Munakata T, Adachi N, Yokoyama N, Kuzuhara T, Horikoshi M. A human homologue of yeast anti-silencing factor has histone chaperone activity.
Genes Cells 2000;
5:221-33. [PMID:
10759893 DOI:
10.1046/j.1365-2443.2000.00319.x]
[Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND
Structural changes in chromatin play essential roles in regulating eukaryotic gene expression. Silencing, potent repression of transcription in Saccharomyces cerevisiae, occurs near telomeres and at the silent mating-type loci, as well as at rDNA loci. This type of repression relates to the condensation of chromatin that occurs in the heterochromatin of multicellular organisms. Anti-silencing is a reaction by which silenced loci are de-repressed. Genetic studies revealed that several factors participate in the anti-silencing reaction. However, actions of factors and molecular mechanisms underlying anti-silencing remain unknown.
RESULTS
Here we report the functional activity of a highly evolutionarily conserved human factor termed CIA (CCG1-interacting factor A), whose budding yeast homologue ASF1 has anti-silencing activity. Using yeast two-hybrid screening, we isolated histone H3 as an interacting factor of CIA. We also showed that CIA binds to histones H3/H4 in vitro, and that the interacting region of histone H3 is located in the C-terminal helices. Considering the functional role of CIA as a histone-interacting protein, we found that CIA forms a nucleosome-like structure with DNA and histones.
CONCLUSIONS
These results show that human CIA, whose yeast homologue ASF1 is an anti-silencing factor, possesses histone chaperone activity. This leads to a better understanding of the relationship between chromatin structural changes and anti-silencing processes.
Collapse