Dodelet VC, Pazzagli C, Zisch AH, Hauser CA, Pasquale EB. A novel signaling intermediate, SHEP1, directly couples Eph receptors to R-Ras and Rap1A.
J Biol Chem 1999;
274:31941-6. [PMID:
10542222 DOI:
10.1074/jbc.274.45.31941]
[Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Eph family of receptor tyrosine kinases has been implicated in many developmental patterning processes, including cell segregation, cell migration, and axon guidance. The cellular components involved in the signaling pathways of the Eph receptors, however, are incompletely characterized. Using a yeast two-hybrid screen, we have identified a novel signaling intermediate, SHEP1 (SH2 domain-containing Eph receptor-binding protein 1), which is expressed in the embryonic and adult brain. SHEP1 contains an Src homology 2 domain that binds to a conserved tyrosine-phosphorylated motif in the juxtamembrane region of the EphB2 receptor and may itself be a target of EphB2 kinase activity, since it becomes heavily tyrosine-phosphorylated in cells expressing activated EphB2. SHEP1 also contains a domain similar to Ras guanine nucleotide exchange factor domains and binds to the GTPases R-Ras and Rap1A, but not Ha-Ras or RalA. Thus, SHEP1 directly links activated, tyrosine-phosphorylated Eph receptors to small Ras superfamily GTPases.
Collapse