51
|
Schröder M, Richter C, Juan MHS, Maltusch K, Giegold O, Quintini G, Pfeilschifter JM, Huwiler A, Radeke HH. The sphingosine kinase 1 and S1P1 axis specifically counteracts LPS-induced IL-12p70 production in immune cells of the spleen. Mol Immunol 2011; 48:1139-48. [DOI: 10.1016/j.molimm.2011.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 01/29/2023]
|
52
|
Guo L, Mishra G, Taylor K, Wang X. Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J Biol Chem 2011; 286:13336-45. [PMID: 21330371 DOI: 10.1074/jbc.m110.190892] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidic acid (PA) and phytosphingosine-1-phosphate (phyto-S1P) have both been identified as lipid messengers mediating plant response to abscisic acid (ABA). To determine the relationship of these messengers, we investigated the direct interaction of PA with Arabidopsis sphingosine kinases (SPHKs) that phosphorylate phytosphingosine to generate phyto-S1P. Two unique SPHK cDNAs were cloned from the annotated At4g21540 locus of Arabidopsis, and the two transcripts are differentially expressed in Arabidopsis tissues. Both SPHKs are catalytically active, phosphorylating various long-chain sphingoid bases (LCBs) and are associated with the tonoplast. They both interact with PA as demonstrated by lipid-filter binding, liposome binding, and surface plasmon resonance (SPR). SPHK1 and SPHK2 exhibited strong binding to 18:1/18:1, 16:0/18:1, and 16:0/18:2 PA, but poor binding to 16:0/16:0, 8:0/8:0, 18:0/18:0, and 18:2/18:2 PA. Surface dilution kinetics analysis indicates that PA stimulates SPHK activity by increasing the specificity constant through decreasing K(m)(B). The results show that the annotated At4g21540 locus is actually comprised of two separate SPHK genes. PA binds to both SPHKs, and the interaction promotes lipid substrate binding to the catalytic site of the enzyme. The PA-SPHK interaction depends on the PA molecular species. The data suggest that these two Arabidopsis SPHKs are molecular targets of PA, and the PA stimulation of SPHK is part of the signaling networks in Arabidopsis.
Collapse
Affiliation(s)
- Liang Guo
- Department of Biology, University of Missouri, St. Louis, Missouri 63121, USA
| | | | | | | |
Collapse
|
53
|
Dickson MA, Carvajal RD, Merrill AH, Gonen M, Cane LM, Schwartz GK. A phase I clinical trial of safingol in combination with cisplatin in advanced solid tumors. Clin Cancer Res 2011; 17:2484-92. [PMID: 21257722 DOI: 10.1158/1078-0432.ccr-10-2323] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Sphingosine 1-phosphate (S1P) is an important mediator of cancer cell growth and proliferation. Production of S1P is catalyzed by sphingosine kinase 1 (SphK). Safingol, (l-threo-dihydrosphingosine) is a putative inhibitor of SphK. We conducted a phase I trial of safingol (S) alone and in combination with cisplatin (C). EXPERIMENTAL DESIGN A 3 + 3 dose escalation was used. For safety, S was given alone 1 week before the combination. S + C were then administered every 3 weeks. S was given over 60 to 120 minutes, depending on dose. Sixty minutes later, C was given over 60 minutes. The C dose of 75 mg/m(2) was reduced in cohort 4 to 60 mg/m(2) due to excessive fatigue. RESULTS Forty-three patients were treated, 41 were evaluable for toxicity, and 37 for response. The maximum tolerated dose (MTD) was S 840 mg/m(2) over 120 minutes C 60 mg/m(2), every 3 weeks. Dose-limiting toxicity (DLT) attributed to cisplatin included fatigue and hyponatremia. DLT from S was hepatic enzyme elevation. S pharmacokinetic parameters were linear throughout the dose range with no significant interaction with C. Patients treated at or near the MTD achieved S levels of more than 20 μmol/L and maintained levels greater than and equal to 5 μmol/L for 4 hours. The best response was stable disease in 6 patients for on average 3.3 months (range 1.8-7.2 m). One patient with adrenal cortical cancer had significant regression of liver and lung metastases and another had prolonged stable disease. S was associated with a dose-dependent reduction in S1P in plasma. CONCLUSIONS Safingol, the first putative SphK inhibitor to enter clinical trials, can be safely administered in combination with cisplatin. Reversible dose-dependent hepatic toxicity was seen, as expected from preclinical data. Target inhibition was achieved with downregulation of S1P. The recommended phase II dose is S 840 mg/m(2) and C 60 mg/m(2), every 3 weeks.
Collapse
Affiliation(s)
- Mark A Dickson
- Melanoma and Sarcoma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
54
|
Kharel Y, Mathews TP, Kennedy AJ, Houck JD, Macdonald TL, Lynch KR. A rapid assay for assessment of sphingosine kinase inhibitors and substrates. Anal Biochem 2011; 411:230-5. [PMID: 21216217 DOI: 10.1016/j.ab.2011.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2010] [Revised: 12/31/2010] [Accepted: 01/04/2011] [Indexed: 01/26/2023]
Abstract
Sphingosine kinases (SphKs) catalyze the transfer of phosphate from adenosine triphosphate (ATP) to sphingosine to generate sphingosine 1-phosphate (S1P), an important bioactive lipid molecule that mediates a diverse range of cell signaling processes. The conventional assay of SphK enzymatic activity uses [γ-(32)P]ATP and sphingosine as substrates, with the radiolabeled S1P product recovered by organic extraction, displayed by thin layer chromatography, and quantified by liquid scintillation counting. Although this assay is sensitive and accurate, it is slow and labor-intensive; thus, it precludes the simultaneous screening of more than a few inhibitor compounds. Here we describe a 96-well assay for SphKs that is rapid and reproducible. Our method, which takes advantage of the limited solubility of S1P, detects radioactive S1P adhering to the plate by scintillation proximity counting. Our procedure obviates extraction into organic solvents, postreaction transfers, and chromatography. Furthermore, our assay enables assessment of both inhibitors and substrates, and it can detect endogenous SphK activity in cell and tissue extracts. The SphK kinetic parameter, K(m), and the K(i) values of inhibitors determined with our assay and the conventional assay were indistinguishable. These results document that our assay is well-suited for the screening of chemical libraries of SphK inhibitors.
Collapse
Affiliation(s)
- Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | | | | | |
Collapse
|
55
|
Lan T, Bi H, Xu S, Le K, Xie Z, Liu Y, Huang H. Determination of sphingosine kinase activity in biological samples by liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2011; 24:1075-83. [PMID: 20352614 DOI: 10.1002/bmc.1407] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023]
Abstract
Sphingosine kinase (SphK) is a key enzyme in modulating the levels of sphingosine 1-phosphate (S1P) as well as an important enzyme in numerous biological responses. Using C17-sphingosine as a substrate, we established a rapid, sensitive and highly efficient method for determination of SphK activity by analyzing the product C17-sphingosine 1-phosphate (C17-S1P) using liquid chromatography-tandem mass spectrometry. The standard curve for C17-S1P was linear over a wide range (10-1000 ng/mL) with correlation coefficient (r(2)) greater than 0.999. The lower limit of quantification for C17-S1P was 10 ng/mL. The K(m) values for C17-sphingosine and ATP were determined to be 28.17 and 188.5 microM, respectively. More importantly, the SphK activity dramatically increased in cultured HEK 293 cells expressing wild-type SphK1 as well as cells treated with tumor necrosis factor-alpha, a sphingosine kinase activator. In contrast, the SphK activity decreased in cultured HEK 293 cells treated with dimethylsphngosine, a sphingosine kinase inhibitor. In conclusion, this method was sensitive and rapid in the determination of SphK acitivity, providing striking utilities in exploring the sphingosine kinase signaling pathway and screening active compounds targeting SphK activity.
Collapse
Affiliation(s)
- Tian Lan
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | | | | | |
Collapse
|
56
|
Wattenberg BW. Role of sphingosine kinase localization in sphingolipid signaling. World J Biol Chem 2010; 1:362-8. [PMID: 21537471 PMCID: PMC3083941 DOI: 10.4331/wjbc.v1.i12.362] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/20/2010] [Revised: 10/22/2010] [Accepted: 10/29/2010] [Indexed: 02/05/2023] Open
Abstract
The sphingosine kinases, SK1 and SK2, produce the potent signaling lipid sphingosine-1-phosphate (S1P). These enzymes have garnered increasing interest for their roles in tumorigenesis, inflammation, vascular diseases, and immunity, as well as other functions. The sphingosine kinases are considered signaling enzymes by producing S1P, and their activity is acutely regulated by a variety of agonists. However, these enzymes are also key players in the control of sphingolipid metabolism. A variety of sphingolipids, such as sphingosine and the ceramides, are potent signaling molecules in their own right. The role of sphingosine kinases in regulating sphingolipid metabolism is potentially a critical aspect of their signaling function. A central aspect of signaling lipids is that their hydrophobic nature constrains them to membranes. Most enzymes of sphingolipid metabolism, including the enzymes that degrade S1P, are membrane enzymes. Therefore the localization of the sphingosine kinases and S1P is likely to be important in S1P signaling. Sphingosine kinase localization affects sphingolipid signaling in several ways. Translocation of SK1 to the plasma membrane promotes extracellular secretion of S1P. SK1 and SK2 localization to specific sites appears to direct S1P to intracellular protein effectors. SK localization also determines the access of these enzymes to their substrates. This may be an important mechanism for the regulation of ceramide biosynthesis by diverting dihydrosphingosine, a precursor in the ceramide biosynthetic pathway, from the de novo production of ceramide.
Collapse
Affiliation(s)
- Binks W Wattenberg
- Binks W Wattenberg, Clinical and Translational Research Building, Room 419, 505 South Hancock St. Louisville, KY 40202, United States
| |
Collapse
|
57
|
An active form of sphingosine kinase-1 is released in the extracellular medium as component of membrane vesicles shed by two human tumor cell lines. JOURNAL OF ONCOLOGY 2010; 2010:509329. [PMID: 20508814 PMCID: PMC2875746 DOI: 10.1155/2010/509329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/16/2009] [Accepted: 03/08/2010] [Indexed: 01/23/2023]
Abstract
Expression of sphingosine kinase-1 (SphK-1) correlates with a poor survival rate of tumor patients. This effect is probably due to the ability of SphK-1 to be released into the extracellular medium where it catalyzes the biosynthesis of sphingosine-1-phosphate (S1P), a signaling molecule endowed with profound proangiogenic effects. SphK-1 is a leaderless protein which is secreted by an unconventional mechanism. In this paper, we will show that in human hepatocarcinoma Sk-Hep1 cells, extracellular signaling is followed by targeting the enzyme to the cell surface and parallels targeting of FGF-2 to the budding vesicles. We will also show that SphK-1 is present in a catalitycally active form in vesicles shed by SK-Hep1 and human breast carcinoma 8701-BC cells. The enzyme substrate sphingosine is present in shed vesicles where it is produced by neutral ceramidase. Shed vesicles are therefore a site for S1P production in the extracellular medium and conceivably also within host cell following vesicle endocytosis.
Collapse
|
58
|
Mathews TP, Kennedy AJ, Kharel Y, Kennedy PC, Nicoara O, Sunkara M, Morris AJ, Wamhoff BR, Lynch KR, Macdonald TL. Discovery, biological evaluation, and structure-activity relationship of amidine based sphingosine kinase inhibitors. J Med Chem 2010; 53:2766-78. [PMID: 20205392 DOI: 10.1021/jm901860h] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
Abstract
Sphingosine 1-phosphate (S1P), a potent phospholipid growth and trophic factor, is synthesized in vivo by two sphingosine kinases. Thus these kinases have been proposed as important drug targets for treatment of hyperproliferative diseases and inflammation. We report here a new class of amidine-based sphingosine analogues that are competitive inhibitors of sphingosine kinases exhibiting varying degrees of enzyme selectivity. These inhibitors display K(I) values in the submicromolar range for both sphingosine kinases and, in cultured vascular smooth muscle cells, decrease S1P levels and initiate growth arrest.
Collapse
Affiliation(s)
- Thomas P Mathews
- University of Virginia, Department of Chemistry, P.O. Box 400319, McCormick Road, Charlottesville, Virginia 22904, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Snider AJ, Orr Gandy KA, Obeid LM. Sphingosine kinase: Role in regulation of bioactive sphingolipid mediators in inflammation. Biochimie 2010; 92:707-15. [PMID: 20156522 DOI: 10.1016/j.biochi.2010.02.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2009] [Accepted: 02/09/2010] [Indexed: 12/15/2022]
Abstract
Sphingolipids and their synthetic enzymes are emerging as important mediators in inflammatory responses and as regulators of immune cell functions. In particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P) have been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. SK1 has been shown to be activated by cytokines including tumor necrosis factor-alpha (TNF-alpha) and interleukin1-beta (IL1-beta). The activation of SK1 in this pathway has been shown to be, at least in part, required for mediating TNF-alpha and IL1-beta inflammatory responses in cells, including induction of cyclo-oxygenase 2 (COX2). In addition to their role in inflammatory signaling, SK and S1P have also been implicated in various immune cell functions including, mast cell degranulation, migration of neutrophils, and migration and maturation of lymphocytes. The involvement of sphingolipids and sphingolipid metabolizing enzymes in inflammatory signaling and immune cell functions has implicated these mediators in numerous inflammatory disease states as well. The contribution of these mediators, specifically SK1 and S1P, to inflammation and disease are discussed in this review.
Collapse
Affiliation(s)
- Ashley J Snider
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29403, USA
| | | | | |
Collapse
|
60
|
Extracellular and Intracellular Actions of Sphingosine-1-Phosphate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:141-55. [DOI: 10.1007/978-1-4419-6741-1_10] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023]
|
61
|
Pyne NJ, Long JS, Lee SC, Loveridge C, Gillies L, Pyne S. New aspects of sphingosine 1-phosphate signaling in mammalian cells. ACTA ACUST UNITED AC 2009; 49:214-21. [PMID: 19534035 DOI: 10.1016/j.advenzreg.2009.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nigel J Pyne
- Cell Biology Group, SIPBS, University of Strathclyde, 27 Taylor St, Glasgow G40NR, UK.
| | | | | | | | | | | |
Collapse
|
62
|
Mirghomizadeh F, Winoto-Morbach S, Orinska Z, Lee KH, Schütze S, Bulfone-Paus S. Intracellular IL-15 controls mast cell survival. Exp Cell Res 2009; 315:3064-75. [PMID: 19632221 DOI: 10.1016/j.yexcr.2009.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2009] [Revised: 06/30/2009] [Accepted: 07/14/2009] [Indexed: 01/05/2023]
Abstract
The regulation of mast cell activities and survival is a central issue in inflammatory immune responses. Here, we have investigated the role of mouse interleukin-15, a pro-inflammatory and pleiotropic cytokine, in the control of mast cell survival and homeostasis. We report that aged IL-15-/- mice show a reduced number of peritoneal mast cells compared to WT mice. Furthermore, IL-15 deficiency in bone marrow derived mouse mast cells (BMMCs) results in increased susceptibility to apoptosis mediated by growth factor deprivation and A-SMase-treatment. IL-15-/- BMMCs show a constitutive stronger mRNA and protein expression as well as enzymatic activity of the members of the mitochondrial apoptotic pathways including acidic lysosomal aspartate protease cathepsin D (CTSD), endogenous acid sphingomyelinase (A-SMase), caspase-3 and -7 compared to wild type (WT) BMMCs. Furthermore, IL-15-/- BMMCs constitutively generate more A-SMase-derived ceramide than WT controls and display a decreased expression of pro-survival sphingosin-1-phosphate (SPP) both in cytosol and membrane cell fractions. Furthermore, pre-treatment of mast cells with imipramine or pepstatin A, inhibitors of the intracellular acid sphingomyelinase and cathepsin D pathways respectively, increases survival in IL-15-/- BMMCs. These findings suggest that intracellular IL-15 is a key regulator of pathways controlling primary mouse mast cell homeostasis.
Collapse
Affiliation(s)
- Farhad Mirghomizadeh
- Department of Immunology and Cell Biology, Research Center Borstel, Parkallee 22, D-23845 Borstel, Germany
| | | | | | | | | | | |
Collapse
|
63
|
Nixon GF. Sphingolipids in inflammation: pathological implications and potential therapeutic targets. Br J Pharmacol 2009; 158:982-93. [PMID: 19563535 DOI: 10.1111/j.1476-5381.2009.00281.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023] Open
Abstract
Sphingolipids are formed via the metabolism of sphingomyelin, a constituent of the plasma membrane, or by de novo synthesis. Enzymatic pathways result in the formation of several different lipid mediators, which are known to have important roles in many cellular processes, including proliferation, apoptosis and migration. Several studies now suggest that these sphingolipid mediators, including ceramide, ceramide 1-phosphate and sphingosine 1-phosphate (S1P), are likely to have an integral role in inflammation. This can involve, for example, activation of pro-inflammatory transcription factors in different cell types and induction of cyclooxygenase-2, leading to production of pro-inflammatory prostaglandins. The mode of action of each sphingolipid is different. Increased ceramide production leads to the formation of ceramide-rich areas of the membrane, which may assemble signalling complexes, whereas S1P acts via high-affinity G-protein-coupled S1P receptors on the plasma membrane. Recent studies have demonstrated that in vitro effects of sphingolipids on inflammation can translate into in vivo models. This review will highlight the areas of research where sphingolipids are involved in inflammation and the mechanisms of action of each mediator. In addition, the therapeutic potential of drugs that alter sphingolipid actions will be examined with reference to disease states, such as asthma and inflammatory bowel disease, which involve important inflammatory components. A significant body of research now indicates that sphingolipids are intimately involved in the inflammatory process and recent studies have demonstrated that these lipids, together with associated enzymes and receptors, can provide effective drug targets for the treatment of pathological inflammation.
Collapse
Affiliation(s)
- Graeme F Nixon
- School of Medical Sciences, University of Aberdeen, Foresterhill, UK.
| |
Collapse
|
64
|
Shimizu T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol 2009; 49:123-50. [PMID: 18834304 DOI: 10.1146/annurev.pharmtox.011008.145616] [Citation(s) in RCA: 434] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023]
Abstract
Prostaglandins, leukotrienes, platelet-activating factor, lysophosphatidic acid, sphingosine 1-phosphate, and endocannabinoids, collectively referred to as lipid mediators, play pivotal roles in immune regulation and self-defense, and in the maintenance of homeostasis in living systems. They are produced by multistep enzymatic pathways, which are initiated by the de-esterification of membrane phospholipids by phospholipase A2s or sphingo-myelinase. Lipid mediators exert their biological effects by binding to cognate receptors, which are members of the G protein-coupled receptor superfamily. The synthesis of the lipid mediators and subsequent induction of receptor activity is tightly regulated under normal physiological conditions, and enzyme and/or receptor dysfunction can lead to a variety of disease conditions. Thus, the manipulation of lipid mediator signaling, through either enzyme inhibitors or receptor antagonists and agonists, has great potential as a therapeutic approach to disease. In this review, I summarize our current state of knowledge of the synthesis of lipid mediators and the function of their cognate receptors, and discuss the effects of genetic or pharmacological ablation of enzyme or receptor function on various pathophysiological processes.
Collapse
Affiliation(s)
- Takao Shimizu
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
65
|
He X, Huang CL, Schuchman EH. Quantitative analysis of sphingosine-1-phosphate by HPLC after napthalene-2,3-dicarboxaldehyde (NDA) derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:983-90. [DOI: 10.1016/j.jchromb.2009.02.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2008] [Revised: 02/13/2009] [Accepted: 02/22/2009] [Indexed: 10/21/2022]
|
66
|
Yamane D, Zahoor MA, Mohamed YM, Azab W, Kato K, Tohya Y, Akashi H. Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J Biol Chem 2009; 284:13648-13659. [PMID: 19293152 DOI: 10.1074/jbc.m807498200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid implicated in diverse cellular functions including survival, proliferation, tumorigenesis, inflammation, and immunity. Sphingosine kinase (SphK) contributes to these functions by converting sphingosine to S1P. We report here that the nonstructural protein NS3 from bovine viral diarrhea virus (BVDV), a close relative of hepatitis C virus (HCV), binds to and inhibits the catalytic activity of SphK1 independently of its serine protease activity, whereas HCV NS3 does not affect SphK1 activity. Uncleaved NS2-3 from BVDV was also found to interact with and inhibit SphK1. We suspect that inhibition of SphK1 activity by BVDV NS3 and NS2-3 may benefit viral replication, because SphK1 inhibition by small interfering RNA, chemical inhibitor, or overexpression of catalytically inactive SphK1 results in enhanced viral replication, although the mechanisms by which SphK1 inhibition leads to enhanced viral replication remain unknown. A role of SphK1 inhibition in viral cytopathogenesis is also suggested as overexpression of SphK1 significantly attenuates the induction of apoptosis in cells infected with cytopathogenic BVDV. These findings suggest that SphK is targeted by this virus to regulate its catalytic activity.
Collapse
Affiliation(s)
- Daisuke Yamane
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Muhammad A Zahoor
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yassir M Mohamed
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Walid Azab
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukinobu Tohya
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
67
|
Kirby RJ, Jin Y, Fu J, Cubillos J, Swertfeger D, Arend LJ. Dynamic regulation of sphingosine-1-phosphate homeostasis during development of mouse metanephric kidney. Am J Physiol Renal Physiol 2008; 296:F634-41. [PMID: 19073640 DOI: 10.1152/ajprenal.90232.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
Branching morphogenesis of the metanephric kidney is critically dependent on the delicate orchestration of diverse cellular processes including proliferation, apoptosis, migration, and differentiation. Sphingosine-1-phosphate (S1P) is a potent lipid mediator influencing many of these cellular events. We report increased expression and activity of both sphingosine kinases and S1P phosphatases during development of the mouse metanephric kidney from induction at embryonic day 11.5 to maturity. Sphingosine kinase activity exceeded S1P phosphatase activity in embryonic kidneys, resulting in a net accumulation of S1P, while kinase and phosphatase activities were similar in adult tissue, resulting in reduced S1P content. Sphingosine kinase expression was greater in the metanephric mesenchyme than in the ureteric bud, while the S1P phosphatase SPP2 was expressed at greater levels in the ureteric bud. Treatment of cultured embryonic kidneys with sphingosine kinase inhibitors resulted in a dose-dependent reduction of ureteric bud tip numbers and increased apoptosis. Exogenous S1P rescued kidneys from apoptosis induced by kinase inhibitors. Ureteric bud tip number was unaffected by exogenous S1P in kidneys treated with N,N-dimethylsphingosine, although tip number increased in those treated with d,l-threo-dihydrosphingosine. S1P1 and S1P2 were the predominant S1P receptors expressed in the embryonic kidney. S1P1 expression increased during renal development while expression of S1P2 decreased, and both receptors were expressed predominantly in the metanephric mesenchyme. These results demonstrate dynamic regulation of S1P homeostasis during renal morphogenesis and suggest that differential expression of S1P metabolic enzymes and receptors provides a novel mechanism contributing to the regulation of kidney development.
Collapse
Affiliation(s)
- R Jason Kirby
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0529, USA
| | | | | | | | | | | |
Collapse
|
68
|
Ricci C, Onida F, Servida F, Radaelli F, Saporiti G, Todoerti K, Deliliers GL, Ghidoni R. In vitro anti-leukaemia activity of sphingosine kinase inhibitor. Br J Haematol 2008; 144:350-7. [PMID: 19036099 DOI: 10.1111/j.1365-2141.2008.07474.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Abstract
Compelling evidence indicates the role of sphingosine kinase 1 (SPHK1) deregulation in the processes of carcinogenesis and acquisition of drug resistance, providing the rationale for an effective anti-cancer therapy. However, no highly selective inhibitors of SPHK1 are available for in vitro and in vivo studies, except for the newly discovered 'SK inhibitor' (SKI). The present study showed that, in a panel of myeloid leukaemia cell lines, basal level of SPHK1 correlated with the degree of kinase inhibition by SKI. Exposure to SKI caused variable anti-proliferative, cytotoxic effects in all cell lines. In particular, SKI induced an early, significant inhibition of SPHK1 activity, impaired cell cycle progression and triggered apoptosis in K562 cells. Moreover, SKI acted synergistically with imatinib mesylate (IM) to inhibit cell growth and survival. Finally, the inhibitor affected the clonogenic potential and viability of primary cells from chronic myeloid leukaemia (CML) patients, including one harbouring the IM-insensitive Abl kinase domain mutation T315I. Due to the fact that the phenomenon of resistance to IM remains a major issue in the treatment of patients with CML, the identification of alternative targets and new drugs may be of clinical relevance.
Collapse
Affiliation(s)
- Clara Ricci
- Laboratory of Biochemistry & Molecular Biology, San Paolo University Hospital and University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Activation of sphingosine kinase/sphingosine-1-phosphate (SK/S1P)-mediated signalling has been recognized as critical for cardioprotection in response to acute ischaemia/reperfusion injury. Incubation of S1P with cultured cardiac myocytes subjected to hypoxia or treatment of isolated hearts either before ischaemia or at the onset of reperfusion (pharmacologic pre- or postconditioning) results in reduced myocyte injury. Synthetic agonists active at S1P receptors mimic these responses. Gene-targeted mice null for the SK1 isoform whose hearts are subjected to ischaemia/reperfusion injury exhibit increased infarct size and respond poorly either to ischaemic pre- or postconditioning. Measurements of cardiac SK activity and S1P parallel these observations. Ischaemic postconditioning combined with sphingosine and S1P rescues the heart from prolonged ischaemia. These observations may have considerable relevance for future therapeutic approaches to acute and chronic myocardial injury.
Collapse
Affiliation(s)
- Joel S Karliner
- Cardiology Section (111C), VA Medical Center, San Francisco, University of California, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
70
|
Abstract
BACKGROUND The sphingolipids ceramide and sphingosine 1-phosphate (S1P) are key regulators of cell death and proliferation. The subtle balance between their intracellular levels is governed mainly by sphingosine kinase-1, which produces the pro-survival S1P. Sphingosine kinase-1 is an oncogene; is overexpressed in many tumors; protects cancer cells from apoptosis in vitro and in vivo; and its activity is decreased by anticancer therapies. Hence, sphingosine kinase-1 appears to be a target of interest for therapeutic manipulation. OBJECTIVE This review considers recent developments regarding the involvement of sphingosine kinase-1 as a therapeutic target for cancer, and describes the pharmacological tools currently available. RESULTS/CONCLUSION The studies described provide strong evidence that strategies to kill cancer cells via sphingosine kinase-1 inhibition are valid and could have a favorable therapeutic index.
Collapse
Affiliation(s)
- Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
71
|
Limaye V. The role of sphingosine kinase and sphingosine-1-phosphate in the regulation of endothelial cell biology. ACTA ACUST UNITED AC 2008; 15:101-12. [PMID: 18568950 DOI: 10.1080/10623320802125342] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
Sphingolipids, in particular sphingosine kinase (SphK) and its product sphingosine-1-phosphate (S1P), are now recognized to play an important role in regulating many critical processes in endothelial cells. Activation of SphK1 is essential in mediating the endothelial proinflammatory effects of inflammatory cytokines such as tumor necrosis factor (TNF). In addition, S1P regulates the survival and proliferation of endothelial cells, as well as their ability to undergo cell migration, all essential components of angiogenesis. Thus the inflammatory and angiogenic potential of the endothelium is in part regulated by intracellular components including the activity of SphK1 and levels of S1P. Herein a review of the sphingomyelin pathway with a particular focus on its relevance to endothelial cell biology is presented.
Collapse
Affiliation(s)
- Vidya Limaye
- Rheumatology Department, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
72
|
Abstract
Sphingolipid metabolites have emerged as critical players in a number of fundamental biological processes. Among them, sphingosine-1-phosphate (S1P) promotes cell survival and proliferation, in contrast to ceramide and sphingosine, which induce cell growth arrest and apoptosis. These sphingolipids with opposing functions are interconvertible inside cells, suggesting that a finely tuned balance between them can determine cell fate. Sphingosine kinases (SphKs), which catalyze the phosphorylation of sphingosine to S1P, are critical regulators of this balance. Of the two identified SphKs, sphingosine kinase type 1 (SphK1) has been shown to regulate various processes important for cancer progression and will be the focus of this review, since much less is known of biological functions of SphK2, especially in cancer. SphK1 is overexpressed in various types of cancers and upregulation of SphK1 has been associated with tumor angiogenesis and resistance to radiation and chemotherapy. Many growth factors, through their tyrosine kinase receptors (RTKs), stimulate SphK1 leading to a rapid increase in S1P. This S1P in turn can activate S1P receptors and their downstream signaling. Conversely, activation of S1P receptors can induce transactivation of various RTKs. Thus, SphK1 may play important roles in S1P receptor RTK amplification loops. Here we review the role of SphK1 in tumorigenesis, hormonal therapy, chemotherapy resistance, and as a prognostic marker. We will also review studies on the effects of SphK inhibitors in cells in vitro and in animals in vivo and in some clinical trials and highlight the potential of SphK1 as a new target for cancer therapeutics.
Collapse
Affiliation(s)
- Dai Shida
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, 2011 Sanger Hall, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
73
|
Okada T, Kajimoto T, Jahangeer S, Nakamura SI. Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system. Cell Signal 2008; 21:7-13. [PMID: 18694820 DOI: 10.1016/j.cellsig.2008.07.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2008] [Revised: 07/04/2008] [Accepted: 07/17/2008] [Indexed: 11/30/2022]
Abstract
Sphingolipids were once regarded as inert structural components of cell membranes. Now these metabolites are generally believed to be important bioactive molecules that control a wide repertoire of cellular processes such as proliferation and survival of cells. Along with these ubiquitous cell functions observed in many peripheral tissues sphingolipid metabolites, especially sphingosine 1-phosphate, exert important neuron-specific functions such as regulation of neurotransmitter release. This review summarizes physiological and pathological roles of sphingolipid metabolites emphasizing the role of sphingosine 1-phosphate in the central nervous system.
Collapse
Affiliation(s)
- Taro Okada
- Division of Biochemistry, Department of Biochemistry/Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | | | | | | |
Collapse
|
74
|
Vessey DA, Kelley M, Zhang J, Li L, Tao R, Karliner JS. Dimethylsphingosine and FTY720 inhibit the SK1 form but activate the SK2 form of sphingosine kinase from rat heart. J Biochem Mol Toxicol 2008; 21:273-9. [PMID: 17912702 DOI: 10.1002/jbt.20193] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023]
Abstract
Fractionation of cytosolic sphingosine kinase (SKase) activity by gel filtration chromatography gave rise to a 96-kDa peak that contained only the SK2 form of SKase (by Western analysis) and a broad ca. 46 kDa peak that contained only SK1 forms. SK2 appeared to have a bound accessory protein. When tested with the classic SKase inhibitor dimethylsphingosine (DMS), SK1 was extensively inhibited; however, SK2 was not inhibited but unexpectedly was activated. Activation of SK2 was the result of DMS enhancing the affinity of the enzyme for sphingosine, and, at low concentrations of ATP and sphingosine, activated by more than 100%. Activation of SK2 could be demonstrated in the cytosolic fraction indicating it was unrelated to the purification step. The immunomodulator FTY720 also activated SK2 (although to a lesser extent), but was a potent inhibitor of SK1. SK2 from rat liver and spleen was also not inhibited by DMS. L-Sphingosine and to a lesser extent dihydrosphingosine and phytosphingosine were effective inhibitors of both forms.
Collapse
Affiliation(s)
- Donald A Vessey
- Liver Study Unit, Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Singh IN, Hall ED. Multifaceted roles of sphingosine-1-phosphate: How does this bioactive sphingolipid fit with acute neurological injury? J Neurosci Res 2008; 86:1419-33. [DOI: 10.1002/jnr.21586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023]
|
76
|
Mizugishi K, Li C, Olivera A, Bielawski J, Bielawska A, Deng CX, Proia RL. Maternal disturbance in activated sphingolipid metabolism causes pregnancy loss in mice. J Clin Invest 2007; 117:2993-3006. [PMID: 17885683 PMCID: PMC1978422 DOI: 10.1172/jci30674] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2006] [Accepted: 06/26/2007] [Indexed: 01/18/2023] Open
Abstract
Uterine decidualization, a process that occurs in response to embryo implantation, is critical for embryonic survival and thus is a key event for successful pregnancy. Here we show that the sphingolipid metabolic pathway is highly activated in the deciduum during pregnancy and disturbance of the pathway by disruption of sphingosine kinase (Sphk) genes causes defective decidualization with severely compromised uterine blood vessels, leading to early pregnancy loss. Sphk-deficient female mice (Sphk1(-/-)Sphk2(+/-)) exhibited both an enormous accumulation of dihydrosphingosine and sphingosine and a reduction in phosphatidylethanolamine levels in pregnant uteri. These mice also revealed increased cell death in decidual cells, decreased cell proliferation in undifferentiated stromal cells, and massive breakage of decidual blood vessels, leading to uterine hemorrhage and early embryonic lethality. Thus, sphingolipid metabolism regulates proper uterine decidualization and blood vessel stability. Our findings also suggest that disturbance in sphingolipid metabolism may be considered as a cause of pregnancy loss in humans.
Collapse
Affiliation(s)
- Kiyomi Mizugishi
- Genetics of Development and Disease Branch, NIDDK, and
Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA.
Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Cuiling Li
- Genetics of Development and Disease Branch, NIDDK, and
Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA.
Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ana Olivera
- Genetics of Development and Disease Branch, NIDDK, and
Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA.
Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jacek Bielawski
- Genetics of Development and Disease Branch, NIDDK, and
Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA.
Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alicja Bielawska
- Genetics of Development and Disease Branch, NIDDK, and
Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA.
Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chu-Xia Deng
- Genetics of Development and Disease Branch, NIDDK, and
Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA.
Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Richard L. Proia
- Genetics of Development and Disease Branch, NIDDK, and
Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA.
Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
77
|
Park CG, Lee HS, Lee HY, Park CS, Choi OH. Cloning and characterization of rat sphingosine kinase 1 with an N-terminal extension. Biochem Biophys Res Commun 2007; 364:702-7. [PMID: 18028875 DOI: 10.1016/j.bbrc.2007.10.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2007] [Accepted: 10/14/2007] [Indexed: 01/09/2023]
Abstract
Sphingosine kinase (SK) is an enzyme that converts sphingosine to sphingosine 1-phosphate, a lysophospholipid with various cellular functions. Here, we report cloning and characterization of a novel isoform of rat SK1 (rSK1) with an N-terminal extension (long-rSK1). Long-rSK1 is 458 amino acid-long and has a calculated molecular weight of 49.8kDa. Deduced amino acid sequences of rat and human long-SK1 have high homology (71.3% identity and 78.9% similarity). Long-rSK1 mRNA is widely expressed throughout the tissues including brain, heart, lung, liver, kidney, and spleen, whereas mRNA encoding rSK1 has been shown not to be expressed in heart or liver. When the long-rSK1 was transfected in COS-7 cells, SK activity was 53-fold increased. Substrate specificity and dependency on divalent cations of long-rSK1 were similar to those of rSK1. Taken together, the fact that long-rSK1 with similar enzymatic characteristics to rSK1 displays differential tissue distribution may suggest an additional role of long-rSK1.
Collapse
Affiliation(s)
- Chang Gyo Park
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University, School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
78
|
Sphingolipids and membrane biology as determined from genetic models. Prostaglandins Other Lipid Mediat 2007; 85:1-16. [PMID: 18035569 DOI: 10.1016/j.prostaglandins.2007.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2007] [Revised: 10/05/2007] [Accepted: 10/07/2007] [Indexed: 12/20/2022]
Abstract
The importance of sphingolipids in membrane biology was appreciated early in the twentieth century when several human inborn errors of metabolism were linked to defects in sphingolipid degradation. The past two decades have seen an explosion of information linking sphingolipids with cellular processes. Studies have unraveled mechanistic details of the sphingolipid metabolic pathways, and these findings are being exploited in the development of novel therapies, some now in clinical trials. Pioneering work in yeast has laid the foundation for identifying genes encoding the enzymes of the pathways. The advent of the era of genomics and bioinformatics has led to the identification of homologous genes in other species and the subsequent creation of animal knock-out lines for these genes. Discoveries from these efforts have re-kindled interest in the role of sphingolipids in membrane biology. This review highlights some of the recent advances in understanding sphingolipids' roles in membrane biology as determined from genetic models.
Collapse
|
79
|
Siow DL, Wattenberg BW. An assay system for measuring the acute production of sphingosine 1-phosphate in intact monolayers. Anal Biochem 2007; 371:184-93. [PMID: 17884005 PMCID: PMC2097964 DOI: 10.1016/j.ab.2007.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2007] [Revised: 08/02/2007] [Accepted: 08/03/2007] [Indexed: 01/09/2023]
Abstract
Sphingosine kinase (SK) is a signaling enzyme that phosphorylates sphingosine to produce sphingosine 1-phosphate. Sphingosine and sphingosine 1-phosphate (S1P) belong to a class of bioactive sphingolipid metabolites that are critical in a number of cellular processes, yet often have opposing biological functions. The intracellular localization of sphingosine kinase has been demonstrated in multiple studies to be a critical aspect of its signaling function. To date, assays of sphingosine kinase activity have been developed for measuring activity in lysates, where the effects of localization are lost. Here we outline a system in which the rate of production of S1P can be measured in intact cells using exogenously added radiolabeled ATP instead of tritiated sphingosine. The surprising ability of ATP to enter unpermeabilized monolayers is one aspect that makes this assay simple, efficient, and inexpensive, yet sensitive enough to measure endogenous enzyme activity. The assay is well behaved in terms of kinetics and substrate dependence. Overall, this assay is ideal for future studies to identify changes in S1P production in intact cells such as those that result from the differential intracellular targeting of sphingosine kinase.
Collapse
Affiliation(s)
- Deanna L. Siow
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY
| | - Binks W. Wattenberg
- Departments of Medicine, Biochemistry and Molecular Biology, and Pharmacology and Toxicology, University of Louisville, Louisville, KY
- To whom correspondence should be addressed: Binks W. Wattenberg, Baxter II, Rm 204, 580 S. Preston St., Louisville, KY 40292, Phone: 502-852-7762, Fax: 502-852-3661, E-mail:
| |
Collapse
|
80
|
Togame H, Dodo R, Inaoka T, Reinemer P. Development of a simple and robust assay to screen for inhibitors of sphingosine kinases. Assay Drug Dev Technol 2007; 5:215-23. [PMID: 17477830 DOI: 10.1089/adt.2006.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
Sphingosine kinases (SPHKs) catalyze the formation of the bioactive sphingolipid metabolite sphingosine 1-phosphate (S1P), which plays important roles in a wide variety of intra- and extracellular functions. Conventionally, SPHK activity has been determined using radioisotope thin layer chromatography (TLC) and autoradiography to detect the product S1P. Here we describe the development of a simple and robust in vitro SPHK assay in 384-well format with no requirement for any separation steps such as extraction and TLC. The assay is based on (33)P-phosphate transfer from [gamma-(33)P]ATP to sphingosine and subsequent detection of the [(33)P]S1P using AquaBind plates (Asahi Techno Glass, Tokyo, Japan). Enzymatic and inhibition characteristics determined with this assay are in good agreement with previously reported values determined in the conventional TLC assay. K(m) values for D-erythro-sphingosine and ATP were determined to be 17.5 microM and 19.2 microM, respectively. The kinase reaction could be inhibited by ADP and N,N-dimethylsphingosine with a 50% inhibitory concentration of 410 microM and 450 microM, respectively. The established assay format was easily adapted to an automated screening platform and is characterized by a high signal-to-background ratio, small variation, and excellent Z factors.
Collapse
Affiliation(s)
- Hiroko Togame
- Discovery Research Laboratories, Shionogi & Co., Ltd., Sagisu, Osaka, Japan.
| | | | | | | |
Collapse
|
81
|
Abstract
Phosphorylation plays an important role in regulation of living functions of organisms; phosphorylation may significantly alter chemical properties of proteins, lipids, and carbohydrates. Canonical kinases catalyze transfer of terminal phosphate group from ATP (or other NTPs) to specific nucleophilic groups of proteins, lipids, and polysaccharides. Recently, unique kinases, catalytically active antibodies (abzymes) phosphorylating proteins, lipids, and polysaccharides have also been discovered. This review highlights biological functions and enzymatic characteristics of canonical kinases and abzymes phosphorylating lipids and polysaccharides.
Collapse
Affiliation(s)
- N A Karataeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | |
Collapse
|
82
|
Ma MM, Chen JL, Wang GG, Wang H, Lu Y, Li JF, Yi J, Yuan YJ, Zhang QW, Mi J, Wang LS, Duan HF, Wu CT. Sphingosine kinase 1 participates in insulin signalling and regulates glucose metabolism and homeostasis in KK/Ay diabetic mice. Diabetologia 2007; 50:891-900. [PMID: 17265031 DOI: 10.1007/s00125-006-0589-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/05/2006] [Accepted: 12/15/2006] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine the potential role of sphingosine kinase 1 (SPHK1), a key sphingolipid metabolic enzyme, in glucose metabolism and homeostasis. METHODS SMMC-7721 hepatoma cells and C2C12 myotube cells were used to explore the role of SPHK1 in glucose uptake in vitro. KK/Ay type 2 diabetic mice, which were transfected with adenovirus harbouring the human SPHK1 gene by i.v. injection, were used to investigate the glucose-lowering effects of SPHK1 in vivo. RESULTS The basal glucose uptake and the insulin-stimulated glucose uptake in both 7721 cells and C2C12 cells were markedly enhanced when SPHK1 was overexpressed by adenovirus-mediated gene transfer, whereas they were substantially reduced when the expression of SPHK1 was inhibited or the activity of SPHK1 was blocked. Insulin could activate SPHK1 of both cell lines in a dose-dependent manner. SPHK1 gene delivery significantly reduced the blood glucose level of KK/Ay diabetic mice, but had no effect on that of normal animals. It also attenuated elevated levels of plasma insulin, NEFA, triacylglycerol, cholesterol and LDL, significantly ameliorated hyperglycaemia-induced injury of liver, heart and kidney, and enhanced phosphorylation of insulin-signalling kinases such as Akt and glycogen synthase kinase 3beta in livers of the diabetic animals. CONCLUSIONS/INTERPRETATION SPHK1 is involved in insulin signalling and plays an important role in the regulation of glucose and fat metabolism; adenovirus-mediated SPHK1 gene transfer might provide a novel strategy in the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- M M Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Sphingolipid metabolites play critical functions in the regulation of a number of fundamental biological processes including cancer. Whereas ceramide and sphingosine mediate and trigger apoptosis or cell growth arrest, sphingosine 1-phosphate promotes proliferation and cell survival. The delicate equilibrium between the intracellular levels of each of these sphingolipids is controlled by the enzymes that either produce or degrade these metabolites. Sphingosine kinase-1 is a crucial regulator of this two-pan balance, because it produces the prosurvival sphingosine 1-phosphate, and reduces the content of both ceramide and sphingosine, the proapoptotic sphingolipids. Sphingosine kinase-1 controls the levels of sphingolipids having opposite effects on cell survival/death, its gene was found to be of oncogenic nature, its mRNA is overexpressed in many solid tumors, its overexpression protects cells from apoptosis and its activity is decreased during anticancer treatments. Therefore, sphingosine kinase-1 appears to be a target of interest for therapeutic manipulation via its pharmacological inhibition. Strategies to kill tumor cells by increasing their ceramide and/or sphingosine content while blocking sphingosine 1-phosphate generation should have a favorable therapeutic index.
Collapse
Affiliation(s)
- Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, 205 route de Narbonne, 31077 Toulouse, France.
| |
Collapse
|
84
|
Alemany R, van Koppen CJ, Danneberg K, Ter Braak M, Meyer Zu Heringdorf D. Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol 2007; 374:413-28. [PMID: 17242884 DOI: 10.1007/s00210-007-0132-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2006] [Accepted: 12/22/2006] [Indexed: 01/13/2023]
Abstract
Sphingosine kinases (SphKs) catalyze the phosphorylation of sphingosine to sphingosine-1-phosphate (S1P). Together with other sphingolipid metabolizing enzymes, SphKs regulate the balance of the lipid mediators, ceramide, sphingosine, and S1P. The ubiquitous mediator S1P regulates cellular functions such as proliferation and survival, cytoskeleton architecture and Ca(2+) homoeostasis, migration, and adhesion by activating specific high-affinity G-protein-coupled receptors or by acting intracellularly. In mammals, two isoforms of SphK have been identified. They are activated by G-protein-coupled receptors, receptor tyrosine kinases, immunoglobulin receptors, cytokines, and other stimuli. The molecular mechanisms by which SphK1 and SphK2 are specifically regulated are complex and only partially understood. Although SphK1 and SphK2 appear to have opposing roles, promoting cell growth and apoptosis, respectively, they can obviously also substitute for each other, as mice deficient in either SphK1 or SphK2 had no obvious abnormalities, whereas double-knockout animals were embryonic lethal. In this review, our understanding of structure, regulation, and functional roles of SphKs is updated and discussed with regard to their implication in pathophysiological and disease states.
Collapse
Affiliation(s)
- Regina Alemany
- Institut für Pharmakologie, Universität Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | |
Collapse
|
85
|
Jin YX, Yoo HS, Kihara A, Choi CH, Oh S, Moon DC, Igarashi Y, Lee YM. Sphingosine kinase assay system with fluorescent detection in high performance liquid chromatography. Arch Pharm Res 2006; 29:1049-54. [PMID: 17146975 DOI: 10.1007/bf02969290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
Abstract
Activation of Sphingosine kinase (Sphk) increases a bioactive lipid, sphingosine 1-phosphate (S1P) and has been observed in a variety of cancer cells. Therefore, inhibition of Sphk activity was an important target for the development of anticancer drugs. As a searching tool for Sphk inhibitor, we developed fluorescent Sphk activity assay combined with high performance liquid chromatography (HPLC). Previously we established murine teraticarcinoma mutant F9-12 cells which lack S1P lyase and stably express Sphk1. By using F9-12 cells, optimal assay conditions were established as follows; 100 microM of C17-Sph and 30 microg protein of F9-12 cells lysate in 20 min. Sphingosine analog C17-Sph was efficiently phosphorylated by Sphk activity (Km:67.08 microM, Vmax :1507.5 pmol/min/mg). New product C17,S1P was separated from S1P in reversed-phase HPLC. In optimized conditions, 300 nM of phorbol 12-myristate 13-acetate (PMA) increased Sphk activity approximately twice while 20 microM of N,N-dimethylsphingosine (DMS) reduced 70% of Sphk activity in F9-12 cells lysate. In conclusion, we established non-radioactive but convenient Sphk assay system by using HPLC and F9-12 cells.
Collapse
Affiliation(s)
- You-Xun Jin
- College of Pharmacy, Chungbuk National University, Chongju 361-763, Korea
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Duan HF, Qu CK, Zhang QW, Yu WM, Wang H, Wu CT, Wang LS. Shp-2 tyrosine phosphatase is required for hepatocyte growth factor-induced activation of sphingosine kinase and migration in embryonic fibroblasts. Cell Signal 2006; 18:2049-55. [PMID: 16765027 DOI: 10.1016/j.cellsig.2006.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2006] [Revised: 04/08/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Shp-2, a ubiquitously expressed protein tyrosine phosphatase containing two Src homology 2 domains, plays an important role in integrating signaling from the cell surface receptors to intracellular signaling mechanisms. Previous studies have demonstrated that the Shp-2 is involved in hepatocyte growth factor (HGF)-induced cell scattering. Here we report that Shp-2 is required for the HGF-induced activation of sphingosine kinase-1 (SPK1), a highly conserved lipid kinase that plays an important role in cell migration. Loss-of-function mutation of Shp-2 did not affect the expression of SPK1, but resulted in its inactivation and the blockage of HGF-induced migration in embryonic fibroblasts. Reintroduction of functional wild type (WT) Shp-2 into the mutant cells partially restored SPK1 activation, and overexpression of SPK1 in these mutant cells enhanced HGF-induced cell migration. Inhibition of expression or activity of SPK1 in WT cells markedly decreased intracellular S1P levels and HGF-induced cell migration. Furthermore, we found that Shp-2 co-immunoprecipitated with SPK1 and c-Met in embryonic fibroblasts. These studies suggest that Shp-2 is an SPK1-interacting protein and that it plays an indispensable role in HGF-induced SPK1 activation.
Collapse
Affiliation(s)
- Hai-Feng Duan
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P.R. China
| | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
Sphingolipids have emerged as molecules whose metabolism is regulated leading to generation of bioactive products including ceramide, sphingosine, and sphingosine-1-phosphate. The balance between cellular levels of these bioactive products is increasingly recognized to be critical to cell regulation; whereby, ceramide and sphingosine cause apoptosis and growth arrest phenotypes, and sphingosine-1-phosphate mediates proliferative and angiogenic responses. Sphingosine kinase is a key enzyme in modulating the levels of these lipids and is emerging as an important and regulated enzyme. This review is geared at mechanisms of regulation of sphingosine kinase and the coming to light of its role in disease.
Collapse
Affiliation(s)
- Tarek Assad Taha
- Department of Medicine, Medical University of South Carolina, USA
| | | | | |
Collapse
|
88
|
Wacker BK, Scott EA, Kaneda MM, Alford SK, Elbert DL. Delivery of sphingosine 1-phosphate from poly(ethylene glycol) hydrogels. Biomacromolecules 2006; 7:1335-43. [PMID: 16602758 PMCID: PMC2522266 DOI: 10.1021/bm050948r] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
While protein growth factors promote therapeutic angiogenesis, delivery of lipid factors such as sphingosine 1-phosphate (S1P) may provide better stabilization of newly formed vessels. We developed a biomaterial for the controlled delivery of S1P, a bioactive lipid released from activated platelets. Multiarm poly(ethylene glycol)-vinyl sulfone was cross-linked with albumin, a lipid-transporting protein, to form hydrogels. The rate of S1P release from the materials followed Fickian kinetics and was dependent upon the presence of lipid carriers in the release solution. Delivery of S1P from RGD-modified hydrogels increased the cell migration speed of endothelial cells growing on the materials. The materials also induced angiogenesis in the chorioallantoic membrane assay. Our data demonstrate that the storage and release of lipid factors provides a new route for the induction of angiogenesis by artificial materials.
Collapse
Affiliation(s)
- Bradley K. Wacker
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130
| | - Evan A. Scott
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130
| | - Megan M. Kaneda
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130
| | - Shannon K. Alford
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130
| | - Donald L. Elbert
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130
| |
Collapse
|
89
|
Sutherland CM, Moretti PAB, Hewitt NM, Bagley CJ, Vadas MA, Pitson SM. The calmodulin-binding site of sphingosine kinase and its role in agonist-dependent translocation of sphingosine kinase 1 to the plasma membrane. J Biol Chem 2006; 281:11693-701. [PMID: 16522638 DOI: 10.1074/jbc.m601042200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Abstract
Sphingosine kinases catalyze the formation of sphingosine 1-phosphate, a bioactive lipid involved in many aspects of cellular regulation, including the fundamental biological processes of cell growth and survival. A diverse range of cell agonists induce activation of human sphingosine kinase 1 (hSK1) and, commonly, its translocation to the plasma membrane. Although the activation of hSK1 in response to at least some agonists occurs directly via its phosphorylation at Ser225 by ERK1/2, many aspects governing the regulation of this phosphorylation and subsequent translocation remain unknown. Here, in an attempt to understand some of these processes, we have examined the known interaction of hSK1 with calmodulin (CaM). By using a combination of limited proteolysis, peptide interaction analysis, and site-directed mutagenesis, we have identified that the CaM-binding site of hSK1 resides in the region spanned by residues 191-206. Specifically, Phe197 and Leu198 are critically involved in the interaction because a version of hSK1 incorporating mutations of both Phe197 --> Ala and Leu198 --> Gln failed to bind CaM. We have also shown for the first time that human sphingosine kinase 2 (hSK2) binds CaM, and does so via a CaM binding region that is conserved with hSK1 because comparable mutations in hSK2 also ablate CaM binding to this protein. By using the CaM-binding-deficient version of hSK1, we have begun to elucidate the role of CaM in hSK1 regulation by demonstrating that disruption of the CaM-binding site ablates agonist-induced translocation of hSK1 from the cytoplasm to the plasma membrane, while having no effect on hSK1 phosphorylation and catalytic activation.
Collapse
Affiliation(s)
- Catherine M Sutherland
- Hanson Institute, Division of Human Immunology, Institute of Medical and Veterinary Science, Frome Road, University of Adelaide, Adelaide, South Australia 5000, Australia
| | | | | | | | | | | |
Collapse
|
90
|
Roviezzo F, Bucci M, Delisle C, Brancaleone V, Di Lorenzo A, Mayo IP, Fiorucci S, Fontana A, Gratton JP, Cirino G. Essential requirement for sphingosine kinase activity in eNOS-dependent NO release and vasorelaxation. FASEB J 2006; 20:340-2. [PMID: 16322129 DOI: 10.1096/fj.05-4647fje] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts both as an extracellular ligand for endothelial differentiation gene receptor family and as an intracellular second messenger. Cellular levels of S1P are low and tightly regulated by sphingosine kinase (SPK). Recent studies have suggested that eNOS pathway may function as a downstream target for the biological effects of receptor-mediated S1P. Here we have studied the possible interplay between intracellular SIP generation and the eNOS activation pathway. S1P causes an endothelium-dependent vasorelaxation in rat aorta that is PTX sensitive, inhibited by L-NAME that involves eNOS phosphorylation, and mainly dependent on hsp90. When rat aorta rings were incubated with the SPK inhibitor DL-threo-dihydrosphingosine (DTD), there was a concentration-dependent reduction of Ach-induced vasorelaxation, implying a consistent contribution of sphingolipid pathway through intracellular sphingosine release and phosphorylation. Co-immunoprecipitation experiments consistently showed increased association of hsp90 with eNOS after exposure of cells to S1P as well to BK or calcium ionophore A-23187. Interestingly, as opposite to A-23187, BK and S1P effect were significantly inhibited by pretreatment with the SPK inhibitor DTD. In conclusion, our data demonstrate that an interplay exists among eNOS, hsp90, and intracellularly generated S1P where eNOS coupling to hsp90 is a major determinant for NO release as confirmed by our functional and molecular studies.
Collapse
Affiliation(s)
- Fiorentina Roviezzo
- Dipartimento di Farmacologia Sperimentale, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL. Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 2006; 25:11113-21. [PMID: 16314531 PMCID: PMC1316977 DOI: 10.1128/mcb.25.24.11113-11121.2005] [Citation(s) in RCA: 576] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), an important sphingolipid metabolite, regulates diverse cellular processes, including cell survival, growth, and differentiation. Here we show that S1P signaling is critical for neural and vascular development. Sphingosine kinase-null mice exhibited a deficiency of S1P which severely disturbed neurogenesis, including neural tube closure, and angiogenesis and caused embryonic lethality. A dramatic increase in apoptosis and a decrease in mitosis were seen in the developing nervous system. S1P(1) receptor-null mice also showed severe defects in neurogenesis, indicating that the mechanism by which S1P promotes neurogenesis is, in part, signaling from the S1P(1) receptor. Thus, S1P joins a growing list of signaling molecules, such as vascular endothelial growth factor, which regulate the functionally intertwined pathways of angiogenesis and neurogenesis. Our findings also suggest that exploitation of this potent neuronal survival pathway could lead to the development of novel therapeutic approaches for neurological diseases.
Collapse
Affiliation(s)
- Kiyomi Mizugishi
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1821, USA
| | | | | | | | | | | |
Collapse
|
92
|
Kihara A, Anada Y, Igarashi Y. Mouse sphingosine kinase isoforms SPHK1a and SPHK1b differ in enzymatic traits including stability, localization, modification, and oligomerization. J Biol Chem 2005; 281:4532-9. [PMID: 16368679 DOI: 10.1074/jbc.m510308200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
Sphingosine kinases catalyze the production of the bioactive lipid molecule sphingosine 1-phosphate. Mice have two isoforms of sphingosine kinase type 1, SPHK1a and SPHK1b. In addition to the previously reported difference in their enzyme activities, we have found that these isoforms differ in several enzymatic characteristics. First, SPHK1b is unstable, whereas SPHK1a is highly stable. Degradation of SPHK1b occurs at the membrane and is inhibited by a proteasome inhibitor. Second, only SPHK1b exhibits abnormal mobility on SDS-PAGE, probably due to its SDS-resistant structure. Third, SPHK1a and SPHK1b are predominantly detected in the soluble and membrane fractions, respectively, when their degradation is inhibited. Fourth, only SPHK1b is modified with lipid, on its unique Cys residues (Cys-4 and Cys-5). Site-directed mutagenesis at these Cys residues resulted in increased sphingosine kinase activity, suggesting that the modification is inhibitory to the enzyme. Finally, SPHK1b tends to form homo-oligomers, whereas most SPHK1a is presented as monomers. We have also determined that the lipid modification of SPHK1b is involved in its homo-oligomerization. Thus, although these two proteins differ only in a few N-terminal amino acid residues, their enzymatic traits are extremely different.
Collapse
Affiliation(s)
- Akio Kihara
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
93
|
Olivera A, Urtz N, Mizugishi K, Yamashita Y, Gilfillan AM, Furumoto Y, Gu H, Proia RL, Baumruker T, Rivera J. IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J Biol Chem 2005; 281:2515-25. [PMID: 16316995 DOI: 10.1074/jbc.m508931200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Engagement of the high affinity receptor for IgE (FcepsilonRI) on mast cells results in the production and secretion of sphingosine 1-phosphate (S1P), a lipid metabolite present in the lungs of allergen-challenged asthmatics. Herein we report that two isoforms of sphingosine kinase (SphK1 and SphK2) are expressed and activated upon FcepsilonRI engagement of bone marrow-derived mast cells (BMMC). Fyn kinase is required for FcepsilonRI coupling to SphK1 and -2 and for subsequent S1P production. Normal activation of SphK1 and -2 was restored by expression of wild type Fyn but only partly with a kinase-defective Fyn, indicating that induction of SphK1 and SphK2 depended on both catalytic and noncatalytic properties of Fyn. Downstream of Fyn, the requirements for SphK1 activation differed from that of SphK2. Whereas SphK1 was considerably dependent on the adapter Grb2-associated binder 2 and phosphatidylinositol 3-OH kinase, SphK2 showed minimal dependence on these molecules. Fyn-deficient BMMC were defective in chemotaxis and, as previously reported, in degranulation. These functional responses were partly reconstituted by the addition of exogenous S1P to FcepsilonRI-stimulated cells. Taken together with our previous study, which demonstrated delayed SphK activation in Lyn-deficient BMMC, we propose a cooperative role between Fyn and Lyn kinases in the activation of SphKs, which contributes to mast cell responses.
Collapse
Affiliation(s)
- Ana Olivera
- Molecular Inflammation Section, Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Johnstone ED, Mackova M, Das S, Payne SG, Lowen B, Sibley CP, Chan G, Guilbert LJ. Multiple anti-apoptotic pathways stimulated by EGF in cytotrophoblasts. Placenta 2005; 26:548-55. [PMID: 15993704 DOI: 10.1016/j.placenta.2004.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 08/24/2004] [Indexed: 10/26/2022]
Abstract
Epidermal growth factor (EGF) reduces apoptosis in primary cytotrophoblast (CT) in culture through two separate pathways: the extracellular signal related kinase (ERK) 1/2 and phosphatidyl inositol 3-kinase (PI-3 kinase) paths. Whether other pathways are involved in survival signalling is unknown. We here show that the c-Jun NH2 terminal kinase (JNK) and the mitogen activated kinase (MAPK) p38 are also activated by EGF as seen by increases in JNK and p38 phosphorylation. However, inhibition of JNK phosphorylation with the specific inhibitor SP600125 increases apoptosis in a manner refractory to the addition of EGF but inhibition of p38 phosphorylation with its specific inhibitor SB 203580 does not increase apoptosis. EGF also activates sphingosine kinase-1 (SPHK-1), which converts sphingosine to sphingosine-1-phosphate, and its inhibition with dimethyl sphingosine (DMS) increased trophoblast death. Inhibition of SPHK-1 also did not affect EGF stimulated phosphorylation of PI-3 kinase, Akt, ERK1/2 or p38 but inhibition of PI-3 kinase with a specific inhibitor LY294002 partly (40%) inhibited the EGF-stimulated increase in SPHK-1 activity. We conclude that, in addition to the PI-3 kinase and ERK1/2 pathways, EGF acts through its receptor to stimulate JNK, p38 and SPHK-1 pathways, but that the JNK and SPHK-1, and not the p38, pathways are involved in suppressing apoptosis. This information provides evidence that EGF stimulates survival along multiple pathways that differ in trophoblast and other cell types.
Collapse
Affiliation(s)
- E D Johnstone
- Department of Medical Microbiology and Immunology, and the University of Alberta Perinatal Research Centre, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Tani M, Igarashi Y, Ito M. Involvement of neutral ceramidase in ceramide metabolism at the plasma membrane and in extracellular milieu. J Biol Chem 2005; 280:36592-600. [PMID: 16126722 DOI: 10.1074/jbc.m506827200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Neutral ceramidase is a type II integral membrane protein, which is occasionally secreted into the extracellular milieu after the processing of its N-terminal anchor. We found that when overexpressed in CHOP cells, neutral ceramidase hydrolyzed cell surface ceramide, which increased in amount after the treatment of cells with bacterial sphingomyelinase, leading to an increase in the cellular level of sphingosine and sphingosine 1-phosphate. On the other hand, knockdown of the endogenous enzyme by siRNA decreased the cellular level of both sphingolipid metabolites. The treatment of cells with bovine serum albumin significantly reduced the cellular level of sphingosine, but not sphingosine 1-phosphate, generated by overexpression of the enzyme. The cellular level of sphingosine 1-phosphate increased with overexpression of the cytosolic sphingosine kinase. These results suggest that sphingosine 1-phosphate is mainly produced inside of the cell after the incorporation of sphingosine generated on the plasma membranes. The enzyme also seems to participate in the hydrolysis of serum-derived ceramide in the vascular system. Significant amounts of sphingosine as well as sphingosine 1-phosphate were generated in the cell-free conditioned medium of ceramidase transfectants, compared with mock transfectants. No increase in these metabolites was observed if serum or bacterial sphingomyelinase was omitted from the conditioned medium, suggesting that the major source of ceramide is the serum-derived sphingomyelin. A sphingosine 1-phosphate receptor, S1P(1), was internalized much faster by the treatment of S1P(1)-overexpressing cells with conditioned medium of ceramidase transfectants than that of mock transfectants. Collectively, these results clearly indicate that the enzyme is involved in the metabolism of ceramide at the plasma membrane and in the extracellular milieu, which could regulate sphingosine 1-phosphate-mediated signaling through the generation of sphingosine.
Collapse
Affiliation(s)
- Motohiro Tani
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
96
|
Tani M, Sano T, Ito M, Igarashi Y. Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. J Lipid Res 2005; 46:2458-67. [PMID: 16061940 DOI: 10.1194/jlr.m500268-jlr200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The bioactive molecule sphingosine 1-phosphate (S1P) is abundantly stored in platelets and can be released extracellularly. However, although they have high sphingosine (Sph) kinase activity, platelets lack the de novo sphingolipid biosynthesis necessary to provide the substrates. Here, we reveal a generation pathway for Sph, the precursor of S1P, in human platelets. Platelets incorporated extracellular 3H-labeled Sph much faster than human megakaryoblastic cells and rapidly converted it to S1P. Furthermore, Sph formed from plasma sphingomyelin (SM) by bacterial sphingomyelinase (SMase) and neutral ceramidase (CDase) was rapidly incorporated into platelets and converted to S1P, suggesting that platelets use extracellular Sph as a source of S1P. Platelets abundantly express SM, possibly supplied from plasma lipoproteins, at the cell surface. Treating platelets with bacterial SMase resulted in Sph generation at the cell surface, conceivably by the action of membrane-bound neutral CDase. Simultaneously, a time-dependent increase in S1P levels was observed. Finally, we demonstrated that secretory acid SMase also induces S1P increases in platelets. In conclusion, our results suggest that in platelets, Sph is supplied from at least two sources: generation in the plasma followed by incorporation, and generation at the outer leaflet of the plasma membrane, initiated by cell surface SM degradation.
Collapse
Affiliation(s)
- Motohiro Tani
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
97
|
Toman RE, Milstien S, Spiegel S. Sphingosine-1-phosphate: an emerging therapeutic target. Expert Opin Ther Targets 2005; 5:109-23. [PMID: 15992170 DOI: 10.1517/14728222.5.1.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Abstract
Sphingosine-1-phosphate (SPP) is a polar sphingolipid metabolite that has received increasing attention as both an extracellular mediator and an intracellular second messenger. SPP is the ligand of a family of specific cell surface G-protein coupled receptors (GPCR), known as the endothelial differentiation gene-1 (EDG-1) family. These receptors, which include EDG-1, -3, -5, -6 and -8, regulate diverse processes including cell migration, angiogenesis, vascular maturation, heart development, neurite retraction and soma rounding. In addition, abundant evidence indicates that SPP also acts as an intracellular lipid messenger, regulating calcium mobilisation, cell growth and survival. The relative intracellular level of SPP and ceramide, another sphingolipid metabolite associated with cell death and cell growth arrest, is an important factor in determining cell fate. Changes in SPP and ceramide have been implicated in a number of pathological conditions in which apoptosis plays an important role, including cancer and neurodegenerative disorders, as well as in atherosclerosis and allergic responses. This review will examine the biosynthesis, metabolism and potential functions of SPP in diverse diseases in order to illuminate targets for the pharmaceutical and therapeutic manipulation of SPP levels.
Collapse
Affiliation(s)
- R E Toman
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
98
|
Abstract
A solvent-extraction-based radioassay for measuring sphingosine kinase (SKase) activity has been developed. The assay utilizes [3H]sphingosine substrate and differentially extracts the [3H]sphingosine-1-phosphate product. The extracted radioactivity is demonstrated to be primarily [3H]sphingosine-1-phosphate with less than 1% contamination by [3H]sphingosine. When assaying SKase activity in the soluble cell fraction, the extraction efficiency of the labeled sphingosine-1-phosphate product is a reproducible 78%, which allows for a simple back calculation to correct for the 22% extraction loss. With minor modification, the assay is also a reproducible procedure for determining SKase activity in subcellular membrane fractions. The assay is far more rapid than thin-layer chromatography and high-performance liquid chromatography methods, which makes it possible to do a large number of assays in a short period of time. The utility of the assay is demonstrated by using it to conduct a complete bisubstrate kinetic analysis of rat heart SKase.
Collapse
Affiliation(s)
- Donald A Vessey
- Liver Study Unit, Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| | | | | |
Collapse
|
99
|
Goparaju SK, Jolly PS, Watterson KR, Bektas M, Alvarez S, Sarkar S, Mel L, Ishii I, Chun J, Milstien S, Spiegel S. The S1P2 receptor negatively regulates platelet-derived growth factor-induced motility and proliferation. Mol Cell Biol 2005; 25:4237-49. [PMID: 15870293 PMCID: PMC1087716 DOI: 10.1128/mcb.25.10.4237-4249.2005] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, is the ligand for five specific G protein-coupled receptors, named S1P(1) to S1P(5). In this study, we found that cross-communication between platelet-derived growth factor receptor and S1P(2) serves as a negative damper of PDGF functions. Deletion of the S1P(2) receptor dramatically increased migration of mouse embryonic fibroblasts toward S1P, serum, and PDGF but not fibronectin. This enhanced migration was dependent on expression of S1P(1) and sphingosine kinase 1 (SphK1), the enzyme that produces S1P, as revealed by downregulation of their expression with antisense RNA and small interfering RNA, respectively. Although S1P(2) deletion had no significant effect on tyrosine phosphorylation of the PDGF receptors or activation of extracellular signal-regulated kinase 1/2 or Akt induced by PDGF, it reduced sustained PDGF-dependent p38 phosphorylation and markedly enhanced Rac activation. Surprisingly, S1P(2)-null cells not only exhibited enhanced proliferation but also markedly increased SphK1 expression and activity. Conversely, reintroduction of S1P(2) reduced DNA synthesis and expression of SphK1. Thus, S1P(2) serves as a negative regulator of PDGF-induced migration and proliferation as well as SphK1 expression. Our results suggest that a complex interplay between PDGFR and S1P receptors determines their functions.
Collapse
Affiliation(s)
- Sravan K Goparaju
- Department of Biochemistry, Virginia Commonwealth University Medical Center, 1101 E. Marshall Street, Room 2-011, Sanger Hall, Richmond, VA 23298-0614, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Mastrandrea LD, Sessanna SM, Laychock SG. Sphingosine kinase activity and sphingosine-1 phosphate production in rat pancreatic islets and INS-1 cells: response to cytokines. Diabetes 2005; 54:1429-36. [PMID: 15855330 DOI: 10.2337/diabetes.54.5.1429] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid with the potential to mobilize Ca2+, to inhibit apoptosis, and to promote mitogenesis. Sphingosine kinase (SPHK) and S1P were characterized in INS-1 insulinoma cells and isolated rat islets of Langerhans. SPHK activity increased in INS-1 cell homogenates treated with interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha (TNF-alpha), and responses were additive. IL-1beta or TNF-alpha increased islet SPHK activity within 15 min to 1 h; activity remained elevated after 8 h. SPHK2 was the predominant active isoform in INS-1 cells; little or no SPHK1 activity was detected. Cytokines increased endogenous S1P biosynthesis in 32P(i)-prelabeled INS-1 cells, and cycloheximide inhibited the response after 8 h, suggesting that protein synthesis mediated the response. There was no [32P]S1P release from cells. Compared with basal values, IL-1beta and TNF-alpha induced increases in SPHK1a mRNA levels relative to 18S ribosomal RNA in INS-1 cells within 1 h; relative SPHK2 mRNA levels were unchanged after cytokine treatment. IL-1beta, but not TNF-alpha, induced relative SPHK1a mRNA expression levels within 1 h in islets, whereas SPHK2 mRNA levels were unchanged. Thus, IL-1beta and TNF-alpha induced an early and sustained increase in SPHK activity in INS-1 cells and isolated islets, suggesting that S1P plays a role in the pathological response of pancreatic beta-cells to cytokines.
Collapse
Affiliation(s)
- Lucy D Mastrandrea
- Department of Pharmacology and Toxicology, The State University of New York at Buffalo, Buffalo, NY, USA
| | | | | |
Collapse
|