNA-dependent protein kinase (DNA-PK). Ku protein binds to DNA ends and is essential for DNA double-strand break repair and V(D)J recombination. Although there is some evidence that Ku protein also binds RNA, its RNA binding properties have not been systematically explored. In the present study, Ku-binding RNAs were identified using systematic evolution of ligands by exponential enrichment (SELEX) technology. These RNAs were assigned to three classes based on common sequence motifs. Most of the selected RNAs bound to Ku protein with a Kd < or = 2 nM, comparable to the affinity of DNA fragments for Ku protein under similar conditions. Many of the RNAs inhibited DNA-PK activity by competing with DNA for a common binding site in Ku protein. None of several RNAs that were tested activated DNA-PK in the absence of DNA. The identification of diverse RNAs that bind avidly to Ku protein is consistent with the idea that natural RNAs may serve as modulators of DNA-PK activity. Moreover, the RNAs identified in this study may have utility as tools for experimental manipulation of DNA double-strand break repair activity in cells and cell extracts.
Collapse
Affiliation(s)
- S Yoo
- Program in Gene Regulation, Medical College of Georgia, Augusta 30912, USA
| | | |
Collapse
|
60
|
Hammarsten O, Chu G. DNA-dependent protein kinase: DNA binding and activation in the absence of Ku. Proc Natl Acad Sci U S A 1998; 95:525-30. [PMID: 9435225 PMCID: PMC18453 DOI: 10.1073/pnas.95.2.525] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In mammalian cells, double-strand break repair and V(D)J recombination require DNA-dependent protein kinase (DNA-PK), a serine/threonine kinase that is activated by DNA. DNA-PK consists of a 460-kDa subunit (p460) that contains a putative kinase domain and a heterodimeric subunit (Ku) that binds to double-stranded DNA ends. Previous reports suggested that the activation of DNA-PK requires the binding of Ku to DNA. To investigate this further, p460 and Ku were purified separately to homogeneity. Surprisingly, p460 was capable of binding to DNA in the absence of Ku. The binding of p460 to double-stranded DNA ends was salt-labile and could be disrupted by single-stranded or supercoiled DNA, properties distinct from the binding of Ku to DNA. Under low salt conditions, which permitted the binding of p460 to DNA ends, the kinase was activated. Under higher salt conditions, which inhibited the binding of p460, activation of the kinase required the addition of Ku. Significantly, when the length of DNA decreased to 22 bp, Ku competed with p460 for DNA binding and inhibited kinase activity. These data demonstrate that p460 is a self-contained kinase that is activated by direct interaction with double-stranded DNA and that the role of Ku is to stabilize the binding of p460 to DNA ends.
Collapse
Affiliation(s)
- O Hammarsten
- Department of Medicine, Stanford University Medical Center, CA 94305-5115, USA
| | | |
Collapse
|
61
|
Ramsden DA, Gellert M. Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J 1998; 17:609-14. [PMID: 9430651 PMCID: PMC1170410 DOI: 10.1093/emboj/17.2.609] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ku protein binds to DNA ends and is a cofactor for the DNA-dependent protein kinase. Both of these components are involved in DNA double-strand break repair, but it has not been clear if they function indirectly, by sensing DNA damage and activating other factors, or if they are more directly involved in the processing and rejoining of DNA breaks. We demonstrate that intermolecular ligation of DNA fragments is highly dependent on Ku under conditions designed to mimic those existing in the cell. This effect of Ku is specific to eukaryotic DNA ligases. Ku protein, therefore, has an activity consistent with a direct role in rejoining DNA breaks and independent of DNA-dependent protein kinase.
Collapse
Affiliation(s)
- D A Ramsden
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892-0540, USA
| | | |
Collapse
|