51
|
Studies on the influence of dietary 3-deoxyglucosone on the urinary excretion of 2-keto-3-deoxygluconic acid. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3052-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
52
|
Huang C, Cao Z, Ma J, Shen Y, Bu Y, Khoshaba R, Shi G, Huang D, Liao DF, Ji H, Jin J, Cao D. AKR1B10 activates diacylglycerol (DAG) second messenger in breast cancer cells. Mol Carcinog 2018; 57:1300-1310. [PMID: 29846015 DOI: 10.1002/mc.22844] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 01/03/2023]
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is upregulated in breast cancer and promotes tumor growth and metastasis. However, little is known of the molecular mechanisms of action. Herein we report that AKR1B10 activates lipid second messengers to stimulate cell proliferation. Our data showed that ectopic expression of AKR1B10 in breast cancer cells MCF-7 promoted lipogenesis and enhanced levels of lipid second messengers, including phosphatidylinositol bisphosphate (PIP2), diacylglycerol (DAG), and inositol triphosphate (IP3). In contrast, silencing of AKR1B10 in breast cancer cells BT-20 and colon cancer cells HCT-8 led to decrease of these lipid messengers. Qualitative analyses by liquid chromatography-mass spectrum (LC-MS) revealed that AKR1B10 regulated the cellular levels of total DAG and majority of subspecies. This in turn modulated the phosphorylation of protein kinase C (PKC) isoforms PKCδ (Thr505), PKCµ (Ser744/748), and PKCα/βII (Thr638/641) and activity of the PKC-mediated c-Raf/MEK/ERK signaling cascade. A pan inhibitor of PKC (Go6983) blocked ERK1/2 activation by AKR1B10. In these cells, phospho-p90RSK, phospho-MSK, and Cyclin D1 expression was increased by AKR1B10, and pharmacological inhibition of the ERK signaling cascade with MEK1/2 inhibitors U0126 and PD98059 eradicated induction of phospho-p90RSK, phospho-MSK, and Cyclin D1. In breast cancer cells, AKR1B10 promoted the clonogenic growth and proliferation of breast cancer cells in two-dimension (2D) and three-dimension (3D) cultures and tumor growth in immunodeficient female nude mice through activation of the PKC/ERK pathway. These data suggest that AKR1B10 stimulates breast cancer cell growth and proliferation through activation of DAG-mediated PKC/ERK signaling pathway.
Collapse
Affiliation(s)
- Chenfei Huang
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Zhe Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Jun Ma
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Yi Shen
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Yiwen Bu
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Ramina Khoshaba
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois.,Department of Biotechnology, College of Science, Baghdad University, Baghdad, Iraq
| | - Guiyuan Shi
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Huang
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, and Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, Florida
| | - Junfei Jin
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Deliang Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois.,Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
53
|
Zhang SQ, Yung KLK, Chung SK, Chung SMS. Aldo-keto reductases-mediated cytotoxicity of 2-deoxyglucose: A novel anticancer mechanism. Cancer Sci 2018; 109:1970-1980. [PMID: 29617059 PMCID: PMC5989857 DOI: 10.1111/cas.13604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/24/2018] [Accepted: 03/31/2018] [Indexed: 01/01/2023] Open
Abstract
2‐Deoxyglucose (2DG) is a non‐metabolizable glucose analog currently in clinical trials to determine its efficacy in enhancing the therapeutic effects of radiotherapy and chemotherapy of several types of cancers. It is thought to preferentially kill cancer cells by inhibiting glycolysis because cancer cells are more dependent on glycolysis for their energy needs than normal cells. However, we found that the toxicity of 2DG in cancer cells is mediated by the enzymatic activities of AKR1B1 and/or AKR1B10 (AKR1Bs), which are often overexpressed in cancer cells. Our results show that 2DG kills cancer cells because, in the process of being reduced by AKR1Bs, depletion of their cofactor NADPH leads to the depletion of glutathione (GSH) and cell death. Furthermore, we showed that compounds that are better substrates for AKR1Bs than 2DG are more effective than 2DG in killing cancer cells that overexpressed these 2 enzymes. As cancer cells can be induced to overexpress AKR1Bs, the anticancer mechanism we identified can be applied to treat a large variety of cancers. This should greatly facilitate the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Shi-Qing Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,Division of Science and Technology, United International College, Zhuhai, China
| | - Kin-Lam Ken Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Sookja Kim Chung
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
54
|
Cheng BY, Lau EY, Leung HW, Leung CON, Ho NP, Gurung S, Cheng LK, Lin CH, Lo RCL, Ma S, Ng IOL, Lee TK. IRAK1 Augments Cancer Stemness and Drug Resistance via the AP-1/AKR1B10 Signaling Cascade in Hepatocellular Carcinoma. Cancer Res 2018; 78:2332-2342. [PMID: 29483095 DOI: 10.1158/0008-5472.can-17-2445] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/24/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022]
Abstract
Frequent relapse and drug resistance in patients with hepatocellular carcinoma (HCC) can be attributed to the existence of tumor-initiating cells (TIC) within the tumor bulk. Therefore, targeting liver TICs may improve the prognosis of these patients. From transcriptome sequencing of 16 pairs of clinical HCC samples, we report that interleukin-1 receptor-associated kinase 1 (IRAK1) in the TLR/IRAK pathway is significantly upregulated in HCC. IRAK1 overexpression in HCC was further confirmed at the mRNA and protein levels and correlated with advanced tumor stages and poor patient survival. Interestingly, IRAK4, an upstream regulator of IRAK1, was also consistently upregulated. IRAK1 regulated liver TIC properties, including self-renewal, tumorigenicity, and liver TIC marker expression. IRAK1 inhibition sensitized HCC cells to doxorubicin and sorafenib treatment in vitro via suppression of the apoptotic cascade. Pharmacological inhibition of IRAK1 with a specific IRAK1/4 kinase inhibitor consistently suppressed liver TIC populations. We identified aldo-keto reductase family 1 member 10 (AKR1B10) as a novel downstream target of IRAK1, which was found to be overexpressed in HCC and significantly correlated with IRAK1 expression. Knockdown of AKR1B10 negated IRAK1-induced TIC functions via modulation of the AP-1 complex. Inhibition of IRAK1/4 inhibitor in combination with sorafenib synergistically suppressed tumor growth in an HCC xenograft model. In conclusion, targeting the IRAK4/IRAK1/AP-1/AKR1B10 signaling pathway may be a potential therapeutic strategy against HCC.Significance: IRAK4/IRAK1/AP-1/AKR1B10 signaling pathway regulates cancer stemness and drug resistance and may be a novel therapeutic target in HCC. Cancer Res; 78(9); 2332-42. ©2018 AACR.
Collapse
Affiliation(s)
- Bowie Y Cheng
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Eunice Y Lau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong.,Department of Clinical Oncology, Queen Elizabeth Hospital, The Hong Kong Polytechnic University, Hong Kong
| | - Hoi-Wing Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Carmen Oi-Ning Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Nicole P Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Shilpa Gurung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Lily K Cheng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chi Ho Lin
- Centre for Genomic Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Regina Cheuk-Lam Lo
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Stephanie Ma
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong. .,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong. .,State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
55
|
Zhou Z, Zhao Y, Gu L, Niu X, Lu S. Inhibiting proliferation and migration of lung cancer using small interfering RNA targeting on Aldo-keto reductase family 1 member B10. Mol Med Rep 2018; 17:2153-2160. [PMID: 29207124 PMCID: PMC5783456 DOI: 10.3892/mmr.2017.8173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is the leading cause of global cancer‑associated mortality. Genomic alterations in lung cancers have not been widely characterized, however, the molecular mechanism of tumor initiation and progression remain unknown, and no molecularly targeted have been specifically developed for its treatment and diagnosis. The present study observed the upregulation of Aldo‑keto reductase family 1 member Bio10 (AKR1B10) lung cancer tissues by analyzing two public lung cancer gene expression datasets. Further experiments in silencing AKR1B10 demonstrated that the expression of AKR1B10 was associated with cell proliferation, cell cycle, adhesion and invasion, as well as extracellular‑signal‑regulated kinase/mitogen activated protein kinase signal pathway. The overexpression of AKR1B10 in lung cancer indicates the important role of AKR1B10 in tumorigenesis. These findings suggest that AKR1B10 could be a potential diagnosis and treatment mark of lung cancer.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Lung Tumor Clinical Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Yi Zhao
- Department of Lung Tumor Clinical Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Lingping Gu
- Department of Lung Tumor Clinical Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Xiaoming Niu
- Department of Lung Tumor Clinical Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Shun Lu
- Department of Lung Tumor Clinical Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| |
Collapse
|
56
|
Huang C, Verhulst S, Shen Y, Bu Y, Cao Y, He Y, Wang Y, Huang D, Cai C, Rao K, Liao DF, Jin J, Cao D. AKR1B10 promotes breast cancer metastasis through integrin α5/δ-catenin mediated FAK/Src/Rac1 signaling pathway. Oncotarget 2018; 7:43779-43791. [PMID: 27248472 PMCID: PMC5190059 DOI: 10.18632/oncotarget.9672] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022] Open
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is not expressed in normal breast, but upregulated in primary and metastatic breast cancers, being a negative prognostic factor. This study characterized the molecular mechanisms of AKR1B10-promoted breast cancer metastasis. Ectopic expression of AKR1B10 in breast cancer cells MCF-7 and MDA-MB-231 or siRNA-mediated silencing in BT-20 cells affected cell adhesion, migration and invasion in cell culture, and metastasis to the lung in the nude mice through upregulation of integrin α5 and δ-catenin. Silencing of integrin α5 or δ-catenin eradicated the cell adhesion and migration enhanced by AKR1B10, both of which acted synergistically. In these cells, the integrin α5 mediated focal adhesion kinase (FAK) signaling pathway was activated by AKR1B10, which, along with δ-catenin, stimulated Rac1-mediated cell migration and movement. In human primary and lymph node metastatic breast cancer, AKR1B10, integrin α5 and δ-catenin were correlatively upregulated with r=0.645 (p<0.0001) and r=0.796 (p<0.0001), respectively. These data suggest that AKR1B10 promotes breast cancer metastasis through activation of the integrin α5 and δ-catenin mediated FAK/Src/Rac1 signaling pathway.
Collapse
Affiliation(s)
- Chenfei Huang
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Steven Verhulst
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Yi Shen
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Yiwen Bu
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Yu Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Yingchun He
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.,Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yuhong Wang
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Dan Huang
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chun Cai
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Krishna Rao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Junfei Jin
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Deliang Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.,Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
57
|
Taskoparan B, Seza EG, Demirkol S, Tuncer S, Stefek M, Gure AO, Banerjee S. Opposing roles of the aldo-keto reductases AKR1B1 and AKR1B10 in colorectal cancer. Cell Oncol (Dordr) 2017; 40:563-578. [PMID: 28929377 DOI: 10.1007/s13402-017-0351-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Aldo-keto reductases (including AKR1B1 and AKR1B10) constitute a family of oxidoreductases that have been implicated in the pathophysiology of diabetes and cancer, including colorectal cancer (CRC). Available data indicate that, despite their similarities in structure and enzymatic functions, their roles in CRC may be divergent. Here, we aimed to determine the expression and functional implications of AKR1B1 and AKR1B10 in CRC. METHODS AKR1B1 and AKR1B10 gene expression levels were analyzed using publicly available microarray data and ex vivo CRC-derived cDNA samples. Gene Set Enrichment Analysis (GSEA), The Cancer Genome Atlas (TCGA) RNA-seq data and The Cancer Proteome Atlas (TCPA) proteome data were analyzed to determine the effect of high and low AKR1B1 and AKR1B10 expression levels in CRC patients. Proliferation, cell cycle progression, cellular motility, adhesion and inflammation were determined in CRC-derived cell lines in which these genes were either exogenously overexpressed or silenced. RESULTS We found that the expression of AKR1B1 was unaltered, whereas that of AKR1B10 was decreased in primary CRCs. GSEA revealed that, while high AKR1B1 expression was associated with increased cell cycle progression, cellular motility and inflammation, high AKR1B10 expression was associated with a weak inflammatory phenotype. Functional studies carried out in CRC-derived cell lines confirmed these data. Microarray data analysis indicated that high expression levels of AKR1B1 and AKR1B10 were significantly associated with shorter and longer disease-free survival rates, respectively. A combined gene expression signature of AKR1B10 (low) and AKR1B1 (high) showed a better prognostic stratification of CRC patients independent of confounding factors. CONCLUSIONS Despite their similarities, the expression levels and functions of AKR1B1 and AKR1B10 are highly divergent in CRC, and they may have prognostic implications.
Collapse
Affiliation(s)
- Betul Taskoparan
- Department of Biological Sciences, Orta Doğu Teknik Üniversitesi (ODTU/METU), Ankara, Turkey
| | - Esin Gulce Seza
- Department of Biological Sciences, Orta Doğu Teknik Üniversitesi (ODTU/METU), Ankara, Turkey
| | - Secil Demirkol
- Department of Molecular Biology and Genetics, Bilkent Üniversitesi, Ankara, Turkey
| | - Sinem Tuncer
- Department of Biological Sciences, Orta Doğu Teknik Üniversitesi (ODTU/METU), Ankara, Turkey
| | - Milan Stefek
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ali Osmay Gure
- Department of Molecular Biology and Genetics, Bilkent Üniversitesi, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Doğu Teknik Üniversitesi (ODTU/METU), Ankara, Turkey.
| |
Collapse
|
58
|
Endo S, Xia S, Suyama M, Morikawa Y, Oguri H, Hu D, Ao Y, Takahara S, Horino Y, Hayakawa Y, Watanabe Y, Gouda H, Hara A, Kuwata K, Toyooka N, Matsunaga T, Ikari A. Synthesis of Potent and Selective Inhibitors of Aldo-Keto Reductase 1B10 and Their Efficacy against Proliferation, Metastasis, and Cisplatin Resistance of Lung Cancer Cells. J Med Chem 2017; 60:8441-8455. [PMID: 28976752 DOI: 10.1021/acs.jmedchem.7b00830] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is overexpressed in several extraintestinal cancers, particularly in non-small-cell lung cancer, where AKR1B10 is a potential diagnostic marker and therapeutic target. Selective AKR1B10 inhibitors are required because compounds should not inhibit the highly related aldose reductase that is involved in monosaccharide and prostaglandin metabolism. Currently, 7-hydroxy-2-(4-methoxyphenylimino)-2H-chromene-3-carboxylic acid benzylamide (HMPC) is known to be the most potent competitive inhibitor of AKR1B10, but it is nonselective. In this study, derivatives of HMPC were synthesized by removing the 4-methoxyphenylimino moiety and replacing the benzylamide with phenylpropylamide. Among them, 4c and 4e showed higher AKR1B10 inhibitory potency (IC50 4.2 and 3.5 nM, respectively) and selectivity than HMPC. The treatments with the two compounds significantly suppressed not only migration, proliferation, and metastasis of lung cancer A549 cells but also metastatic and invasive potentials of cisplatin-resistant A549 cells.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Shuang Xia
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Miho Suyama
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Hiroaki Oguri
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Dawei Hu
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Yoshinori Ao
- Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Satoyuki Takahara
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Yoshikazu Horino
- Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama , Toyama 930-0194, Japan
| | - Yurie Watanabe
- School of Pharmacy, Showa University , Tokyo 142-8555, Japan
| | - Hiroaki Gouda
- School of Pharmacy, Showa University , Tokyo 142-8555, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University , Gifu 501-1193, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University , Gifu 501-1193, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan.,Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| |
Collapse
|
59
|
Stapelfeld C, Maser E. Sex hormones reduce NNK detoxification through inhibition of short-chain dehydrogenases/reductases and aldo-keto reductases in vitro. Chem Biol Interact 2017; 276:167-173. [PMID: 28257955 DOI: 10.1016/j.cbi.2017.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/17/2017] [Accepted: 02/26/2017] [Indexed: 12/14/2022]
Abstract
Carbonyl reduction is an important metabolic pathway for endogenous and xenobiotic substances. The tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, nicotine-derived nitrosamine ketone) is classified as carcinogenic to humans (IARC, Group 1) and considered to play the most important role in tobacco-related lung carcinogenesis. Detoxification of NNK through carbonyl reduction is catalyzed by members of the AKR- and the SDR-superfamilies which include AKR1B10, AKR1C1, AKR1C2, AKR1C4, 11β-HSD1 and CBR1. Because some reductases are also involved in steroid metabolism, five different hormones were tested for their inhibitory effect on NNK carbonyl reduction. Two of those hormones were estrogens (estradiol and ethinylestradiol), another two hormones belong to the gestagen group (progesterone and drospirenone) and the last tested hormone was an androgen (testosterone). Furthermore, one of the estrogens (ethinylestradiol) and one of the gestagens (drospirenone) are synthetic hormones, used as hormonal contraceptives. Five of six NNK reducing enzymes (AKR1B10, AKR1C1, AKR1C2, AKR1C4 and 11β-HSD1) were significantly inhibited by the tested sex hormones. Only NNK reduction catalyzed by CBR1 was not significantly impaired. In the case of the other five reductases, gestagens had remarkably stronger inhibitory effects at a concentration of 25 μM (progesterone: 66-88% inhibition; drospirenone: 26-87% inhibition) in comparison to estrogens (estradiol: 17-51% inhibition; ethinylestradiol: 14-79% inhibition) and androgens (14-78% inhibition). Moreover, in most cases the synthetic hormones showed a greater ability to inhibit NNK reduction than the physiologic derivatives. These results demonstrate that male and female sex hormones have different inhibitory potentials, thus indicating that there is a varying detoxification capacity of NNK in men and women which could result in a different risk for developing lung cancer.
Collapse
Affiliation(s)
- Claudia Stapelfeld
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany.
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany
| |
Collapse
|
60
|
Kabir A, Endo S, Toyooka N, Fukuoka M, Kuwata K, Kamatari YO. Evaluation of compound selectivity of aldo-keto reductases using differential scanning fluorimetry. J Biochem 2017; 161:215-222. [PMID: 28003428 DOI: 10.1093/jb/mvw063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/11/2016] [Indexed: 02/03/2023] Open
Abstract
Inhibitors of AKR1B10 belonging to the aldo-keto reductase (AKR) superfamily are considered promising candidates for anti-cancer drugs. AKR1B1, a structurally similar isoform of AKR1B10, is involved in glucose metabolism. Thus, selective inhibition of AKR1B10 is required for the development of anti-cancer drugs. In this study, we first compared correlations between melting temperature and the 50% inhibition concentration obtained from differential scanning fluorimetry (DSF) and an enzyme inhibitory experiment, respectively, and a good correlation was found, except for compounds with low solubility. This result indicates that the DSF method is useful for drug screening for the AKR superfamily. We then evaluated their selectivity as inhibitors against all seven major human AKR1 family proteins and found that C18 is most specific for AKR1B10.
Collapse
Affiliation(s)
- Aurangazeb Kabir
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Satoshi Endo
- Labolatory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu 501-1196, Japan
| | - Naoki Toyooka
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Mayuko Fukuoka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Gene and Development, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yuji O Kamatari
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
61
|
Ramezani M, Hatamipour M, Sahebkar A. Promising anti-tumor properties of bisdemethoxycurcumin: A naturally occurring curcumin analogue. J Cell Physiol 2017; 233:880-887. [PMID: 28075008 DOI: 10.1002/jcp.25795] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
Curcuminoids are turmeric-extracted phytochemicals with documented chemopreventive and anti-tumor activities against several types of malignancies. Curcuminoids can modulate several molecular pathways and cellular targets involved in different stages of tumor initiation, growth, and metastasis. Bisdemethoxycurcumin (BDMC) is a minor constituent (approximately 3%) of curcuminoids that has been shown to be more stable than the other two main curcuminoids, that is, curcumin and demthoxycurcumin. Recent studies have revealed that BDMC has anti-tumor effects exerted through a multimechanistic mode of action involving inhibition of cell proliferation, invasion and migration, metastasis and tumour growth, and induction of apoptotic death in cancer cells. The present review discusses the findings on the anti-tumor effects of BDMC, underlying mechanisms, and the relevance of finding for translational studies in human.
Collapse
Affiliation(s)
- Mahin Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
62
|
Li J, Guo Y, Duan L, Hu X, Zhang X, Hu J, Huang L, He R, Hu Z, Luo W, Tan T, Huang R, Liao D, Zhu YS, Luo DX. AKR1B10 promotes breast cancer cell migration and invasion via activation of ERK signaling. Oncotarget 2017; 8:33694-33703. [PMID: 28402270 PMCID: PMC5464903 DOI: 10.18632/oncotarget.16624] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/01/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aldo-keto reductase family 1, member B10 (AKR1B10), is known to be significantly induced in the cells of various cancers such as breast cancer. However, the mechanisms of AKR1B10 promoting tumorigenesis in breast cancer remain unclear. In the present study, we demonstrated the potential role and mechanism of AKR1B10 in the invasion and migration of breast cancer cells. METHODS The expression level of AKR1B10 in breast carcinoma, para-carcinoma and cancer tissues were detected by immunohistochemical evaluation and real-time polymerase chain reaction (RT-PCR), and the correlationships between AKR1B10 expression and clinicopathological features in breast cancer patients (n=131) were investigated. AKR1B10 was ectopically expressed in MCF-7 cells or silenced in BT-20 cells. The roles of AKR1B10 expression in the migration and invasion of MCF-7 cells and BT-20 cells were explored by wound healing assay, transwell migration assay and transwell matrigel invasion assay, and finally the activation level of extracellular signal-regulated kinase 1/2 (EKR1/2) activation and the expression level of matrix metalloproteinase-2 (MMP2) and vimentin in MCF-7 and BT-20 cells were measured by western blot. RESULTS We found that AKR1B10 expression was increased in malignant tissues, which was correlated positively with tumor size, lymph node metastasis (p<0.05). MCF-7/AKR1B10 cells displayed a higher ability of migration (43.57±1.04%) compared with MCF-7/vector cells (29.12±1.34%) in wound healing assay, and the migrated cell number of MCF-7/AKR1B10 was more (418.43±9.62) than that of MCF-7/vector (222.43±17.75) in transwell migration assay without matrigel. We furtherly confirmed MCF-7/AKR1B10 cells invaded faster compared with MCF-7/vector cells by transwell matrigel invasion assay. Finally, we found AKR1B10 induced the migration and invasion of MCF-7 and BT-20 cells by activating EKR signaling, which promoted the expressions of MMP2 and vimentin. PD98059, a specific inhibitor of the activation of MEK, blocked the migration and invasion by inhibiting the expression of MMP2 and vimentin. CONCLUSIONS AKR1B10 is overexpressed in breast cancer, and promotes the migration and invasion of MCF-7 and BT-20 cells by activating ERK signaling pathway.
Collapse
Affiliation(s)
- Jia Li
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
| | - Yuanwei Guo
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
- Center for Clinical Pathology, Affiliated to The First People's Hospital of Chenzhou 423000, P.R. China
| | - Lili Duan
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
| | - Xinglin Hu
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
- Department of Neurology, Affiliated to The First People's Hospital of Chenzhou 423000, P.R. China
| | - Xi Zhang
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
- Department of Neurology, Affiliated to The First People's Hospital of Chenzhou 423000, P.R. China
| | - Jian Hu
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
- Center for Clinical Pathology, Affiliated to The First People's Hospital of Chenzhou 423000, P.R. China
| | - Li Huang
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
- Center for Clinical Pathology, Affiliated to The First People's Hospital of Chenzhou 423000, P.R. China
| | - Rongzhang He
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
| | - Zheng Hu
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
| | - Weihao Luo
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
| | - Tan Tan
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
- Center for Clinical Pathology, Affiliated to The First People's Hospital of Chenzhou 423000, P.R. China
| | - Renbin Huang
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
| | - Duanfang Liao
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, P.R. China
| | - Yuan-Shan Zhu
- Department of Clinical Pharmacology, Xiangya Hospital and Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, P.R. China
| | - Di-Xian Luo
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, P.R. China
- Center for Clinical Pathology, Affiliated to The First People's Hospital of Chenzhou 423000, P.R. China
| |
Collapse
|
63
|
Zhao JX, Yuan YW, Cai CF, Shen DY, Chen ML, Ye F, Mi YJ, Luo QC, Cai WY, Zhang W, Long Y, Zeng Y, Ye GD, Yang SY. Aldose reductase interacts with AKT1 to augment hepatic AKT/mTOR signaling and promote hepatocarcinogenesis. Oncotarget 2017; 8:66987-67000. [PMID: 28978011 PMCID: PMC5620151 DOI: 10.18632/oncotarget.17791] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/25/2017] [Indexed: 02/07/2023] Open
Abstract
Marked up-regulation of aldose reductase (AR) is reportedly associated with the development of hepatocellular carcinoma (HCC). We investigated how aberrantly overexpressed AR might promote oncogenic transformation in liver cells and tissues. We found that overexpressed AR interacted with the kinase domain of AKT1 to increase AKT/mTOR signaling. In both cultured liver cancer cells and liver tissues in DEN-induced transgenic HCC model mice, we observed that AR overexpression-induced AKT/mTOR signaling tended to enhance lactate formation and hepatic inflammation to enhance hepatocarcinogenesis. Conversely, AR knockdown suppressed lactate formation and inflammation. Using cultured liver cancer cells, we also demonstrated that AKT1 was essential for AR-induced dysregulation of AKT/mTOR signaling, metabolic reprogramming, antioxidant defense, and inflammatory responses. These findings suggest that aberrantly overexpressed/over-activated hepatic AR promotes HCC development at least in part by interacting with oncogenic AKT1 to augment AKT/mTOR signaling. Inhibition of AR and/or AKT1 might serve as an effective strategy for the prevention and therapy of liver cancer.
Collapse
Affiliation(s)
- Jia-Xing Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, China
| | - Ya-Wei Yuan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361002, China
| | - Cheng-Fu Cai
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Dong-Yan Shen
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Mao-Li Chen
- School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361003, China
| | - Feng Ye
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Yan-Jun Mi
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Qi-Cong Luo
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Wang-Yu Cai
- Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Wei Zhang
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Ying Long
- Translational Medicine Center, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Yong Zeng
- Translational Medicine Center, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Guo-Dong Ye
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Shu-Yu Yang
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| |
Collapse
|
64
|
Cao Y, Lin M, Bu Y, Ling H, He Y, Huang C, Shen Y, Song B, Cao D. p53-inducible long non-coding RNA PICART1 mediates cancer cell proliferation and migration. Int J Oncol 2017; 50:1671-1682. [PMID: 28339031 DOI: 10.3892/ijo.2017.3918] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/14/2017] [Indexed: 11/06/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) function in the development and progression of cancer, but only a small portion of lncRNAs have been characterized to date. A novel lncRNA transcript, 2.53 kb in length, was identified by transcriptome sequencing analysis, and was named p53-inducible cancer-associated RNA transcript 1 (PICART1). PICART1 was found to be upregulated by p53 through a p53-binding site at -1808 to -1783 bp. In breast and colorectal cancer cells and tissues, PICART1 expression was found to be decreased. Ectopic expression of PICART1 suppressed the growth, proliferation, migration, and invasion of MCF7, MDA-MB-231 and HCT116 cells whereas silencing of PICART1 stimulated cell growth and migration. In these cells, the expression of PICART1 suppressed levels of p-AKT (Thr308 and Ser473) and p-GSK3β (Ser9), and accordingly, β-catenin, cyclin D1 and c-Myc expression were decreased, while p21Waf/cip1 expression was increased. Together these data suggest that PICART1 is a novel p53-inducible tumor-suppressor lncRNA, functioning through the AKT/GSK3β/β-catenin signaling cascade.
Collapse
Affiliation(s)
- Yu Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Minglin Lin
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Yiwen Bu
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Hongyan Ling
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Yingchun He
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Chenfei Huang
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Yi Shen
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Bob Song
- University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Deliang Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| |
Collapse
|
65
|
Ko HH, Cheng SL, Lee JJ, Chen HM, Kuo MYP, Cheng SJ. Expression of AKR1B10 as an independent marker for poor prognosis in human oral squamous cell carcinoma. Head Neck 2017; 39:1327-1332. [PMID: 28301069 DOI: 10.1002/hed.24759] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/23/2016] [Accepted: 02/02/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aldo-keto reductase family 1 member B10 (AKR1B10) is implicated in xenobiotic detoxification and has disparate functions in tumorigenesis that are dependent on the cell types. The purpose of this study was to investigate the clinicopathological significance of AKR1B10 as a prognostic marker for oral squamous cell carcinomas (OSCCs). METHODS AKR1B10 protein expression was analyzed by immunohistochemistry in 77 patients with OSCC. RESULTS The AKR1B10 labeling score for OSCCs (1.16 ± 1.14) was significantly higher than that for normal oral mucosa (0.10 ± 0.23; p < .0001). High expression of AKR1B10 significantly correlated with large tumor size (p = .041), advanced TNM classification (p = .037), and patient's areca quid chewing habit (p = .025). Multivariate analysis revealed that high AKR1B10 labeling score >1.16 (hazard ratio, 3.647; p = .001) significantly correlated with mortality. CONCLUSION AKR1B10 overexpression is an independent poor prognostic biomarker for OSCC. AKR1B10 inhibitors may be promising in clinical trials against OSCC. © 2017 Wiley Periodicals, Inc. Head Neck 39: 1327-1332, 2017.
Collapse
Affiliation(s)
- Hui-Hsin Ko
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan.,Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li, Taiwan
| | - Jang-Jaer Lee
- School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Hsin-Ming Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan.,Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Mark Yen-Ping Kuo
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Shih-Jung Cheng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| |
Collapse
|
66
|
Mori M, Genda T, Ichida T, Murata A, Kamei M, Tsuzura H, Sato S, Narita Y, Kanemitsu Y, Ishikawa S, Kikuchi T, Shimada Y, Hirano K, Iijima K, Sugimoto K, Wada R, Nagahara A, Watanabe S. Aldo-keto reductase family 1 member B10 is associated with hepatitis B virus-related hepatocellular carcinoma risk. Hepatol Res 2017; 47:E85-E93. [PMID: 27084455 DOI: 10.1111/hepr.12725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/25/2022]
Abstract
AIM Recent reports have indicated that aldo-keto reductase family 1 member B10 (AKR1B10), a cancer-related oxidoreductase, was upregulated in some chronic liver diseases. However, few studies have reported AKR1B10 expression in chronic hepatitis B virus (HBV)-infected patients. The aim of the present study was to analyze AKR1B10 expression and its relevance on hepatocellular carcinoma (HCC) development in patients with chronic HBV infection. METHODS Expression of AKR1B10 in the liver of 119 chronic HBV-infected patients was assessed and quantified immunohistochemically. A multivariate Cox model was used to estimate the hazard ratios of AKR1B10 expression for HCC development. The cumulative incidences of HCC were evaluated using Kaplan-Meier analysis. RESULTS Expression of AKR1B10 in the study cohort ranged from 0% to 84%. During the median follow-up time (6.2 years), 13 patients developed HCC. Multivariate analysis revealed that high AKR1B10 expression (≥15%) was an independent risk factor for HCC (hazard ratio, 10.8; 95% confidence interval, 3.0-38.6; P < 0.001). The 5-year cumulative incidences of HCC were 20.6% and 2.6% in patients with high and low AKR1B10 expression, respectively (P < 0.001). Patients with high AKR1B10 expression had significantly higher alanine aminotransferase levels during follow-up than those with low expression, even though antiviral treatment decreased HBV-DNA levels in both groups. CONCLUSION Chronic HBV-infected patients with high hepatic AKR1B10 expression had an increased risk of HCC development. This suggests that AKR1B10 upregulation might play a role in the early stages of HBV-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Masashi Mori
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan.,First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan.,Department of Internal Medicine, Fujinomiya City General Hospital, Shizuoka, Japan
| | - Takuya Genda
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Takafumi Ichida
- Department of Hepatology, East Shonan General Hospital, Kanagawa, Japan
| | - Ayato Murata
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Masato Kamei
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Hironori Tsuzura
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Shunsuke Sato
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Yutaka Narita
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Yoshio Kanemitsu
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Sachiko Ishikawa
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Tetsu Kikuchi
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Yuji Shimada
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Katsuharu Hirano
- Department of Hepatology, East Shonan General Hospital, Kanagawa, Japan
| | - Katsuyori Iijima
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ryo Wada
- Department of Pathology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Akihito Nagahara
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Sumio Watanabe
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
67
|
Nishinaka T, Miura T, Shimizu K, Terada T. Identification and characterization of functional antioxidant response elements in the promoter of the aldo-keto reductase AKR1B10 gene. Chem Biol Interact 2017; 276:160-166. [PMID: 28219640 DOI: 10.1016/j.cbi.2017.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/08/2016] [Accepted: 02/14/2017] [Indexed: 12/16/2022]
Abstract
AKR1B10 is a human-type aldo-keto reductase. The up-regulation of AKR1B10 has been associated with various cancers including non-small cell lung carcinoma, viral and bacterial infections, and skin diseases. However, the mechanisms underlying AKR1B10 gene regulation are not fully understood. We previously indicated the involvement of the transcription factor Nrf2 in AKR1B10 gene regulation. There are at least five potential Nrf2-responsive consensus sequences, so-called antioxidant response elements (AREs), and several ARE-like sequences in the 5'-flanking region up to -3282 bp of the AKR1B10 gene. In the present study, we attempted to identify functional AREs by luciferase reporter analyses using various mutants for each ARE. And we found that only those between -530 and -520 bp (ARE-A), which is the closest location to the translation start site, were functional among the five ARE consensus sites examined. Furthermore, ARE-A functioned co-operatively with the neighboring AP-1 site. Since the AP-1 site resembles ARE, the tandem arrangement of these two elements may be essential for augmented responsiveness to Nrf2 and plays an important role in AKR1B10 gene regulation by various Nrf2-mediating stimuli.
Collapse
Affiliation(s)
- Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan.
| | - Takeshi Miura
- Pharmaceutical Education Support Center, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien, 9-Bancho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Kahori Shimizu
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| |
Collapse
|
68
|
Wang YY, Qi LN, Zhong JH, Qin HG, Ye JZ, Lu SD, Ma L, Xiang BD, Li LQ, You XM. High expression of AKR1B10 predicts low risk of early tumor recurrence in patients with hepatitis B virus-related hepatocellular carcinoma. Sci Rep 2017; 7:42199. [PMID: 28181486 PMCID: PMC5299837 DOI: 10.1038/srep42199] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/06/2017] [Indexed: 01/27/2023] Open
Abstract
To clarify the relationship between aldo-keto reductase family 1 member B10 (AKR1B10) expression and early hepatocellular carcinoma (HCC) recurrence, this study detected AKR1B10 expression in tumor and adjacent non-tumor tissues from 110 patients with hepatitis B virus (HBV)-related HCC underwent liver resection and analyzed its correlations with clinicopathological characteristics and prognosis of these patients. Detected by quantitative reverse transcription polymerase chain reaction, AKR1B10 mRNA expression showed significantly higher in HCC tissues than in adjacent non-tumor tissues, with a low level in normal liver tissues. Similar results was confirmed at the protein level using immunohistochemistry and Western blotting. High AKR1B10 expression was negatively correlated with serum alpha-fetoprotein level and positively correlated with HBV-DNA level. Patients with high AKR1B10 expression had significantly higher disease-free survival than those with low expression within 2 years after liver resection. Multivariate analysis also confirmed high AKR1B10 expression to be a predictor of low risk of early HCC recurrence. In addition, high AKR1B10 expression was found to be a favorable factor of overall survival. These results suggest that AKR1B10 is involved in HBV-related hepatocarcinogenesis, but its high expression could predict low risk of early tumor recurrence in patients with HBV-related HCC after liver resection.
Collapse
MESH Headings
- Aged
- Aldehyde Reductase/genetics
- Aldo-Keto Reductases
- Biomarkers, Tumor/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/surgery
- Carcinoma, Hepatocellular/virology
- Disease-Free Survival
- Female
- Gene Expression Regulation, Neoplastic
- Hepatectomy/adverse effects
- Hepatitis B virus/pathogenicity
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/surgery
- Liver Neoplasms/virology
- Male
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/surgery
- Neoplasm Recurrence, Local/virology
- Prognosis
- Risk Factors
Collapse
Affiliation(s)
- Yan-Yan Wang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
- Key Laboratory of Early Prevention and Treatment of Regional High-Incidence-Tumors, Ministry of Education, Nanning 530021, PR China
| | - Lu-Nan Qi
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
- Key Laboratory of Early Prevention and Treatment of Regional High-Incidence-Tumors, Ministry of Education, Nanning 530021, PR China
- Guangxi Cancer Institute, Nanning 530021, PR China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
- Key Laboratory of Early Prevention and Treatment of Regional High-Incidence-Tumors, Ministry of Education, Nanning 530021, PR China
- Guangxi Cancer Institute, Nanning 530021, PR China
| | - Hong-Gui Qin
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
- Key Laboratory of Early Prevention and Treatment of Regional High-Incidence-Tumors, Ministry of Education, Nanning 530021, PR China
| | - Jia-Zhou Ye
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
- Key Laboratory of Early Prevention and Treatment of Regional High-Incidence-Tumors, Ministry of Education, Nanning 530021, PR China
- Guangxi Cancer Institute, Nanning 530021, PR China
| | - Shi-Dong Lu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
- Key Laboratory of Early Prevention and Treatment of Regional High-Incidence-Tumors, Ministry of Education, Nanning 530021, PR China
| | - Liang Ma
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
- Key Laboratory of Early Prevention and Treatment of Regional High-Incidence-Tumors, Ministry of Education, Nanning 530021, PR China
- Guangxi Cancer Institute, Nanning 530021, PR China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
- Key Laboratory of Early Prevention and Treatment of Regional High-Incidence-Tumors, Ministry of Education, Nanning 530021, PR China
- Guangxi Cancer Institute, Nanning 530021, PR China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
- Key Laboratory of Early Prevention and Treatment of Regional High-Incidence-Tumors, Ministry of Education, Nanning 530021, PR China
- Guangxi Cancer Institute, Nanning 530021, PR China
| | - Xue-Mei You
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
- Key Laboratory of Early Prevention and Treatment of Regional High-Incidence-Tumors, Ministry of Education, Nanning 530021, PR China
- Guangxi Cancer Institute, Nanning 530021, PR China
| |
Collapse
|
69
|
Diacetyl and related flavorant α-Diketones: Biotransformation, cellular interactions, and respiratory-tract toxicity. Toxicology 2017; 388:21-29. [PMID: 28179188 DOI: 10.1016/j.tox.2017.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/26/2023]
Abstract
Exposure to diacetyl and related α-diketones causes respiratory-tract damage in humans and experimental animals. Chemical toxicity is often associated with covalent modification of cellular nucleophiles by electrophilic chemicals. Electrophilic α-diketones may covalently modify nucleophilic arginine residues in critical proteins and, thereby, produce the observed respiratory-tract pathology. The major pathway for the biotransformation of α-diketones is reduction to α-hydroxyketones (acyloins), which is catalyzed by NAD(P)H-dependent enzymes of the short-chain dehydrogenase/reductase (SDR) and the aldo-keto reductase (AKR) superfamilies. Reduction of α-diketones to the less electrophilic acyloins is a detoxication pathway for α-diketones. The pyruvate dehydrogenase complex may play a significant role in the biotransformation of diacetyl to CO2. The interaction of toxic electrophilic chemicals with cellular nucleophiles can be predicted by the hard and soft, acids and bases (HSAB) principle. Application of the HSAB principle to the interactions of electrophilic α-diketones with cellular nucleophiles shows that α-diketones react preferentially with arginine residues. Furthermore, the respiratory-tract toxicity and the quantum-chemical reactivity parameters of diacetyl and replacement flavorant α-diketones are similar. Hence, the identified replacement flavorant α-diketones may pose a risk of flavorant-induced respiratory-tract toxicity. The calculated indices for the reaction of α-diketones with arginine support the hypothesis that modification of protein-bound arginine residues is a critical event in α-diketone-induced respiratory-tract toxicity.
Collapse
|
70
|
Kabir A, Honda RP, Kamatari YO, Endo S, Fukuoka M, Kuwata K. Effects of ligand binding on the stability of aldo-keto reductases: Implications for stabilizer or destabilizer chaperones. Protein Sci 2016; 25:2132-2141. [PMID: 27595938 PMCID: PMC5119574 DOI: 10.1002/pro.3036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/30/2016] [Indexed: 01/26/2023]
Abstract
Ligands such as enzyme inhibitors stabilize the native conformation of a protein upon binding to the native state, but some compounds destabilize the native conformation upon binding to the non-native state. The former ligands are termed "stabilizer chaperones" and the latter ones "destabilizer chaperones." Because the stabilization effects are essential for the medical chaperone (MC) hypothesis, here we have formulated a thermodynamic system consisting of a ligand and a protein in its native- and non-native state. Using the differential scanning fluorimetry and the circular dichroism varying the urea concentration and temperature, we found that when the coenzyme NADP+ was absent, inhibitors such as isolithocholic acid stabilized the aldo-keto reductase AKR1A1 upon binding, which showed actually the three-state folding, but destabilized AKR1B10. In contrast, in the presence of NADP+ , they destabilized AKR1A1 and stabilized AKR1B10. To explain these phenomena, we decomposed the free energy of stabilization (ΔΔG) into its enthalpy (ΔΔH) and entropy (ΔΔS) components. Then we found that in a relatively unstable protein showing the three-state folding, native conformation was stabilized by the negative ΔΔH in association with the negative ΔΔS, suggesting that the stabilizer chaperon decreases the conformational fluctuation of the target protein or increase its hydration. However, in other cases, ΔΔG was essentially determined by the delicate balance between ΔΔH and ΔΔS. The proposed thermodynamic formalism is applicable to the system including multiple ligands with allosteric interactions. These findings would promote the development of screening strategies for MCs to regulate the target conformations.
Collapse
Affiliation(s)
- Aurangazeb Kabir
- United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifu501‐1193Japan
| | - Ryo P. Honda
- Department of Molecular Pathobiochemistry, Graduate School of MedicineGifu UniversityGifu501‐1193Japan
| | | | - Satoshi Endo
- Laboratory of BiochemistryGifu Pharmaceutical UniversityGifu501‐1196Japan
| | - Mayuko Fukuoka
- United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifu501‐1193Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifu501‐1193Japan
- Department of Gene and Development, Graduate School of MedicineGifu UniversityGifu501‐1193Japan
| |
Collapse
|
71
|
Reddy KA, Kumar PU, Srinivasulu M, Triveni B, Sharada K, Ismail A, Reddy GB. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers. Breast 2016; 31:137-143. [PMID: 27855345 DOI: 10.1016/j.breast.2016.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 10/25/2022] Open
Abstract
The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors.
Collapse
Affiliation(s)
| | - P Uday Kumar
- National Institute of Nutrition, Hyderabad, India
| | | | - B Triveni
- MNJ Institute of Oncology, Hyderabad, India
| | - K Sharada
- National Institute of Nutrition, Hyderabad, India
| | | | | |
Collapse
|
72
|
Liu TA, Jan YJ, Ko BS, Wu YJ, Lu YJ, Liang SM, Liu CC, Chen SC, Wang J, Shyue SK, Liou JY. Regulation of aldo-keto-reductase family 1 B10 by 14-3-3ε and their prognostic impact of hepatocellular carcinoma. Oncotarget 2016; 6:38967-82. [PMID: 26516929 PMCID: PMC4770750 DOI: 10.18632/oncotarget.5734] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/09/2015] [Indexed: 02/06/2023] Open
Abstract
14-3-3ε is overexpressed in hepatocellular carcinoma (HCC) and its expression significantly associates with a poor prognostic outcome. To uncover how 14-3-3ε contributes to the tumor progression of HCC, we investigated the potential downstream targets regulated by 14-3-3ε. We found that 14-3-3ε increases expression and nuclear translocation of β-catenin and that 14-3-3ε-induced cell proliferation is attenuated by β-catenin silencing in HCC cells. Moreover, 14-3-3ε induces aldo-keto reductase family 1 member B10 (AKR1B10) expression through the activation of β-catenin signaling. Knockdown of AKR1B10 by siRNAs abolished 14-3-3ε-induced in vitro cell proliferation, anchorage-independent growth as well as in vivo tumor growth. Furthermore, AKR1B10 silencing increased retinoic acid (RA) levels in the serum of tumor-bearing mice and RA treatment attenuated 14-3-3ε-induced HCC cell proliferation. We further examined 14-3-3ε and AKR1B10 expression and clinicopathological characteristics of HCC tumors. Although the expression of AKR1B10 was significantly correlated with 14-3-3ε, an increase of AKR1B10 expression in 14-3-3ε positive patients paradoxically had better overall survival and disease-free survival rates as well as lower metastatic incidence than those without an AKR1B10 increase. Finally, we found a loss of AKR1B10 expression in cells exhibiting a high capacity of invasiveness. Silencing of AKR1B10 resulted in inducing snail and vimentin expression in HCC cells. These results indicate that AKR1B10 may play a dual role during HCC tumor progression. Our results also indicate that 14-3-3ε regulates AKR1B10 expression by activating β-catenin signaling. A combination of 14-3-3ε with AKR1B10 is a potential therapeutic target and novel prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Tzu-An Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Bor-Sheng Ko
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yi-Ju Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.,Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yi-Jhu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Chia-Chia Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Shyh-Chang Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - John Wang
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
73
|
Sonohara F, Inokawa Y, Hishida M, Kanda M, Nishikawa Y, Yamada S, Fujii T, Sugimoto H, Kodera Y, Nomoto S. Prognostic significance of AKR1B10 gene expression in hepatocellular carcinoma and surrounding non-tumorous liver tissue. Oncol Lett 2016; 12:4821-4828. [PMID: 28105190 DOI: 10.3892/ol.2016.5240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/30/2016] [Indexed: 02/06/2023] Open
Abstract
When assessing outcome in hepatocellular carcinoma (HCC), it is important to consider prognostic factors in background non-tumorous liver tissue as well as in the tumor, since multiple occurrence is associated with background liver status such as hepatitis. The current study aimed to elucidate molecular prognostic predictors that have an association with HCC background non-tumorous tissue. Microarray expression profiling identified aldo-keto reductase family 1, member B10 (AKR1B10) as a putative non-tumorous prognostic factor, and AKR1B10 gene expression was investigated in 158 curatively resected HCC cases by reverse transcription-quantitative polymerase chain reaction. AKR1B10 expression (AKR1B10 value/GAPDH value × 1,000) was significantly higher in tumor tissue (median, 9.2200; range, 0.0003-611.0200; n=158) than in the corresponding non-tumorous tissue (median, 0.5461; range, 0.0018-69.0300; n=158) (P<0.001). When the samples were grouped according to AKR1B10 expression in tumor tissue relative to non-tumorous tissue, tumor<non-tumorous expression (n=26) significantly correlated with poor recurrence-free survival (P=0.0074) and overall survival (OS) (P<0.0001), and was an independent prognostic factor for OS (P=0.0011) in a multivariate analysis. The ratio of AKR1B10 messenger RNA levels in HCC and corresponding non-tumorous tissues may predict prognosis after curative hepatectomy, with low expression in HCC tissue relative to non-tumorous tissue indicative of poor prognosis.
Collapse
Affiliation(s)
- Fuminori Sonohara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Department of Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi 464-8651, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Department of Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi 464-8651, Japan
| | - Mitsuhiro Hishida
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yoko Nishikawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hiroyuki Sugimoto
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shuji Nomoto
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Department of Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi 464-8651, Japan
| |
Collapse
|
74
|
Matsunaga T, Saito H, Endo S, Iguchi K, Soda M, El-Kabbani O, Hara A, Ikari A. Roles of aldo-keto reductases 1B10 and 1C3 and ATP-binding cassette transporter in docetaxel tolerance. Free Radic Res 2016; 50:1296-1308. [PMID: 27629782 DOI: 10.1080/10715762.2016.1236373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Docetaxel (DTX) is widely used for treatment of inveterate lung and prostate cancers, but its continuous administration elicits the hyposensitivity. Here, we established the DTX-resistant variants of human lung cancer A549 and androgen-independent prostate cancer Du145 cells and found that the resistance development provoked aberrant up-regulations of aldo-keto reductase (AKR) 1B10 and AKR1C3 in A549 and Du145 cells, respectively. In addition, the sensitivity to the DTX toxicity was significantly decreased and increased by overexpression and knockdown of the two AKR isoforms, respectively. Furthermore, the resistant cells exhibited a decreased level of reactive 4-hydroxy-2-nonenal formed during DTX treatment, and the decrease was alleviated by adding the AKR inhibitors, inferring that the two AKRs confer the chemoresistance through elevating the antioxidant properties. The development of DTX resistance was also associated with enhanced expression of an ATP-binding cassette (ABC) transporter ABCB1 among the ABC transporter isoforms. The combined treatment with inhibitors of the two AKRs and ABCB1 additively sensitized the resistant cells to DTX. Intriguingly, the AKR1B10 inhibitor also suppressed the lung cancer cross-resistance against cisplatin. The results suggest that combined treatment with AKRs (1B10 and 1C3) and ABCB1 inhibitors exerts overcoming effect against the cancer resistance to DTX and cisplatin, and can be used as the adjuvant therapy.
Collapse
Affiliation(s)
| | - Haruhi Saito
- a Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu , Japan
| | - Satoshi Endo
- a Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu , Japan
| | - Kazuhiro Iguchi
- b Laboratory of Community Pharmacy, Gifu Pharmaceutical University , Gifu , Japan
| | - Midori Soda
- c Laboratory of Pharmaceutics , Gifu Pharmaceutical University , Gifu , Japan
| | | | - Akira Hara
- e Faculty of Engineering , Gifu University , Gifu , Japan
| | - Akira Ikari
- a Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu , Japan
| |
Collapse
|
75
|
Bu Y, Cai G, Shen Y, Huang C, Zeng X, Cao Y, Cai C, Wang Y, Huang D, Liao DF, Cao D. Targeting NF-κB RelA/p65 phosphorylation overcomes RITA resistance. Cancer Lett 2016; 383:261-271. [PMID: 27721021 DOI: 10.1016/j.canlet.2016.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 11/18/2022]
Abstract
Inactivation of p53 occurs frequently in various cancers. RITA is a promising anticancer small molecule that dissociates p53-MDM2 interaction, reactivates p53 and induces exclusive apoptosis in cancer cells, but acquired RITA resistance remains a major drawback. This study found that the site-differential phosphorylation of nuclear factor-κB (NF-κB) RelA/p65 creates a barcode for RITA chemosensitivity in cancer cells. In naïve MCF7 and HCT116 cells where RITA triggered vast apoptosis, phosphorylation of RelA/p65 increased at Ser536, but decreased at Ser276 and Ser468; oppositely, in RITA-resistant cells, RelA/p65 phosphorylation decreased at Ser536, but increased at Ser276 and Ser468. A phosphomimetic mutation at Ser536 (p65/S536D) or silencing of endogenous RelA/p65 resensitized the RITA-resistant cells to RITA while the phosphomimetic mutant at Ser276 (p65/S276D) led to RITA resistance of naïve cells. In mouse xenografts, intratumoral delivery of the phosphomimetic p65/S536D mutant increased the antitumor activity of RITA. Furthermore, in the RITA-resistant cells ATP-binding cassette transporter ABCC6 was upregulated, and silencing of ABCC6 expression in these cells restored RITA sensitivity. In the naïve cells, ABCC6 delivery led to RITA resistance and blockage of p65/S536D mutant-induced RITA sensitivity. Taken together, these data suggest that the site-differential phosphorylation of RelA/p65 modulates RITA sensitivity in cancer cells, which may provide an avenue to manipulate RITA resistance.
Collapse
Affiliation(s)
- Yiwen Bu
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794, USA
| | - Guoshuai Cai
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Yi Shen
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794, USA
| | - Chenfei Huang
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794, USA
| | - Xi Zeng
- Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Yu Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794, USA
| | - Chuan Cai
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yuhong Wang
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Dan Huang
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Deliang Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794, USA; Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
76
|
Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids. Arch Biochem Biophys 2016; 609:69-76. [PMID: 27665999 DOI: 10.1016/j.abb.2016.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
Abstract
A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, is a cytosolic NADPH-dependent reductase toward various carbonyl compounds including reactive aldehydes, and is normally expressed in intestines. The enzyme is overexpressed in several extraintestinal cancers, and suggested as a potential target for cancer treatment. We found that saturated and cis-unsaturated fatty acids inhibit AKR1B10. Among the saturated fatty acids, myristic acid was the most potent, showing the IC50 value of 4.2 μM cis-Unsaturated fatty acids inhibited AKR1B10 more potently, and linoleic, arachidonic, and docosahexaenoic acids showed the lowest IC50 values of 1.1 μM. The inhibition by these fatty acids was reversible and kinetically competitive with respect to the substrate, showing the Ki values of 0.24-1.1 μM. These fatty acids, except for α-linoleic acid, were much less inhibitory to structurally similar aldose reductase. Site-directed mutagenesis study suggested that the fatty acids interact with several active site residues of AKR1B10, of which Gln114, Val301 and Gln303 are responsible for the inhibitory selectivity. Linoleic and arachidonic acids also effectively inhibited AKR1B10-mediated 4-oxo-2-nonenal metabolism in HCT-15 cells. Thus, the cis-unsaturated fatty acids may be used as an adjuvant therapy for treatment of cancers that up-regulate AKR1B10.
Collapse
|
77
|
Murata A, Genda T, Ichida T, Amano N, Sato S, Tsuzura H, Sato S, Narita Y, Kanemitsu Y, Shimada Y, Hirano K, Iijima K, Wada R, Nagahara A, Watanabe S. Pretreatment AKR1B10 expression predicts the risk of hepatocellular carcinoma development after hepatitis C virus eradication. World J Gastroenterol 2016; 22:7569-7578. [PMID: 27672277 PMCID: PMC5011670 DOI: 10.3748/wjg.v22.i33.7569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/04/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To clarify the association between aldo-keto reductase family 1 member B10 (AKR1B10) expression and hepatocarcinogenesis after hepatitis C virus eradication.
METHODS In this study, we enrolled 303 chronic hepatitis C patients who had achieved sustained virological response (SVR) through interferon-based antiviral therapy. Pretreatment AKR1B10 expression in the liver was immunohistochemically assessed and quantified as a percentage of positive staining area by using image-analysis software. A multivariate Cox analysis was used to estimate the hazard ratios (HRs) of AKR1B10 expression for hepatocellular carcinoma (HCC) development after achieving SVR. The cumulative incidences of HCC development were evaluated using Kaplan-Meier analysis and the log-rank test.
RESULTS Of the 303 chronic hepatitis C patients, 153 (50.5%) showed scarce hepatic AKR1B10 expression, quantified as 0%, which was similar to the expression in control normal liver tissues. However, the remaining 150 patients (49.5%) exhibited various degrees of AKR1B10 expression in the liver, with a maximal AKR1B10 expression of 73%. During the median follow-up time of 3.6 years (range 1.0-10.0 years), 8/303 patients developed HCC. Multivariate analysis revealed that only high AKR1B10 expression (≥ 8%) was an independent risk factor for HCC development (HR = 15.4, 95%CI: 1.8-132.5, P = 0.012). The 5-year cumulative incidences of HCC development were 13.7% and 0.5% in patients with high and low AKR1B10 expression, respectively (P < 0.001). During the follow-up period after viral eradication, patients expressing high levels of AKR1B10 expressed markedly higher levels of alanine aminotransferase and α-fetoprotein than did patients exhibiting low AKR1B10 expression.
CONCLUSION Chronic hepatitis C patients expressing high levels of hepatic AKR1B10 had an increased risk of HCC development even after SVR.
Collapse
|
78
|
Sato S, Genda T, Ichida T, Murata A, Tsuzura H, Narita Y, Kanemitsu Y, Ishikawa S, Kikuchi T, Mori M, Hirano K, Iijima K, Wada R, Nagahara A, Watanabe S. Impact of aldo-keto reductase family 1 member B10 on the risk of hepatitis C virus-related hepatocellular carcinoma. J Gastroenterol Hepatol 2016; 31:1315-22. [PMID: 26758591 DOI: 10.1111/jgh.13295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/31/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM Aldo-keto reductase family 1 member B10 (AKR1B10), a cancer-related oxidoreductase, was recently reported to be upregulated in some chronic liver diseases. However, its relevance in hepatocellular carcinoma (HCC) development is not fully assessed, especially in patients with chronic hepatitis C virus (HCV) infection. METHODS Aldo-keto reductase family 1 member B10 expression in the liver of 550 patients with chronic HCV infection was immunohistochemically assessed and quantified. A multivariate Cox model was used to estimate the hazard ratios (HRs) of AKR1B10 expression for HCC development, and the cumulative incidence of HCC was evaluated using the Kaplan-Meier method. RESULTS Aldo-keto reductase family 1 member B10 expression in the patients ranged from 0% to 80%. During the median follow-up of 3.2 years, 43 of 550 patients developed HCC. Multivariate analysis demonstrated that high AKR1B10 expression (≥6%) was an independent risk factor for HCC (HR, 6.43; 95% confidence interval, 2.90-14.25; P < 0.001). The 5-year cumulative incidences of HCC were 22.8% and 2.2% in patients with high and low AKR1B10 expression, respectively (P < 0.001). In subgroup analyses, the effects of high AKR1B10 expression on HCC development risk were significant over strata. In particular, HRs attributed to high AKR1B10 expression were significant in the subgroups that had been considered at a lower risk of HCC, such as in patients with younger age and mild hepatic fibrosis or those who achieved sustained virological response after interferon therapy. CONCLUSION Various degrees of AKR1B10 upregulation in the liver were observed in patients with chronic HCV infection, and high AKR1B10 expression could be a novel predictor of HCC.
Collapse
Affiliation(s)
- Shunsuke Sato
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Takuya Genda
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Takafumi Ichida
- Department of Hepatology, East Shonan General Hospital, Kanagawa, Japan
| | - Ayato Murata
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Hironori Tsuzura
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Yutaka Narita
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Yoshio Kanemitsu
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Sachiko Ishikawa
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Tetsu Kikuchi
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Masashi Mori
- Department of Internal Medicine, Fujinomiya City General Hospital, Fujinomiya, Shizuoka, Japan
| | - Katsuharu Hirano
- Department of Hepatology, East Shonan General Hospital, Kanagawa, Japan
| | - Katsuyori Iijima
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Ryo Wada
- Department of Pathology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Akihito Nagahara
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Sumio Watanabe
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
79
|
Jumper N, Hodgkinson T, Arscott G, Har-Shai Y, Paus R, Bayat A. The Aldo-Keto Reductase AKR1B10 Is Up-Regulated in Keloid Epidermis, Implicating Retinoic Acid Pathway Dysregulation in the Pathogenesis of Keloid Disease. J Invest Dermatol 2016; 136:1500-1512. [PMID: 27025872 DOI: 10.1016/j.jid.2016.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
Abstract
Keloid disease is a recurrent fibroproliferative cutaneous tumor of unknown pathogenesis for which clinical management remains unsatisfactory. To obtain new insights into hitherto underappreciated aspects of keloid pathobiology, we took a laser capture microdissection-based, whole-genome microarray analysis approach to identify distinct keloid disease-associated gene expression patterns within defined keloid regions. Identification of the aldo-keto reductase enzyme AKR1B10 as highly up-regulated in keloid epidermis suggested that an imbalance of retinoic acid metabolism is likely associated with keloid disease. Here, we show that AKR1B10 transfection into normal human keratinocytes reproduced the abnormal retinoic acid pathway expression pattern we had identified in keloid epidermis. Cotransfection of AKR1B10 with a luciferase reporter plasmid showed reduced retinoic acid response element activity, supporting the hypothesis of retinoic acid synthesis deficiency in keloid epidermis. Paracrine signals released by AKR1B10-overexpressing keratinocytes into conditioned medium resulted in up-regulation of transforming growth factor-β1, transforming growth factor-β2, and collagens I and III in both keloid and normal skin fibroblasts, mimicking the typical profibrotic keloid profile. Our study results suggest that insufficient retinoic acid synthesis by keloid epidermal keratinocytes may contribute to the pathogenesis of keloid disease. We refocus attention on the role of injured epithelium in keloid disease and identify AKR1B10 as a potential new target in future management of keloid disease.
Collapse
Affiliation(s)
- Natalie Jumper
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Tom Hodgkinson
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Guyan Arscott
- Department of Plastic and Reconstructive Surgery, University of West Indies, Kingston, Jamaica
| | - Yaron Har-Shai
- Plastic Surgery Unit, Carmel Medical Center, Haifa, Israel
| | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Department of Dermatology, University of Münster, D-48149, Münster, Germany
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK; Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.
| |
Collapse
|
80
|
Zu X, Yan R, Pan J, Zhong L, Cao Y, Ma J, Cai C, Huang D, Liu J, Chung FL, Liao DF, Cao D. Aldo-keto reductase 1B10 protects human colon cells from DNA damage induced by electrophilic carbonyl compounds. Mol Carcinog 2016; 56:118-129. [PMID: 26969882 DOI: 10.1002/mc.22477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/26/2016] [Accepted: 02/17/2016] [Indexed: 11/09/2022]
Abstract
Electrophilic carbonyl compounds are highly cytotoxic and genotoxic. Aldo-keto reductase 1B10 (AKR1B10) is an enzyme catalyzing reduction of carbonyl compounds to less toxic alcoholic forms. This study presents novel evidence that AKR1B10 protects colon cells from DNA damage induced by electrophilic carbonyl compounds. AKR1B10 is specifically expressed in epithelial cells of the human colon, but this study found that AKR1B10 expression was lost or markedly diminished in colorectal cancer, precancerous tissues, and a notable portion of normal adjacent tissues (NAT). SiRNA-mediated silencing of AKR1B10 in colon cancer cells HCT-8 enhanced cytotoxicity of acrolein and HNE, whereas ectopic expression of AKR1B10 in colon cancer cells RKO prevented the host cells against carbonyl cytotoxicity. Furthermore, siRNA-mediated AKR1B10 silencing led to DNA breaks and activation of γ-H2AX protein, a marker of DNA double strand breaks, particularly in the exposure of HNE (10 μM). In the AKR1B10 silenced HCT-8 cells, hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutant frequency increased by 26.8 times at basal level and by 33.5 times in the presence of 10 μM HNE when compared to vector control cells. In these cells, the cyclic acrolein-deoxyguanosine adducts levels were increased by over 10 times. These findings were confirmed by pharmacological inhibition of AKR1B10 activity by Epalrestat. Taken together, these data suggest that AKR1B10 is a critical protein that protects host cells from DNA damage induced by electrophilic carbonyl compounds. AKR1B10 deficiency in the colon may be an important pathogenic factor in disease progression and carcinogenesis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xuyu Zu
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Ruilan Yan
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Jishen Pan
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Linlin Zhong
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Yu Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Jun Ma
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Chuan Cai
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Huang
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianghua Liu
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Fung-Lung Chung
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Deliang Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois.,Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
81
|
Jin J, Liao W, Yao W, Zhu R, Li Y, He S. Aldo-keto Reductase Family 1 Member B 10 Mediates Liver Cancer Cell Proliferation through Sphingosine-1-Phosphate. Sci Rep 2016; 6:22746. [PMID: 26948042 PMCID: PMC4780005 DOI: 10.1038/srep22746] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
AKR1B10 is involved in hepatocarcinogenesis via modulation of fatty acid and lipid synthesis. AKR1B10 inhibition results in apoptosis of tumor cells whose lipids, especially phospholipids, were decreased by over 50%, suggesting involvement of phospholipids like sphingosine-1-phosphate (S1P) in AKR1B10's oncogenic function. Using a co-culture system, we found that co-culture of QSG-7701 (human hepatocyte) with HepG2 (hepatoma cell line) increases QSG-7701's proliferation, in which AKR1B10-S1P signaling plays a pivotal role. Consistent with previous findings, AKR1B10 mRNA and protein levels were higher in primary hepatocellular carcinoma (PHC) tissues than in peri-tumor tissues. Interestingly, the level of S1P was also higher in PHC tissues than in peri-tumor tissues. After analyzing the correlation between AKR1B10 mRNA expression in PHC tissues and the clinical data, we found that AKR1B10 mRNA expression was associated with serum alpha-fetoprotein (AFP), tumor-node-metastasis (TNM) stage, and lymph node metastasis, but not with other clinicopathologic variables. A higher AKR1B10 mRNA expression level is related to a shorter DFS (disease free survival) and OS (overall survival), serving as an independent predictor of DFS and OS in PHC patients with surgical resection.
Collapse
Affiliation(s)
- Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.,China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Wenmin Yao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Rongping Zhu
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Yulan Li
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.,China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Songqing He
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| |
Collapse
|
82
|
Guo Y, Luo W, Hu Z, Li J, Li X, Cao H, Li J, Wen B, Zhang J, Cheng H, Guo W, Tan T, Luo D. Low expression of Aldo-keto reductase 1B10 is a novel independent prognostic indicator for nasopharyngeal carcinoma. Cell Biosci 2016; 6:18. [PMID: 26949513 PMCID: PMC4779195 DOI: 10.1186/s13578-016-0082-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/14/2016] [Indexed: 01/19/2023] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is one of the most common human head and neck cancers with high incidence in Southern China, Southeast Asia and North Africa. Because of its nonspecific symptoms, the early diagnosis of NPC is very difficult. The 5-year survival rate is not ideal in spite of great innovations in radiation and chemotherapy treatments. Highly sensitive and specific prognostic biomarkers are eager for NPC clinical diagnosis. To find specific target molecules is very important for individualized treatment. Aldo–keto reductase B10 (AKR1B10) is closely related to tumorigenesis and tumor development, and however, its expression level in NPC tissues is not clear. Results AKR1B10 expression levels were validated in benign, para-cancerous nasopharyngeal and NPC tissues by immunohistochemical evaluation. AKR1B10 was positively expressed in 42 (82.4 %) of 51 benign specimens, and 235 (98.7 %) of 238 para-carcinoma specimens. This percentage was significantly higher than 44.5 % (133/299) in nasopharyngeal carcinoma tissue (p < 0.01). AKR1B10 mRNA quantitative levels detected by real-time quantitative RT-PCR in 90 NPC tissue samples (0.10 ± 0.21) were significantly lower than that in 15 benign tissue samples (1.03 ± 1.12) (p < 0.01). AKR1B10 expression levels in NPC were correlated negatively with T-classification, lymph node metastasis (p < 0.05). We established nasopharyngeal cancer monoclonal cells CNE-2/AKR1B10 with AKR1B10 stable expression and CNE-2/vector cells without AKR1B10 expression by using a modified lentivirus-mediated method, and found that AKR1B10 inhibited the proliferation of CNE-2/AKR1B10 cells by using MTT assay and flow cytometry, and cell migration by in vitro scratch test. Conclusion Taken together, our data suggest that low expression of AKR1B10 is an independent prognostic indicator in nasopharyngeal carcinoma, and that AKR1B10 may be involved in regulating the proliferation and migration of nasopharyngeal cancer cells.
Collapse
Affiliation(s)
- Yuanwei Guo
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China.,Center for Clinical Pathology, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China
| | - Weihao Luo
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China
| | - Zheng Hu
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital and Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, 410078 Changsha, Hunan People's Republic of China
| | - Jia Li
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China
| | - Xiaojie Li
- Center for Clinical Pathology, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China
| | - Huiqiu Cao
- Center for Clinical Pathology, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China
| | - Jun Li
- E.N.T. Department, The First People's Hospital of Chenzhou, 432000 Chenzhou, People's Republic of China
| | - Bo Wen
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China
| | - Jian Zhang
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China
| | - Hao Cheng
- E.N.T. Department, The First People's Hospital of Chenzhou, 432000 Chenzhou, People's Republic of China
| | - Wangyuan Guo
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China
| | - Tan Tan
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China.,Center for Clinical Pathology, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China
| | - Dixian Luo
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China.,Center for Clinical Pathology, Affiliated The First People's Hospital of Chenzhou, University of South China, 432000 Chenzhou, People's Republic of China
| |
Collapse
|
83
|
Huang L, He R, Luo W, Zhu YS, Li J, Tan T, Zhang X, Hu Z, Luo D. Aldo-Keto Reductase Family 1 Member B10 Inhibitors: Potential Drugs for Cancer Treatment. Recent Pat Anticancer Drug Discov 2016; 11:184-196. [PMID: 26844556 PMCID: PMC5403964 DOI: 10.2174/1574892811888160304113346] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 01/11/2023]
Abstract
Cytosolic NADPH-dependent reductase AKR1B10 is a member of the aldo-keto reductase (AKR) superfamily. This enzyme is normally expressed in the gastrointestinal tract. However, it is overexpressed in many solid tumors, such as hepatocarcinoma, lung cancer and breast cancer. AKR1B10 may play a role in the formation and development of carcinomas through multiple mechanisms including detoxification of cytotoxic carbonyls, modulation of retinoic acid level, and regulation of cellular fatty acid synthesis and lipid metabolism. Studies have suggested that AKR1B10 may be a useful biomarker for cancer diagnosis and a potential target for cancer treatment. Over the last decade, a number of AKR1B10 inhibitors including aldose reductase inhibitors (ARIs), endogenous substances, natural-based derivatives and synthetic compounds have been developed, which could be novel anticancer drugs. This review provides an overview on related articles and patents about AKR1B10 inhibitors, with a focus on their inhibition selectivity and mechanism of function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zheng Hu
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Postdoctoral Mobile Stations of Central South University, Affiliated the First Peoples Hospital of Chenzhou of University of South China, Chenzhou 432000, P.R.China.
| | | |
Collapse
|
84
|
Pastel E, Pointud JC, Martinez A, Lefrançois-Martinez AM. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology. Front Endocrinol (Lausanne) 2016; 7:97. [PMID: 27499746 PMCID: PMC4956669 DOI: 10.3389/fendo.2016.00097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/06/2016] [Indexed: 01/27/2023] Open
Abstract
Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions.
Collapse
Affiliation(s)
- Emilie Pastel
- Diabetes and Obesity Research Group, University of Exeter Medical School, Exeter, UK
| | - Jean-Christophe Pointud
- CNRS, UMR 6293/INSERM U1103, Génétique, Reproduction et Développement, Clermont Université, Aubière, France
| | - Antoine Martinez
- CNRS, UMR 6293/INSERM U1103, Génétique, Reproduction et Développement, Clermont Université, Aubière, France
| | - A. Marie Lefrançois-Martinez
- CNRS, UMR 6293/INSERM U1103, Génétique, Reproduction et Développement, Clermont Université, Aubière, France
- *Correspondence: A. Marie Lefrançois-Martinez,
| |
Collapse
|
85
|
Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and Associated Colorectal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9875298. [PMID: 26823956 PMCID: PMC4707327 DOI: 10.1155/2016/9875298] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 12/15/2022]
Abstract
Oxidative stress has long been known as a pathogenic factor of ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), but the effects of secondary carbonyl lesions receive less emphasis. In inflammatory conditions, reactive oxygen species (ROS), such as superoxide anion free radical (O2 (∙-)), hydrogen peroxide (H2O2), and hydroxyl radical (HO(∙)), are produced at high levels and accumulated to cause oxidative stress (OS). In oxidative status, accumulated ROS can cause protein dysfunction and DNA damage, leading to gene mutations and cell death. Accumulated ROS could also act as chemical messengers to activate signaling pathways, such as NF-κB and p38 MAPK, to affect cell proliferation, differentiation, and apoptosis. More importantly, electrophilic carbonyl compounds produced by lipid peroxidation may function as secondary pathogenic factors, causing further protein and membrane lesions. This may in turn exaggerate oxidative stress, forming a vicious cycle. Electrophilic carbonyls could also cause DNA mutations and breaks, driving malignant progression of UC. The secondary lesions caused by carbonyl compounds may be exceptionally important in the case of host carbonyl defensive system deficit, such as aldo-keto reductase 1B10 deficiency. This review article updates the current understanding of oxidative stress and carbonyl lesions in the development and progression of UC and CAC.
Collapse
|
86
|
Zemanova L, Hofman J, Novotna E, Musilek K, Lundova T, Havrankova J, Hostalkova A, Chlebek J, Cahlikova L, Wsol V. Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment. JOURNAL OF NATURAL PRODUCTS 2015; 78:2666-2674. [PMID: 26529431 DOI: 10.1021/acs.jnatprod.5b00616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
AKR1B10 is an NADPH-dependent reductase that plays an important function in several physiological reactions such as the conversion of retinal to retinol, reduction of isoprenyl aldehydes, and biotransformation of procarcinogens and drugs. A growing body of evidence points to the important role of the enzyme in the development of several types of cancer (e.g., breast, hepatocellular), in which it is highly overexpressed. AKR1B10 is regarded as a therapeutic target for the treatment of these diseases, and potent and specific inhibitors may be promising therapeutic agents. Several inhibitors of AKR1B10 have been described, but the area of natural plant products has been investigated sparingly. In the present study almost 40 diverse phenolic compounds and alkaloids were examined for their ability to inhibit the recombinant AKR1B10 enzyme. The most potent inhibitors-apigenin, luteolin, and 7-hydroxyflavone-were further characterized in terms of IC50, selectivity, and mode of action. Molecular docking studies were also conducted, which identified putative binding residues important for the interaction. In addition, cellular studies demonstrated a significant inhibition of the AKR1B10-mediated reduction of daunorubicin in intact cells by these inhibitors without a considerable cytotoxic effect. Although these compounds are moderately potent and selective inhibitors of AKR1B10, they constitute a new structural type of AKR1B10 inhibitor and may serve as a template for the development of better inhibitors.
Collapse
Affiliation(s)
| | | | | | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove , Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
87
|
Tahtah Y, Kongstad KT, Wubshet SG, Nyberg NT, Jønsson LH, Jäger AK, Qinglei S, Staerk D. Triple aldose reductase/α-glucosidase/radical scavenging high-resolution profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude extract of Radix Scutellariae. J Chromatogr A 2015; 1408:125-32. [PMID: 26187760 DOI: 10.1016/j.chroma.2015.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/11/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
In this work, development of a new microplate-based high-resolution profiling assay using recombinant human aldose reductase is presented. Used together with high-resolution radical scavenging and high-resolution α-glucosidase assays, it provided the first report of a triple aldose reductase/α-glucosidase/radical scavenging high-resolution inhibition profile - allowing proof of concept with Radix Scutellariae crude extract as a polypharmacological herbal drug. The triple bioactivity high-resolution profiles were used to pinpoint bioactive compounds, and subsequent structure elucidation was performed with hyphenated high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy. The only α-glucosidase inhibitor was baicalein, whereas main aldose reductase inhibitors in the crude extract were baicalein and skullcapflavone II, and main radical scavengers were ganhuangemin, viscidulin III, baicalin, oroxylin A 7-O-glucuronide, wogonoside, baicalein, wogonin, and skullcapflavone II.
Collapse
Affiliation(s)
- Yousof Tahtah
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Sileshi G Wubshet
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Nils T Nyberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Louise H Jønsson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anna K Jäger
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Sun Qinglei
- Shandong Analysis and Test Center, Shandong, People's Republic of China
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
88
|
Semmo N, Weber T, Idle JR, Beyoğlu D. Metabolomics reveals that aldose reductase activity due to AKR1B10 is upregulated in hepatitis C virus infection. J Viral Hepat 2015; 22:617-24. [PMID: 25487531 DOI: 10.1111/jvh.12376] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/21/2014] [Indexed: 12/13/2022]
Abstract
To understand the changes in the metabolome of hepatitis C virus (HCV)-infected persons, we conducted a metabolomic investigation in both plasma and urine of 30 HCV-positive individuals using plasmas from 30 HCV-negative blood donors and urines from 30 healthy volunteers. Samples were analysed by gas chromatography-mass spectrometry and data subjected to multivariate analysis. The plasma metabolomic phenotype of HCV-positive persons was found to have elevated glucose, mannose and oleamide, together with depressed plasma lactate. The urinary metabolomic phenotype of HCV-positive persons comprised reduced excretion of fructose and galactose combined with elevated urinary excretion of 6-deoxygalactose (fucose) and the polyols sorbitol, galactitol and xylitol. HCV-infected persons had elevated galactitol/galactose and sorbitol/glucose urinary ratios, which were highly correlated. These observations pointed to enhanced aldose reductase activity, and this was confirmed by real-time quantitative polymerase chain reaction with AKR1B10 gene expression elevated sixfold in the liver. In contrast, AKR1B1 gene expression was reduced 40% in HCV-positive livers. Interestingly, persons who were formerly HCV infected retained the metabolomic phenotype of HCV infection without reverting to the HCV-negative metabolomic phenotype. This suggests that the effects of HCV on hepatic metabolism may be long lived. Hepatic AKR1B10 has been reported to be elevated in hepatocellular carcinoma and in several premalignant liver diseases. It would appear that HCV infection alone increases AKR1B10 expression, which manifests itself as enhanced urinary excretion of polyols with reduced urinary excretion of their corresponding hexoses. What role the polyols play in hepatic pathophysiology of HCV infection and its sequelae is currently unknown.
Collapse
Affiliation(s)
- N Semmo
- University Clinic for Visceral Surgery and Medicine, Inselspital, Bern, Switzerland.,Hepatology Research Group, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - T Weber
- Hepatology Research Group, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - J R Idle
- University Clinic for Visceral Surgery and Medicine, Inselspital, Bern, Switzerland.,Hepatology Research Group, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - D Beyoğlu
- Hepatology Research Group, Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
89
|
Pastel E, Pointud JC, Loubeau G, Dani C, Slim K, Martin G, Volat F, Sahut-Barnola I, Val P, Martinez A, Lefrançois-Martinez AM. Aldose reductases influence prostaglandin F2α levels and adipocyte differentiation in male mouse and human species. Endocrinology 2015; 156:1671-84. [PMID: 25730106 DOI: 10.1210/en.2014-1750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aldose reductases (AKR1B) are widely expressed oxidoreductases whose physiological function remains elusive. Some isoforms are genuine prostaglandin F2α (PGF2α) synthases, suggesting they might influence adipose homeostasis because PGF2α inhibits adipogenesis. This was shown by Akr1b7 gene ablation in the mouse, which resulted in increased adiposity related to a lower PGF2α content in fat. Yet humans have no ortholog gene for Akr1b7, so the role of aldose reductases in human adipose homeostasis remains to be explored. We analyzed expression of genes encoding human and mouse aldose reductase isoforms in adipose tissues and differentiating adipocytes to assess conserved mechanisms regulating PGF2α synthesis and adipogenesis. The Akr1b3 gene encoded the most abundant isoform in mouse adipose tissue, whereas Akr1b7 encoded the only isoform enriched in the stromal vascular fraction. Most mouse aldose reductase gene expression peaked in early adipogenesis of 3T3-L1 cells and diminished with differentiation. In contrast with its mouse ortholog Akr1b3, AKR1B1 expression increased throughout differentiation of human multipotent adipose-derived stem cells, paralleling PGF2α release, whereas PGF2α receptor (FP) levels collapsed in early differentiation. Pharmacological inhibition of aldose reductase using Statil altered PGF2α production and enhanced human multipotent adipose-derived stem adipocyte differentiation. As expected, the adipogenic effects of Statil were counteracted by an FP agonist (cloprostenol). Thus, in both species aldose reductase-dependent PGF2α production could be important in early differentiation to restrict adipogenesis. PGF2α antiadipogenic signaling could then be toned down through the FP receptor or aldose reductases down-regulation in human and mouse cells, respectively. Our data suggest that aldose reductase inhibitors could have obesogenic potential.
Collapse
Affiliation(s)
- Emilie Pastel
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293 (E.P., J.-C.P., G.L., I.S.-B., P.V., A.M., A.-M.L.-M.), INSERM Unité 1103, Génétique Reproduction et Développement, Clermont Université, 63171 Aubière, France; iBV (C.D.), Institute of Biology Valrose, Université Nice Sophia Antipolis, 06189 Nice, France; Service de Chirurgie Digestive (K.S., G.M.), Centre Hospitalier Universitaire Estaing, 63003 Clermont-Ferrand, France; and INSERM Unité Mixte de Recherche 1048 (F.V.), Institute of Metabolic and Cardiovascular Diseases, Université Paul Sabatier, 31432 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Rohde K, Federbusch M, Horstmann A, Keller M, Villringer A, Stumvoll M, Tönjes A, Kovacs P, Böttcher Y. Genetic variants in AKR1B10 associate with human eating behavior. BMC Genet 2015; 16:31. [PMID: 25887478 PMCID: PMC4379593 DOI: 10.1186/s12863-015-0189-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 03/11/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The human Aldoketoreductase 1B10 gene (AKR1B10) encodes one of the enzymes belonging to the family of aldoketoreductases and may be involved in detoxification of nutrients during digestion. Further, AKR1B10 mRNA (messenger ribonucleic acid) expression was diminished in brain regions potentially involved in the regulation of eating behavior in rats which are more sensitive to cocaine and alcohol. We hypothesized that the human AKR1B10 gene may also play a role in the regulation of human eating behavior. RESULTS We investigated the effects of 5 genetic variants of AKR1B10 on human eating behavior among 548 subjects from a German self-contained population, the Sorbs, and in 350 subjects from another independent German cohort. Among the Sorbs, we observed nominal associations with disinhibition at the 5' untranslated region (5' UTR) variant rs10232478 and the intragenic variants rs1834150 and rs782881 (all P ≤ 0.05). Further, we detected a relationship of rs1834150 and rs782881 with waist, smoking consumption (rs782881) and coffee consumption (rs1834150) (all P ≤ 0.05). Albeit non-significant, replication analyses revealed similar effect directions for disinhibition at rs1834150 (combined P = 0.0096). Moreover, in the replication cohort we found rs1834150 related to increased restraint scores with a similar direction as in the Sorbs (combined P = 0.0072). CONCLUSION Our data suggest that genetic variants in the AKR1B10 locus may influence human eating behavior.
Collapse
Affiliation(s)
- Kerstin Rohde
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany.
| | - Martin Federbusch
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany.
| | - Annette Horstmann
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany. .,Max-Planck-Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany.
| | - Maria Keller
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany.
| | - Arno Villringer
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany. .,Max-Planck-Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany. .,Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany.
| | - Michael Stumvoll
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany. .,Department of Medicine, University of Leipzig, Leipzig, Germany.
| | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, Germany.
| | - Peter Kovacs
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany.
| | - Yvonne Böttcher
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
91
|
Morikawa Y, Kezuka C, Endo S, Ikari A, Soda M, Yamamura K, Toyooka N, El-Kabbani O, Hara A, Matsunaga T. Acquisition of doxorubicin resistance facilitates migrating and invasive potentials of gastric cancer MKN45 cells through up-regulating aldo-keto reductase 1B10. Chem Biol Interact 2015; 230:30-9. [PMID: 25686905 DOI: 10.1016/j.cbi.2015.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Abstract
Continuous exposure to doxorubicin (DOX) accelerates hyposensitivity to the drug-elicited lethality of gastric cells, with increased risks of the recurrence and serious cardiovascular side effects. However, the detailed mechanisms underlying the reduction of DOX sensitivity remain unclear. In this study, we generated a DOX-resistant variant upon continuously treating human gastric cancer MKN45 cells with incremental concentrations of the drug, and investigated whether the gain of DOX resistance influences gene expression of four aldo-keto reductases (AKRs: 1B10, 1C1, 1C2 and 1C3). RT-PCR analysis revealed that among the enzymes AKR1B10 is most highly up-regulated during the chemoresistance induction. The up-regulation of AKR1B10 was confirmed by analyses of Western blotting and enzyme activity. The DOX sensitivity of MKN45 cells was reduced and elevated by overexpression and inhibition of AKR1B10, respectively. Compared to the parental MKN45 cells, the DOX-resistant cells had higher migrating and invasive abilities, which were significantly suppressed by addition of AKR1B10 inhibitors. Zymographic and real-time PCR analyses also revealed significant increases in secretion and expression of matrix metalloproteinase (MMP) 2 associated with DOX resistance. Moreover, the overexpression of AKR1B10 in the parental cells remarkably facilitated malignant progression (elevation of migrating and invasive potentials) and MMP2 secretion, which were lowered by the AKR1B10 inhibitors. These results suggest that AKR1B10 is a DOX-resistance gene in the gastric cancer cells, and is responsible for elevating the migrating and invasive potentials of the cells through induction of MMP2.
Collapse
Affiliation(s)
- Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Chihiro Kezuka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Midori Soda
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Keiko Yamamura
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Naoki Toyooka
- Graduate School of Science and Technology for Research, University of Toyama, Toyama 930-8555, Japan
| | - Ossama El-Kabbani
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| |
Collapse
|
92
|
Weber S, Salabei JK, Möller G, Kremmer E, Bhatnagar A, Adamski J, Barski OA. Aldo-keto Reductase 1B15 (AKR1B15): a mitochondrial human aldo-keto reductase with activity toward steroids and 3-keto-acyl-CoA conjugates. J Biol Chem 2015; 290:6531-45. [PMID: 25577493 DOI: 10.1074/jbc.m114.610121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldo-keto reductases (AKRs) comprise a superfamily of proteins involved in the reduction and oxidation of biogenic and xenobiotic carbonyls. In humans, at least 15 AKR superfamily members have been identified so far. One of these is a newly identified gene locus, AKR1B15, which clusters on chromosome 7 with the other human AKR1B subfamily members (i.e. AKR1B1 and AKR1B10). We show that alternative splicing of the AKR1B15 gene transcript gives rise to two protein isoforms with different N termini: AKR1B15.1 is a 316-amino acid protein with 91% amino acid identity to AKR1B10; AKR1B15.2 has a prolonged N terminus and consists of 344 amino acid residues. The two gene products differ in their expression level, subcellular localization, and activity. In contrast with other AKR enzymes, which are mostly cytosolic, AKR1B15.1 co-localizes with the mitochondria. Kinetic studies show that AKR1B15.1 is predominantly a reductive enzyme that catalyzes the reduction of androgens and estrogens with high positional selectivity (17β-hydroxysteroid dehydrogenase activity) as well as 3-keto-acyl-CoA conjugates and exhibits strong cofactor selectivity toward NADP(H). In accordance with its substrate spectrum, the enzyme is expressed at the highest levels in steroid-sensitive tissues, namely placenta, testis, and adipose tissue. Placental and adipose expression could be reproduced in the BeWo and SGBS cell lines, respectively. In contrast, AKR1B15.2 localizes to the cytosol and displays no enzymatic activity with the substrates tested. Collectively, these results demonstrate the existence of a novel catalytically active AKR, which is associated with mitochondria and expressed mainly in steroid-sensitive tissues.
Collapse
Affiliation(s)
- Susanne Weber
- From the Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, 85764 Neuherberg, Germany
| | - Joshua K Salabei
- the Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky 40202
| | - Gabriele Möller
- From the Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, 85764 Neuherberg, Germany
| | - Elisabeth Kremmer
- the Institute of Molecular Immunology, German Research Center for Environmental Health, Helmholtz Zentrum Muenchen, 81377 Muenchen, Germany
| | - Aruni Bhatnagar
- the Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky 40202
| | - Jerzy Adamski
- From the Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, 85764 Neuherberg, Germany, the Lehrstuhl für Experimentelle Genetik, Technische Universitaet Muenchen, 85356 Freising-Weihenstephan, Germany, and the German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Oleg A Barski
- the Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky 40202,
| |
Collapse
|
93
|
Shen Y, Ma J, Yan R, Ling H, Li X, Yang W, Gao J, Huang C, Bu Y, Cao Y, He Y, Wan L, Zu X, Liu J, Huang MC, Stenson WF, Liao DF, Cao D. Impaired self-renewal and increased colitis and dysplastic lesions in colonic mucosa of AKR1B8-deficient mice. Clin Cancer Res 2014; 21:1466-76. [PMID: 25538260 DOI: 10.1158/1078-0432.ccr-14-2072] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Ulcerative colitis and colitis-associated colorectal cancer (CAC) is a serious health issue, but etiopathological factors remain unclear. Aldo-keto reductase 1B10 (AKR1B10) is specifically expressed in the colonic epithelium, but downregulated in colorectal cancer. This study was aimed to investigate the etiopathogenic role of AKR1B10 in ulcerative colitis and CAC. EXPERIMENTAL DESIGN Ulcerative colitis and CAC biopsies (paraffin-embedded sections) and frozen tissues were collected to examine AKR1B10 expression. Aldo-keto reductase 1B8 (the ortholog of human AKR1B10) knockout (AKR1B8(-/-)) mice were produced to estimate its role in the susceptibility and severity of chronic colitis and associated dysplastic lesions, induced by dextran sulfate sodium (DSS) at a low dose (2%). Genome-wide exome sequencing was used to profile DNA damage in DSS-induced colitis and tumors. RESULTS AKR1B10 expression was markedly diminished in over 90% of ulcerative colitis and CAC tissues. AKR1B8 deficiency led to reduced lipid synthesis from butyrate and diminished proliferation of colonic epithelial cells. The DSS-treated AKR1B8(-/-) mice demonstrated impaired injury repair of colonic epithelium and more severe bleeding, inflammation, and ulceration. These AKR1B8(-/-) mice had more severe oxidative stress and DNA damage, and dysplasias were more frequent and at a higher grade in the AKR1B8(-/-) mice than in wild-type mice. Palpable masses were seen in the AKR1B8(-/-) mice only, not in wild-type. CONCLUSIONS AKR1B8 is a critical protein in the proliferation and injury repair of the colonic epithelium and in the pathogenesis of ulcerative colitis and CAC, being a new etiopathogenic factor of these diseases.
Collapse
Affiliation(s)
- Yi Shen
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Jun Ma
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Ruilan Yan
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Hongyan Ling
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Xiaoning Li
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Wancai Yang
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - John Gao
- Department of Pathology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Chenfei Huang
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Yiwen Bu
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Yu Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Yingchun He
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Laxiang Wan
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Xuyu Zu
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Jianghua Liu
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Mei Chris Huang
- Division of Gastroenterology at Southern Illinois University School of Medicine, Springfield, Illinois
| | - William F Stenson
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Deliang Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois. Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
94
|
Nishinaka T, Miura T, Sakou M, Hidaka C, Sasaoka C, Okamura A, Okamoto A, Terada T. Down-regulation of aldo-keto reductase AKR1B10 gene expression by a phorbol ester via the ERK/c-Jun signaling pathway. Chem Biol Interact 2014; 234:274-81. [PMID: 25463304 DOI: 10.1016/j.cbi.2014.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/14/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
AKR1B10 is a human member of the aldo-keto reductase (AKR) superfamily, and is considered to be a tumor biomarker because its expression is known to be significantly induced in the cells of various cancers such as lung non-small-cell carcinoma and hepatocellular carcinoma. However, the mechanisms underlying the regulation of its gene remain unclear. In the present study, we demonstrated that the phorbol ester, 12-O-tetradecanoyl phorbol 13-acetate (TPA), down-regulated the expression of the AKR1B10 gene in the human lung cancer cell line, A549. The treatment of A549 cells with TPA for 24h significantly reduced the mRNA levels, protein levels, and promoter activity of AKR1B10 as well as the growth of A549 cells. TPA induced the phosphorylation of the MAP kinase, ERK, and U0126, an inhibitor of the MAP kinase kinase, MEK1, blocked the down-regulation of AKR1B10 by TPA, indicating that the MAP kinase ERK plays a role in regulating the expression of AKR1B10. TPA also induced c-jun gene expression in an ERK-dependent manner. The co-introduction of the c-Jun protein resulted in a decrease in the mRNA levels and promoter activity of AKR1B10 as well as A549 cell proliferation. These results suggested that the ERK/c-Jun signaling pathway may play an important role in the TPA-triggered down-regulation of AKR1B10 gene expression.
Collapse
Affiliation(s)
- Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka-Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan.
| | - Takeshi Miura
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka-Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Mihoko Sakou
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka-Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Chiemi Hidaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka-Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Chisato Sasaoka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka-Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Asuka Okamura
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka-Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Atsushi Okamoto
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka-Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka-Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| |
Collapse
|
95
|
Ha SY, Song DH, Lee JJ, Lee HW, Cho SY, Park CK. High expression of aldo-keto reductase 1B10 is an independent predictor of favorable prognosis in patients with hepatocellular carcinoma. Gut Liver 2014; 8:648-54. [PMID: 25287169 PMCID: PMC4215452 DOI: 10.5009/gnl13406] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND/AIMS Upregulation of aldo-keto reductase 1B10 (AKR1B10) through the mitogenic activator protein-1 signaling pathway might promote hepatocarcinogenesis and tumor progression. The goal of this study was to evaluate the prognostic significance of AKR1B10 protein expression in patients with hepatocellular carcinoma after surgery. METHODS A tissue microarray was used to detect the expression level of AKR1B10 protein in tumors from 255 patients with hepatocellular carcinoma who underwent curative hepatectomy. The impact of AKR1B10 expression on the survival of patients was analyzed. The median follow-up period was 119.8 months. RESULTS High AKR1B10 protein expression was observed in 125 of the 255 patients with hepatocellular carcinoma (49.0%). High AKR1B10 expression was significantly associated with a lack of invasion of the major portal vein (p=0.022), a lack of intrahepatic metastasis (p=0.010), lower the American Joint Committee on Cancer T stage (p=0.016), lower the Barcelona Clinic Liver Cancer stage (p=0.006), and lower α-fetoprotein levels (p=0.020). High AKR1B10 expression was also correlated with a lack of early recurrence (p=0.022). Multivariate analyses of survival revealed that intrahepatic metastases and lower albumin levels were independent predictors of both shorter recurrence-free survival and shorter disease-specific survival. High AKR1B10 expression was an independent predictor of both longer recurrence-free survival (p=0.024) and longer disease-specific survival (p=0.046). CONCLUSIONS High AKR1B10 protein expression might be useful as a marker of a favorable prognosis in patients with hepatocellular carcinoma after curative hepatectomy.
Collapse
Affiliation(s)
- Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dae Hyun Song
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Jun Lee
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Woo Lee
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Youn Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-Keun Park
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
96
|
Matsunaga T, Yamaji Y, Tomokuni T, Morita H, Morikawa Y, Suzuki A, Yonezawa A, Endo S, Ikari A, Iguchi K, El-Kabbani O, Tajima K, Hara A. Nitric oxide confers cisplatin resistance in human lung cancer cells through upregulation of aldo-keto reductase 1B10 and proteasome. Free Radic Res 2014; 48:1371-85. [PMID: 25156503 DOI: 10.3109/10715762.2014.957694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, we show that exposure of human lung cancer A549 cells to cisplatin (cis-diamminedichloroplatinum, CDDP) promotes production of nitric oxide (NO) through generation of reactive oxygen species (ROS) and resulting upregulation of inducible NO synthase (iNOS). The incubation of the cells with a NO donor, diethylenetriamine NONOate, not only reduced the CDDP-induced cell death and apoptotic alterations (induction of CCAAT-enhancer-binding protein homologous protein and caspase-3 activation), but also elevated proteolytic activity of 26S proteasome, suggesting that the activation of proteasome function contributes to the reduction of CDDP sensitivity by NO. Monitoring expression levels of six aldo-keto reductases (AKRs) (1A1, 1B1, 1B10, 1C1, 1C2, and 1C3) during the treatment with the NO donor and subsequent CDDP sensitivity test using the specific inhibitors also proposed that upregulation of AKR1B10 by NO is a key process for acquiring the CDDP resistance in A549 cells. Treatment with CDDP and NO increased amounts of nitrotyrosine protein adducts, indicative of peroxynitrite formation, and promoted the induction of AKR1B10, inferring a relationship between peroxynitrite formation and the enzyme upregulation in the cells. The treatment with CDDP or a ROS-related lipid aldehyde, 4-hydroxy-2-nonenal, facilitated the iNOS upregulation, which was restored by increasing the AKR1B10 expression. In contrast, the facilitation of NO production by CDDP treatment was hardly observed in AKR1B10-overexpressing A549 cells and established CDDP-resistant cancer cells (A549, LoVo, and PC3). Collectively, these results suggest the NO functions as a key regulator controlling AKR1B10 expression and 26S proteasome function leading to gain of the CDDP resistance.
Collapse
Affiliation(s)
- T Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Statil suppresses cancer cell growth and proliferation by the inhibition of tumor marker AKR1B10. Anticancer Drugs 2014; 25:930-7. [DOI: 10.1097/cad.0000000000000121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
98
|
Zhang W, Wang L, Zhang L, Chen W, Chen X, Xie M, Yan G, Hu X, Xu J, Zhang J. Synthesis and biological evaluation of steroidal derivatives as selective inhibitors of AKR1B10. Steroids 2014; 86:39-44. [PMID: 24793566 DOI: 10.1016/j.steroids.2014.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/11/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022]
Abstract
AKR1B10 is a member of human aldo-keto reductase superfamily, and a promising anti-cancer therapeutic target. In this paper, androst-5-ene-3β-ol, dehydroepiandrosterone, pregnenolone and cholesterol were used as reactants, sixteen products were obtained through Jones reaction and reduction reaction using NaBH4. Their inhibitory activities against AKR1B10 and AKR1B1 were measured. The most active compound (3a) has the IC50 of 0.50μM for AKR1B10, and the most AKR1B10 selective compound (2a) has the IC50 of 0.81μM with AKR1B1/AKR1B10 selectivity of 195. In addition, the binding modes of 2a and 3a in the active site of human AKR1B10 were identified by docking.
Collapse
Affiliation(s)
- Wei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Ling Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Liping Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Wenli Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou 510080, PR China
| | - Xinying Chen
- Engineering School, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Minyu Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou 510080, PR China
| | - Xiaopeng Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Jun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Jingxia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China.
| |
Collapse
|
99
|
Matsunaga T, Morikawa Y, Haga M, Endo S, Soda M, Yamamura K, El-Kabbani O, Tajima K, Ikari A, Hara A. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10. Toxicol Appl Pharmacol 2014; 278:180-9. [PMID: 24813866 DOI: 10.1016/j.taap.2014.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/21/2014] [Accepted: 04/26/2014] [Indexed: 01/13/2023]
Abstract
Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-l-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Mariko Haga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Midori Soda
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Keiko Yamamura
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Ossama El-Kabbani
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Kazuo Tajima
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
100
|
Kempson SA, Zhou Y, Danbolt NC. The betaine/GABA transporter and betaine: roles in brain, kidney, and liver. Front Physiol 2014; 5:159. [PMID: 24795654 PMCID: PMC4006062 DOI: 10.3389/fphys.2014.00159] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022] Open
Abstract
The physiological roles of the betaine/GABA transporter (BGT1; slc6a12) are still being debated. BGT1 is a member of the solute carrier family 6 (the neurotransmitter, sodium symporter transporter family) and mediates cellular uptake of betaine and GABA in a sodium- and chloride-dependent process. Most of the studies of BGT1 concern its function and regulation in the kidney medulla where its role is best understood. The conditions here are hostile due to hyperosmolarity and significant concentrations of NH4Cl and urea. To withstand the hyperosmolarity, cells trigger osmotic adaptation, involving concentration of a transcriptional factor TonEBP/NFAT5 in the nucleus, and accumulate betaine and other osmolytes. Data from renal cells in culture, primarily MDCK, revealed that transcriptional regulation of BGT1 by TonEBP/NFAT5 is relatively slow. To allow more acute control of the abundance of BGT1 protein in the plasma membrane, there is also post-translation regulation of BGT1 protein trafficking which is dependent on intracellular calcium and ATP. Further, betaine may be important in liver metabolism as a methyl donor. In fact, in the mouse the liver is the organ with the highest content of BGT1. Hepatocytes express high levels of both BGT1 and the only enzyme that can metabolize betaine, namely betaine:homocysteine –S-methyltransferase (BHMT1). The BHMT1 enzyme removes a methyl group from betaine and transfers it to homocysteine, a potential risk factor for cardiovascular disease. Finally, BGT1 has been proposed to play a role in controlling brain excitability and thereby represents a target for anticonvulsive drug development. The latter hypothesis is controversial due to very low expression levels of BGT1 relative to other GABA transporters in brain, and also the primary location of BGT1 at the surface of the brain in the leptomeninges. These issues are discussed in detail.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Yun Zhou
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Niels C Danbolt
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|