51
|
Doroshenk KA, Crofts AJ, Morris RT, Wyrick JJ, Okita TW. Proteomic Analysis of Cytoskeleton-Associated RNA Binding Proteins in Developing Rice Seed. J Proteome Res 2009; 8:4641-53. [DOI: 10.1021/pr900537p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kelly A. Doroshenk
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Andrew J. Crofts
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Robert T. Morris
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - John J. Wyrick
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Thomas W. Okita
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| |
Collapse
|
52
|
Belostotsky D. Exosome complex and pervasive transcription in eukaryotic genomes. Curr Opin Cell Biol 2009; 21:352-8. [DOI: 10.1016/j.ceb.2009.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/19/2009] [Accepted: 04/20/2009] [Indexed: 12/27/2022]
|
53
|
Belostotsky DA, Sieburth LE. Kill the messenger: mRNA decay and plant development. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:96-102. [PMID: 18990607 DOI: 10.1016/j.pbi.2008.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 09/02/2008] [Indexed: 05/13/2023]
Abstract
A pervasive theme in development is that dynamic changes in gene expression drive developmental progression; yet in studies of gene expression, the general RNA decay pathways have historically played second fiddle to transcription. However, recent advances in this field have revealed a surprising degree of mRNA specificity for particular branches of these RNA decay pathways. General cytoplasmic mRNA decay typically initiates with deadenylation, following which the deadenylated mRNA can continue decay from the 3'-end through the action of the exosome, or it can undergo 5'-to-3' decay. Functional characterization of exosome subunits using inducible knock-outs uncovered a surprising complexity of molecular phenotypes and RNA substrates. Decay in the 5'-to-3' direction requires decapping, which is carried out by the decapping complex in Processing bodies (PBs). Recent analyses of decapping mutants have also revealed substrate specificity and roles in translational regulation. In addition, recent studies of specialized pathways such as nonsense-mediated decay and silencing reveal interactions with the general RNA decay pathways.
Collapse
Affiliation(s)
- Dmitry A Belostotsky
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | | |
Collapse
|
54
|
Lorentzen E, Basquin J, Conti E. Structural organization of the RNA-degrading exosome. Curr Opin Struct Biol 2008; 18:709-13. [PMID: 18955140 DOI: 10.1016/j.sbi.2008.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/22/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
The RNA exosome participates in the degradation and processing of a wide range of RNA molecules. Recent advances in understanding how the exosome is organized and functions largely stem from structural studies. Crystal structures of archaeal exosomes bound to RNA and of the corresponding nine-subunit human exosome core show that the archaeal and eukaryotic complexes have a similar molecular architecture, but have a diverged catalytic mechanism. The crystal structures of two hydrolytic RNases that associate with the exosome provide the framework for their catalytic activity. Negative-stain EM reconstructions give us a first glimpse of how they associate with the core complex. Together, these structural studies have implications for the mechanism of RNA recruitment and degradation by the exosome complexes.
Collapse
Affiliation(s)
- Esben Lorentzen
- Institute of Structural Molecular Biology, Birkbeck College London, Malet St, WC1E 7HX London, UK
| | | | | |
Collapse
|
55
|
Schmid M, Jensen TH. The exosome: a multipurpose RNA-decay machine. Trends Biochem Sci 2008; 33:501-10. [PMID: 18786828 DOI: 10.1016/j.tibs.2008.07.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
The diversity of RNAs in the cell continues to amaze. In addition to the 'classic' species of mRNA, tRNA, rRNA, snRNA and snoRNA, it is now clear that the majority of genomic information is transcribed into RNA molecules. The resulting complexity of the transcriptome poses a serious challenge to cells because they must manage numerous RNA-processing reactions, yet, at the same time, eradicate surplus and aberrant material without destroying functional RNA. The 3'-->5' exonucleolytic RNA exosome is emerging as a major facilitator of such events. Recent structural and functional data regarding this fascinating complex and its many co-factors illuminate its diverse biochemical properties and indicate mechanisms by which RNAs are targeted for either processing or degradation.
Collapse
Affiliation(s)
- Manfred Schmid
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, University of Aarhus, C.F. Møllers Alle, Bldg. 130, 8000 Aarhus C., Denmark
| | | |
Collapse
|
56
|
Navarro MVAS, Oliveira CC, Zanchin NIT, Guimarães BG. Insights into the mechanism of progressive RNA degradation by the archaeal exosome. J Biol Chem 2008; 283:14120-31. [PMID: 18353775 DOI: 10.1074/jbc.m801005200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initially identified in yeast, the exosome has emerged as a central component of the RNA maturation and degradation machinery both in Archaea and eukaryotes. Here we describe a series of high-resolution structures of the RNase PH ring from the Pyrococcus abyssi exosome, one of them containing three 10-mer RNA strands within the exosome catalytic chamber, and report additional nucleotide interactions involving positions N5 and N7. Residues from all three Rrp41-Rrp42 heterodimers interact with a single RNA molecule, providing evidence for the functional relevance of exosome ring-like assembly in RNA processivity. Furthermore, an ADP-bound structure showed a rearrangement of nucleotide interactions at site N1, suggesting a rationale for the elimination of nucleoside diphosphate after catalysis. In combination with RNA degradation assays performed with mutants of key amino acid residues, the structural data presented here provide support for a model of exosome-mediated RNA degradation that integrates the events involving catalytic cleavage, product elimination, and RNA translocation. Finally, comparisons between the archaeal and human exosome structures provide a possible explanation for the eukaryotic exosome inability to catalyze phosphate-dependent RNA degradation.
Collapse
|
57
|
Degradation of a polyadenylated rRNA maturation by-product involves one of the three RRP6-like proteins in Arabidopsis thaliana. Mol Cell Biol 2008; 28:3038-44. [PMID: 18285452 DOI: 10.1128/mcb.02064-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast Rrp6p and its human counterpart, PM/Scl100, are exosome-associated proteins involved in the degradation of aberrant transcripts and processing of precursors to stable RNAs, such as the 5.8S rRNA, snRNAs, and snoRNAs. The activity of yeast Rrp6p is stimulated by the polyadenylation of its RNA substrates. We identified three RRP6-like proteins in Arabidopsis thaliana: AtRRP6L3 is restricted to the cytoplasm, whereas AtRRP6L1 and -2 have different intranuclear localizations. Both nuclear RRP6L proteins are functional, since AtRRP6L1 complements the temperature-sensitive phenotype of a yeast rrp6Delta strain and mutation of AtRRP6L2 leads to accumulation of an rRNA maturation by-product. This by-product corresponds to the excised 5' part of the 18S-5.8S-25S rRNA precursor and accumulates as a polyadenylated transcript, suggesting that RRP6L2 is involved in poly(A)-mediated RNA degradation in plant nuclei. Interestingly, the rRNA maturation by-product is a substrate of AtRRP6L2 but not of AtRRP6L1. This result and the distinctive subcellular distribution of AtRRP6L1 to -3 indicate a specialization of RRP6-like proteins in Arabidopsis.
Collapse
|
58
|
Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 2008; 131:1340-53. [PMID: 18160042 DOI: 10.1016/j.cell.2007.10.056] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/01/2007] [Accepted: 10/25/2007] [Indexed: 11/21/2022]
Abstract
The exosome complex plays a central and essential role in RNA metabolism. However, comprehensive studies of exosome substrates and functional analyses of its subunits are lacking. Here, we demonstrate that as opposed to yeast and metazoans the plant exosome core possesses an unanticipated functional plasticity and present a genome-wide atlas of Arabidopsis exosome targets. Additionally, our study provides evidence for widespread polyadenylation- and exosome-mediated RNA quality control in plants, reveals unexpected aspects of stable structural RNA metabolism, and uncovers numerous novel exosome substrates. These include a select subset of mRNAs, miRNA processing intermediates, and hundreds of noncoding RNAs, the vast majority of which have not been previously described and belong to a layer of the transcriptome that can only be visualized upon inhibition of exosome activity. These first genome-wide maps of exosome substrates will aid in illuminating new fundamental components and regulatory mechanisms of eukaryotic transcriptomes.
Collapse
|
59
|
Belostotsky D. Chapter 21 Transcriptome Targets of the Exosome Complex in Plants. Methods Enzymol 2008; 448:429-43. [DOI: 10.1016/s0076-6879(08)02621-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
60
|
Abstract
Proper degradation of plant messenger RNA is crucial for the maintenance of cellular and organismal homeostasis, and it must be properly regulated to enable rapid adjustments in response to endogenous and external cues. Only a few dedicated studies have been done so far to address the fundamental mechanisms of mRNA decay in plants, especially as compared with fungal and mammalian model systems. Consequently, our systems-level understanding of plant mRNA decay remains fairly rudimentary. Nevertheless, a number of serendipitous findings in recent years have reasserted the central position of the regulated mRNA decay in plant physiology. In addition, the meteoric rise to prominence of the plant small RNA field has spawned a renewed interest in the general plant mRNA turnover pathways. Combined with the advent of widely accessible microarray platforms, these advances allow for a renewed hope of rapid progress in our understanding of the fundamental rules governing regulated mRNA degradation in plants. This chapter summarizes recent findings in this field.
Collapse
Affiliation(s)
- D A Belostotsky
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| |
Collapse
|
61
|
Ibrahim H, Wilusz J, Wilusz CJ. RNA recognition by 3'-to-5' exonucleases: the substrate perspective. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2007; 1779:256-65. [PMID: 18078842 DOI: 10.1016/j.bbagrm.2007.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 12/30/2022]
Abstract
The 3'-to-5' exonucleolytic decay and processing of a variety of RNAs is an essential feature of RNA metabolism in all cells. The 3'-5' exonucleases, and in particular the exosome, are involved in a large number of pathways from 3' processing of rRNA, snRNA and snoRNA, to decay of mRNAs and mRNA surveillance. The potent enzymes performing these reactions are regulated to prevent processing of inappropriate substrates whilst mature RNA molecules exhibit several attributes that enable them to evade 3'-5' attack. How does an enzyme perform such selective activities on different substrates? The goal of this review is to provide an overview and perspective of available data on the underlying principles for the recognition of RNA substrates by 3'-to-5' exonucleases.
Collapse
Affiliation(s)
- Hend Ibrahim
- Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, CO 80525, USA
| | | | | |
Collapse
|
62
|
van Dijk EL, Schilders G, Pruijn GJM. Human cell growth requires a functional cytoplasmic exosome, which is involved in various mRNA decay pathways. RNA (NEW YORK, N.Y.) 2007; 13:1027-35. [PMID: 17545563 PMCID: PMC1894934 DOI: 10.1261/rna.575107] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The human exosome is a 3'-5' exoribonuclease complex that functions both in the nucleus and in the cytoplasm to either degrade or process RNA. Little is known yet about potential differences among core exosome complexes in these different cellular compartments and the roles of the individual subunits in maintaining a stable and functional complex. Glycerol gradient sedimentation analyses indicated that a significant subset of nuclear exosomes is present in much larger complexes (60-80S) than the cytoplasmic exosomes ( approximately 10S). Interestingly, siRNA-mediated knock-down experiments indicated that the cytoplasmic exosome is down-regulated much more efficiently than the nuclear exosome. In addition, we observed that knock-down of hRrp41p or hRrp4p but not PM/Scl-100 or PM/Scl-75 leads to codepletion of other subunits. Nevertheless, PM/Scl-100 and PM/Scl-75 are required to maintain normal levels of three different mRNA reporters: a wild-type beta-globin mRNA, a beta-globin mRNA containing an AU-rich (ARE) instability element, and a beta-globin mRNA bearing a premature termination codon (PTC). The increased levels of ARE- and the PTC-containing mRNAs upon down-regulation of the different exosome subunits, in particular PM/Scl-100, appeared to be due to decreased turnover rates. These results indicate that, although not required for exosome stability, PM/Scl-100 and PM/Scl-75 are involved in mRNA degradation, either as essential subunits of a functional exosome complex or as exosome-independent proteins.
Collapse
Affiliation(s)
- Erwin L van Dijk
- Department of Biomolecular Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | |
Collapse
|
63
|
Hooker TS, Lam P, Zheng H, Kunst L. A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis. THE PLANT CELL 2007; 19:904-13. [PMID: 17351114 PMCID: PMC1867365 DOI: 10.1105/tpc.106.049304] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/01/2007] [Accepted: 02/23/2007] [Indexed: 05/14/2023]
Abstract
The cuticle is an extracellular matrix composed of cutin polyester and waxes that covers aerial organs of land plants and protects them from environmental stresses. The Arabidopsis thaliana cer7 mutant exhibits reduced cuticular wax accumulation and contains considerably lower transcript levels of ECERIFERUM3/WAX2/YORE-YORE (CER3/WAX2/YRE), a key wax biosynthetic gene. We show here that CER7 protein is a putative 3'-5' exoribonuclease homologous to yeast Ribonuclease PH45 (RRP45p), a core subunit of the RNA processing and degrading exosome that controls the expression of CER3/WAX2/YRE. We propose that CER7 acts by degrading a specific mRNA species encoding a negative regulator of CER3/WAX2/YRE transcription. A second RRP45p homolog found in Arabidopsis, designated At RRP45a, is partially functionally redundant with CER7, and complete loss of RRP45 function in Arabidopsis is lethal. To our knowledge, CER7 is currently the only example of a core exosomal subunit specifically influencing a cellular process.
Collapse
Affiliation(s)
- Tanya S Hooker
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | | | | | | |
Collapse
|
64
|
Walter P, Klein F, Lorentzen E, Ilchmann A, Klug G, Evguenieva-Hackenberg E. Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 2007; 62:1076-89. [PMID: 17078816 DOI: 10.1111/j.1365-2958.2006.05393.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eukaryotic exosome is a protein complex with essential functions in processing and degradation of RNA. Exosome-like complexes were recently found in Archaea. Here we characterize the exosome of Sulfolobus solfataricus. Two exosome fractions can be discriminated by density gradient centrifugation. We show that the Cdc48 protein is associated with the exosome from the 30S-50S fraction but not with the exosome of the 11.3S fraction. While only some complexes contain Cdc48, the archaeal DnaG-like protein was found to be a core exosome subunit in addition to Rrp4, Rrp41, Rrp42 and Csl4. Assays with depleted extracts revealed that the exosome is responsible for major ribonucleolytic activity in S. solfataricus. Various complexes consisting of the Rrp41-Rrp42 hexameric ring and Rrp4, Csl4 and DnaG were reconstituted. Dependent on their composition, different complexes showed variations in RNase activity indicating functional interdependence of the subunits. The catalytic activity of these complexes and of the native exosome can be ascribed to the Rrp41-Rrp42 ring, which degrades RNA phosphorolytically. Rrp4 and Csl4 do not exhibit any hydrolytic RNase activity, either when assayed alone or in context of the complex, but influence the activity of the archaeal exosome.
Collapse
Affiliation(s)
- Pamela Walter
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
65
|
|
66
|
Dziembowski A, Lorentzen E, Conti E, Séraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 2006; 14:15-22. [PMID: 17173052 DOI: 10.1038/nsmb1184] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 11/28/2006] [Indexed: 11/09/2022]
Abstract
The conserved core of the exosome, the major eukaryotic 3' --> 5' exonuclease, contains nine subunits that form a ring similar to the phosphorolytic bacterial PNPase and archaeal exosome, as well as Dis3. Dis3 is homologous to bacterial RNase II, a hydrolytic enzyme. Previous studies have suggested that all subunits are active 3' --> 5' exoRNases. We show here that Dis3 is responsible for exosome core activity. The purified exosome core has a hydrolytic, processive and Mg(2+)-dependent activity with characteristics similar to those of recombinant Dis3. Moreover, a catalytically inactive Dis3 mutant has no exosome core activity in vitro and shows in vivo RNA degradation phenotypes similar to those resulting from exosome depletion. In contrast, mutations in Rrp41, the only subunit carrying a conserved phosphorolytic site, appear phenotypically not different from wild-type yeast. We observed that the yeast exosome ring mediates interactions with protein partners, providing an explanation for its essential function.
Collapse
Affiliation(s)
- Andrzej Dziembowski
- Equipe labellisée La Ligue, Centre de Genetique Moleculaire, Centre National de la Recherche Scientifique UPR2167, associée à l'Université Pierre et Marie Curie, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France.
| | | | | | | |
Collapse
|
67
|
Oddone A, Lorentzen E, Basquin J, Gasch A, Rybin V, Conti E, Sattler M. Structural and biochemical characterization of the yeast exosome component Rrp40. EMBO Rep 2006; 8:63-9. [PMID: 17159918 PMCID: PMC1796750 DOI: 10.1038/sj.embor.7400856] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 10/12/2006] [Accepted: 10/13/2006] [Indexed: 11/08/2022] Open
Abstract
The exosome is a protein complex that is important in both degradation and 3'-processing of eukaryotic RNAs. We present the crystal structure of the Rrp40 exosome subunit from Saccharomyces cerevisiae at a resolution of 2.2 A. The structure comprises an S1 domain and an unusual KH (K homology) domain. Close packing of the S1 and KH domains is stabilized by a GxNG sequence, which is uniquely conserved in exosome KH domains. Nuclear magnetic resonance data reveal the presence of a manganese-binding site at the interface of the two domains. Isothermal titration calorimetry shows that Rrp40 and archaeal Rrp4 alone have very low intrinsic affinity for RNA. The affinity of an archaeal core exosome for RNA is significantly increased in the presence of the S1-KH subunit Rrp4, indicating that multiple subunits might contribute to cooperative binding of RNA substrates by the exosome.
Collapse
Affiliation(s)
- Anna Oddone
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Esben Lorentzen
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Jerome Basquin
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Alexander Gasch
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Vladimir Rybin
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Elena Conti
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
- Tel: +49 6221 387 8536; Fax: +49 6221 387 306; E-mail:
| | - Michael Sattler
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
- Tel: +49 6221 387 8552; Fax: +49 6221 387 306; E-mail:
| |
Collapse
|
68
|
Abstract
The exosome, a large multisubunit complex with exoribonucleic activity, emerges as the central 3' RNA degradation and processing factor in eukaryotes and archaea. But how are the many RNA substrates of the exosome degraded in a processive, yet controlled manner? Recent functional and structural progress shows that the exosome is a macromolecular cage, where the nuclease active sites are situated in a central processing chamber. A narrow entry pore controls access to the active sites in the processing chamber and prevents uncontrolled RNA decay. The emerging mechanism of exosome function suggests a strikingly parallel architectural concept to protein degradation by proteasomes.
Collapse
Affiliation(s)
- Katharina Büttner
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | |
Collapse
|
69
|
Graham AC, Kiss DL, Andrulis ED. Differential distribution of exosome subunits at the nuclear lamina and in cytoplasmic foci. Mol Biol Cell 2006; 17:1399-409. [PMID: 16407406 PMCID: PMC1382327 DOI: 10.1091/mbc.e05-08-0805] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The exosome complex plays important roles in RNA processing and turnover. Despite significant mechanistic insight into exosome function, we still lack a basic understanding of the subcellular locales where exosome complex biogenesis and function occurs. Here, we employ a panel of Drosophila S2 stable cell lines expressing epitope-tagged exosome subunits to examine the subcellular distribution of exosome complex components. We show that tagged Drosophila exosome subunits incorporate into complexes that recover endogenous nuclear and cytoplasmic exosome subunits. Immunolocalization analyses demonstrate that subsets of both epitope-tagged and endogenous exosome subunits are enriched in discrete subcellular compartments. In particular, dRrp4, dRrp42, dRrp46, and dCsl4 are enriched in cytoplasmic foci. Although dRrp4 and dRrp42 sometimes colocalize with dCsl4, these subunits are predominantly found in distinct cytoplasmic compartments. Strikingly, dRrp44/dDis3 and dRrp41/dSki6 colocalize with the nuclear lamina and often exhibit a restricted and asymmetric distribution at the nuclear periphery. Taken together, these observations indicate that individual exosome subunits have distinct localizations in vivo. These different distribution patterns presumably reflect distinct exosome subunit subcomplexes with correspondingly specialized functions.
Collapse
Affiliation(s)
- Amy C Graham
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4960, USA
| | | | | |
Collapse
|
70
|
Schilders G, van Dijk E, Raijmakers R, Pruijn GJM. Cell and Molecular Biology of the Exosome: How to Make or Break an RNA. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 251:159-208. [PMID: 16939780 DOI: 10.1016/s0074-7696(06)51005-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The identification and characterization of the exosome complex has shown that the exosome is a complex of 3' --> 5' exoribonucleases that plays a key role in the processing and degradation of a wide variety of RNA substrates. Advances in the understanding of exosome function have led to the identification of numerous cofactors that are required for a selective recruitment of the exosome to substrate RNAs, for their structural alterations to facilitate degradation, and to aid in their complete degradation/processing. Structural data obtained by two-hybrid interaction analyses and X-ray crystallography show that the core of the exosome adopts a doughnut-like structure and demonstrates that probably not all exosome subunits are active exoribonucleases. Despite all data obtained on the structure and function of the exosome during the last decade, there are still a lot of unanswered questions. What is the molecular mechanism by which cofactors select and target substrate RNAs to the exosome and modulate its function for correct processing or degradation? How can the exosome discriminate between processing or degradation of a specific substrate RNA? What is the precise structure of exosome subunits and how do they contribute to its function? Here we discuss studies that provide some insight to these questions and speculate on the mechanisms that control the exosome.
Collapse
Affiliation(s)
- Geurt Schilders
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
71
|
Ramos CRR, Oliveira CLP, Torriani IL, Oliveira CC. The Pyrococcus exosome complex: structural and functional characterization. J Biol Chem 2005; 281:6751-9. [PMID: 16407194 DOI: 10.1074/jbc.m512495200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The exosome is a conserved eukaryotic enzymatic complex that plays an essential role in many pathways of RNA processing and degradation. Here, we describe the structural characterization of the predicted archaeal exosome in solution using small angle x-ray scattering. The structure model calculated from the small angle x-ray scattering pattern provides an indication of the existence of a disk-shaped structure, corresponding to the "RNases PH ring" complex formed by the proteins aRrp41 and aRrp42. The RNases PH ring complex corresponds to the core of the exosome, binds RNA, and has phosphorolytic and polymerization activities. Three additional molecules of the RNA-binding protein aRrp4 are attached to the core as extended and flexible arms that may direct the substrates to the active sites of the exosome. In the presence of aRrp4, the activity of the core complex is enhanced, suggesting a regulatory role for this protein. The results shown here also indicate the participation of the exosome in RNA metabolism in Archaea, as was established in Eukarya.
Collapse
Affiliation(s)
- Celso Raul Romero Ramos
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
72
|
Lorentzen E, Conti E. Structural basis of 3' end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol Cell 2005; 20:473-81. [PMID: 16285928 DOI: 10.1016/j.molcel.2005.10.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 10/06/2005] [Accepted: 10/21/2005] [Indexed: 11/30/2022]
Abstract
The exosome is a macromolecular complex that plays fundamental roles in the biogenesis and turnover of a large number of RNA species. Here we report the crystal structures of the Rrp41-Rrp42 core complex of the S. solfataricus exosome bound to short single-stranded RNAs and to ADP. The RNA binding cleft recognizes four nucleotides in a sequence-unspecific manner, mainly by electrostatic interactions with the phosphate groups. Interactions at the 2' hydroxyls of the sugars provide specificity for RNA over DNA. The structures show both the bound substrate and the cleaved product of the reaction, suggesting a catalytic mechanism for the 3'-5' phosphorolytic activity of the exosome.
Collapse
Affiliation(s)
- Esben Lorentzen
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
73
|
Lorentzen E, Walter P, Fribourg S, Evguenieva-Hackenberg E, Klug G, Conti E. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 2005; 12:575-81. [PMID: 15951817 DOI: 10.1038/nsmb952] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 05/18/2005] [Indexed: 11/08/2022]
Abstract
The exosome is a 3' --> 5' exoribonuclease complex involved in RNA processing. We report the crystal structure of the RNase PH core complex of the Sulfolobus solfataricus exosome determined at a resolution of 2.8 A. The structure reveals a hexameric ring-like arrangement of three Rrp41-Rrp42 heterodimers, where both subunits adopt the RNase PH fold common to phosphorolytic exoribonucleases. Structure-guided mutagenesis reveals that the activity of the complex resides within the active sites of the Rrp41 subunits, all three of which face the same side of the hexameric structure. The Rrp42 subunit is inactive but contributes to the structuring of the Rrp41 active site. The high sequence similarity of this archaeal exosome to eukaryotic exosomes and its high structural similarity to the bacterial mRNA-degrading PNPase support a common basis for RNA-degrading machineries in all three domains of life.
Collapse
|
74
|
Meyer S, Temme C, Wahle E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 2005; 39:197-216. [PMID: 15596551 DOI: 10.1080/10409230490513991] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The control of mRNA degradation is an important component of the regulation of gene expression since the steady-state concentration of mRNA is determined both by the rates of synthesis and of decay. Two general pathways of mRNA decay have been described in eukaryotes. Both pathways share the exonucleolytic removal of the poly(A) tail (deadenylation) as the first step. In one pathway, deadenylation is followed by the hydrolysis of the cap and processive degradation of the mRNA body by a 5' exonuclease. In the second pathway, the mRNA body is degraded by a complex of 3' exonucleases before the remaining cap structure is hydrolyzed. This review discusses the proteins involved in the catalysis and control of both decay pathways.
Collapse
Affiliation(s)
- Sylke Meyer
- Institut für Biochemie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
75
|
Kao CY, Read LK. Opposing effects of polyadenylation on the stability of edited and unedited mitochondrial RNAs in Trypanosoma brucei. Mol Cell Biol 2005; 25:1634-44. [PMID: 15713623 PMCID: PMC549368 DOI: 10.1128/mcb.25.5.1634-1644.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 10/11/2004] [Accepted: 12/07/2004] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial RNAs in Trypanosoma brucei undergo posttranscriptional RNA editing and polyadenylation. We previously showed that polyadenylation stimulates turnover of unedited RNAs. Here, we investigated the role of polyadenylation in decay of edited RPS12 RNA. In in vitro turnover assays, nonadenylated fully edited RNA degrades significantly faster than its unedited counterpart. Rapid turnover of nonadenylated RNA is facilitated by editing at just six editing sites. Surprisingly, in direct contrast to unedited RNA, turnover of fully edited RNA is dramatically slowed by addition of a poly(A)20 tail. The same minimal edited sequence that stimulates decay of nonadenylated RNA is sufficient to switch the poly(A) tail from a destabilizing to a stabilizing element. Both nucleotide composition and length of the 3' extension are important for stabilization of edited RNA. Titration of poly(A) into RNA degradation reactions has no effect on turnover of polyadenylated edited RNA. These results suggest the presence of a protective protein(s) that simultaneously recognizes the poly(A) tail and small edited element and which blocks the action of a 3'-5' exonuclease. This study provides the first evidence for opposing effects of polyadenylation on RNA stability within a single organelle and suggests a novel and unique regulation of RNA turnover in this system.
Collapse
Affiliation(s)
- Chia-Ying Kao
- Department of Microbiology and Immunology, 138 Farber Hall, SUNY Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | | |
Collapse
|
76
|
Raijmakers R, Schilders G, Pruijn GJM. The exosome, a molecular machine for controlled RNA degradation in both nucleus and cytoplasm. Eur J Cell Biol 2005; 83:175-83. [PMID: 15346807 DOI: 10.1078/0171-9335-00385] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the most important protein complexes involved in maintaining correct RNA levels in eukaryotic cells is the exosome, a complex consisting almost exclusively of exoribonucleolytic proteins. Since the identification of the exosome complex, seven years ago, much progress has been made in the characterization of its composition, structure and function in a variety of organisms. Although the exosome seems to accumulate in the nucleolus, it has been clearly established that it is also localized in cytoplasm and nucleoplasm. In accordance with its widespread intracellular distribution, the exosome has been implicated in a variety of RNA processing and degradation processes. Nevertheless, many questions still remain unanswered. What are the factors that regulate the activity of the exosome? How and where is the complex assembled? What are the differences in the composition of the nuclear and cytoplasmic exosome? What is the detailed structure of exosome subunits? What are the mechanisms by which the exosome is recruited to substrate RNAs? Here, we summarize the current knowledge on the composition and architecture of this complex, explain its role in both the production and degradation of various types of RNA molecules and discuss the implications of recent research developments that shed some light on the questions above and the mechanisms that are controlling the exosome.
Collapse
Affiliation(s)
- Reinout Raijmakers
- Department of Biochemistry, University of Nijmegen, Nijmegen, The Netherlands
| | | | | |
Collapse
|
77
|
Abstract
By using two very different approaches, recent work by Gazzani et al. (2004) and Souret et al. (2004) reveal a fundamental link between mRNA degradation and RNA silencing pathways in Arabidopsis.
Collapse
Affiliation(s)
- Dmitry Belostotsky
- Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222, USA
| |
Collapse
|
78
|
Reverdatto SV, Dutko JA, Chekanova JA, Hamilton DA, Belostotsky DA. mRNA deadenylation by PARN is essential for embryogenesis in higher plants. RNA (NEW YORK, N.Y.) 2004; 10:1200-14. [PMID: 15247430 PMCID: PMC1370610 DOI: 10.1261/rna.7540204] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Deadenylation of mRNA is often the first and rate-limiting step in mRNA decay. PARN, a poly(A)-specific 3' --> 5' ribonuclease which is conserved in many eukaryotes, has been proposed to be primarily responsible for such a reaction, yet the importance of the PARN function at the whole-organism level has not been demonstrated in any species. Here, we show that mRNA deadenylation by PARN is essential for viability in higher plants (Arabidopsis thaliana). Yet, this essential requirement for the PARN function is not universal across the phylogenetic spectrum, because PARN is dispensable in Fungi (Schizosaccharomyces pombe), and can be at least severely downregulated without any obvious consequences in Metazoa (Caenorhabditis elegans). Development of the Arabidopsis embryos lacking PARN (AtPARN), as well as of those expressing an enzymatically inactive protein, was markedly retarded, and ultimately culminated in an arrest at the bent-cotyledon stage. Importantly, only some, rather than all, embryo-specific transcripts were hyperadenylated in the mutant embryos, suggesting that preferential deadenylation of a specific select subset of mRNAs, rather than a general deadenylation of the whole mRNA population, by AtPARN is indispensable for embryogenesis in Arabidopsis. These findings indicate a unique, nonredundant role of AtPARN among the multiple plant deadenylases.
Collapse
Affiliation(s)
- Sergei V Reverdatto
- Department of Biological Sciences, State University of New York at Albany, 12222, USA
| | | | | | | | | |
Collapse
|
79
|
Madrona AY, Wilson DK. The structure of Ski8p, a protein regulating mRNA degradation: Implications for WD protein structure. Protein Sci 2004; 13:1557-65. [PMID: 15152089 PMCID: PMC2279974 DOI: 10.1110/ps.04704704] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 03/19/2004] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
Ski8p is a 44-kD protein that primarily functions in the regulation of exosome-mediated, 3'--> 5' degradation of damaged mRNA. It does so by forming a complex with two partner proteins, Ski2p and Ski3p, which complete a complex that is capable of recruiting and activating the exosome/Ski7p complex that functions in RNA degradation. Ski8p also functions in meiotic recombination in complex with Spo11 in yeast. It is one of the many hundreds of primarily eukaryotic proteins containing tandem copies of WD repeats (also known as WD40 or beta-transducin repeats), which are short ~40 amino acid motifs, often terminating in a Trp-Asp dipeptide. Genomic analyses have demonstrated that WD repeats are found in 1%-2% of proteins in a typical eukaryote, but are extremely rare in prokaryotes. Almost all structurally characterized WD-repeat proteins are composed of seven such repeats and fold into seven-bladed beta propellers. Ski8p was thought to contain five WD repeats on the basis of primary sequence analysis implying a five-bladed propeller. The 1.9 A crystal structure unexpectedly exhibits a seven-bladed propeller fold with seven structurally authentic WD repeats. Structure-based sequence alignments show additional sequence diversity in the two undetected repeats. This demonstrates that many WD repeats have not yet been identified in sequences and also raises the possibility that the seven-bladed propeller may be the predominant fold for this family of proteins.
Collapse
Affiliation(s)
- A Yarrow Madrona
- Section of Molecular and Cellular Biology, 1 Shields Ave., University of California, Davis, CA 95616, USA
| | | |
Collapse
|
80
|
Uliel S, Liang XH, Unger R, Michaeli S. Small nucleolar RNAs that guide modification in trypanosomatids: repertoire, targets, genome organisation, and unique functions. Int J Parasitol 2004; 34:445-54. [PMID: 15013734 DOI: 10.1016/j.ijpara.2003.10.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 10/14/2003] [Accepted: 10/15/2003] [Indexed: 11/27/2022]
Abstract
Small nucleolar RNAs constitute a family of newly discovered non-coding small RNAs, most of which function in guiding RNA modifications. Two prevalent types of modifications are 2'-O-methylation and pseudouridylation. The modification is directed by the formation of a canonical small nucleolar RNA-target duplex. Initially, RNA-guided modification was shown to take place on rRNA, but recent studies suggest that small nuclear RNA, mRNA, tRNA, and the trypanosome spliced leader RNA also undergo guided modifications. Trypanosomes contain more modifications and potentially more small nucleolar RNAs than yeast, and the increased number of modifications may help to preserve ribosome function under adverse environmental conditions during the cycling between the insect and mammalian host. The genome organisation in clusters carrying the two types of small nucleolar RNAs, C/D and H/ACA-like RNAs, resembles that in plants. However, the trypanosomatid H/ACA RNAs are similar to those found in Archaea and are composed of a single hairpin that may represent the primordial H/ACA RNA. In this review we summarise this new field of trypanosome small nucleolar RNAs, emphasising the open questions regarding the number of small nucleolar RNAs, the repertoire, genome organisation, and the unique function of guided modifications in these protozoan parasites.
Collapse
Affiliation(s)
- Shai Uliel
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
81
|
Estévez AM, Lehner B, Sanderson CM, Ruppert T, Clayton C. The roles of intersubunit interactions in exosome stability. J Biol Chem 2003; 278:34943-51. [PMID: 12821657 DOI: 10.1074/jbc.m305333200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, at least 10 proteins associate in a 3'-5' exonuclease complex, the exosome, which is involved in the processing of many RNA species. A recent model for the exosome placed six RNase PH-related components in a hexameric ring core structure, with three S1 domain proteins associated with the ring surface. So far, however, this model lacks experimental support. Using a combination of RNA interference, complex affinity purification, and yeast two-hybrid approaches, we show here that the RNase PH homologues are important for maintenance of complex integrity. In contrast, the S1 domain proteins are not required for complex stability, although they are required for exosome function. Our results are partially consistent with the proposed model of the exosome, but indicate a different arrangement of the RNase PH proteins.
Collapse
Affiliation(s)
- Antonio M Estévez
- Zentrum für Molekulare Biologie, Heidelberg Universität, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
82
|
Evguenieva-Hackenberg E, Walter P, Hochleitner E, Lottspeich F, Klug G. An exosome-like complex in Sulfolobus solfataricus. EMBO Rep 2003; 4:889-93. [PMID: 12947419 PMCID: PMC1326366 DOI: 10.1038/sj.embor.embor929] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Revised: 07/18/2003] [Accepted: 07/24/2003] [Indexed: 11/09/2022] Open
Abstract
We present the first experimental evidence for the existence of an exosome-like protein complex in Archaea. In Eukarya, the exosome is essential for many pathways of RNA processing and degradation. Co-immunoprecipitation with antibodies directed against the previously predicted Sulfolobus solfataricus orthologue of the exosome subunit ribosomal-RNA-processing protein 41 (Rrp41) led to the purification of a 250-kDa protein complex from S. solfataricus. Approximately half of the complex cosediments with ribosomal subunits. It comprises four previously predicted orthologues of the core exosome subunits from yeast (Rrp41, Rrp42, Rrp4 and Csl4 (cepl synthetic lethality 4; an RNA-binding protein and exosome sub-unit)), whereas other predicted subunits were not found. Surprisingly, the archaeal homologue of the bacterial DNA primase DnaG was tightly associated with the complex. This suggests an RNA-related function for the archaeal DnaG-like proteins. Comparison of experimental data from different organisms shows that the minimal core of the exosome consists of at least one phosphate-dependent ribonuclease PH homologue, and of Rrp4 and Csl4. Such a protein complex was probably present in the last common ancestor of Archaea and Eukarya.
Collapse
Affiliation(s)
- Elena Evguenieva-Hackenberg
- Institute for Microbiology and Molecular Biology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
83
|
Belostotsky DA. Unexpected complexity of poly(A)-binding protein gene families in flowering plants: three conserved lineages that are at least 200 million years old and possible auto- and cross-regulation. Genetics 2003; 163:311-9. [PMID: 12586718 PMCID: PMC1462424 DOI: 10.1093/genetics/163.1.311] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic poly(A)-binding protein (PABP) is a ubiquitous, essential factor involved in mRNA biogenesis, translation, and turnover. Most eukaryotes examined have only one or a few PABPs. In contrast, eight expressed PABP genes are present in Arabidopsis thaliana. These genes fall into three distinct classes, based on highly concordant results of (i) phylogenetic analysis of the amino acid sequences of the encoded proteins, (ii) analysis of the intron number and placement, and (iii) surveys of gene expression patterns. Representatives of each of the three classes also exist in the rice genome, suggesting that the diversification of the plant PABP genes has occurred prior to the split of monocots and dicots >or=200 MYA. Experiments with the recombinant PAB3 protein suggest the possibility of a negative feedback regulation, as well as of cross-regulation between the Arabidopsis PABPs that belong to different classes but are simultaneously expressed in the same cell type. Such a high complexity of the plant PABPs might enable a very fine regulation of organismal growth and development at the post-transcriptional level, compared with PABPs of other eukaryotes.
Collapse
Affiliation(s)
- Dmitry A Belostotsky
- Department of Biological Sciences, State University of New York, Albany, New York 12222, USA.
| |
Collapse
|
84
|
Cheng Y, Kato N, Wang W, Li J, Chen X. Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana. Dev Cell 2003; 4:53-66. [PMID: 12530963 PMCID: PMC5135010 DOI: 10.1016/s1534-5807(02)00399-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AGAMOUS, a key player in floral morphogenesis, specifies reproductive organ identities and regulates the timely termination of stem cell fates in the floral meristem. Here, we report that strains carrying mutations in three genes, HUA1, HUA2, and HUA ENHANCER4 (HEN4), exhibit floral defects similar to those in agamous mutants: reproductive-to-perianth organ transformation and loss of floral determinacy. HEN4 codes for a K homology (KH) domain-containing, putative RNA binding protein that interacts with HUA1, a CCCH zinc finger RNA binding protein in the nucleus. We show that HUA1 binds AGAMOUS pre-mRNA in vitro and that HEN4, HUA1, and HUA2 act in floral morphogenesis by specifically promoting the processing of AGAMOUS pre-mRNA. Our studies underscore the importance of RNA processing in modulating plant development.
Collapse
Affiliation(s)
- Yulan Cheng
- Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854
| | - Naohiro Kato
- Biotechnology Center for Agriculture and the Environment, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901
| | - Wenming Wang
- Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854
| | - Junjie Li
- Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854
| | - Xuemei Chen
- Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854
| |
Collapse
|
85
|
Brown JWS, Echeverria M, Qu LH. Plant snoRNAs: functional evolution and new modes of gene expression. TRENDS IN PLANT SCIENCE 2003; 8:42-9. [PMID: 12523999 DOI: 10.1016/s1360-1385(02)00007-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are a well-characterized family of non-coding RNAs whose main function is rRNA modification. The diversity and complexity of this gene family continues to expand with the discovery of snoRNAs with non-rRNA or unknown targets. Plants contain more snoRNAs than other eukaryotes and have developed novel expression and processing strategies. The increased number of modifications, which will influence ribosome function, and the novel modes of expression might reflect the environmental conditions to which plants are exposed. Polyploidy and chromosomal rearrangements have generated multiple copies of snoRNA genes, allowing the generation of new snoRNAs for selection. The large snoRNA family in plants is an ideal model for investigation of mechanisms of evolution of gene families in plants.
Collapse
MESH Headings
- Base Sequence
- Evolution, Molecular
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Plants/genetics
- Plants/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/physiology
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- John W S Brown
- Gene Expression Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK.
| | | | | |
Collapse
|
86
|
Raijmakers R, Egberts WV, van Venrooij WJ, Pruijn GJM. Protein-protein interactions between human exosome components support the assembly of RNase PH-type subunits into a six-membered PNPase-like ring. J Mol Biol 2002; 323:653-63. [PMID: 12419256 DOI: 10.1016/s0022-2836(02)00947-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The exosome is a complex of 3'-->5' exoribonucleases, which functions in a variety of cellular processes, all requiring the processing or degradation of RNA. Here we present a model for the assembly of the six human RNase PH-like exosome subunits into a hexameric ring structure. In part, this structure is on the basis of the evolutionarily related bacterial degradosome, the core of which consists of three copies of the PNPase protein, each containing two RNase PH domains. In our model three additional exosome subunits, which contain S1 RNA-binding domains, are positioned on the outer surface of this ring. Evidence for this model was obtained by the identification of protein-protein interactions between individual exosome subunits in a mammalian two-hybrid system. In addition, the results of co-immunoprecipitation assays indicate that at least two copies of hRrp4p and hRrp41p are associated with a single exosome, suggesting that at least two of these ring structures are present in this complex. Finally, the identification of a human gene encoding the putative human counterpart of the bacterial PNPase protein is described, which suggests that the exosome is not the eukaryotic equivalent of the bacterial degradosome, although they do share similar functional activities.
Collapse
Affiliation(s)
- Reinout Raijmakers
- Department of Biochemistry, University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
87
|
Oliveira CC, Gonzales FA, Zanchin NIT. Temperature-sensitive mutants of the exosome subunit Rrp43p show a deficiency in mRNA degradation and no longer interact with the exosome. Nucleic Acids Res 2002; 30:4186-98. [PMID: 12364597 PMCID: PMC140545 DOI: 10.1093/nar/gkf545] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2002] [Revised: 07/10/2002] [Accepted: 08/05/2002] [Indexed: 11/13/2022] Open
Abstract
Rrp43p is a Saccharomyces cerevisiae exosome subunit involved in pre-rRNA processing which is found both in the nucleus and in the cytoplasm. So far, no function has been assigned to the cytoplasmic fraction of Rrp43p. We have addressed Rrp43p function by analyzing mRNA stability in three rrp43 temperature-sensitive (ts) strains, which carry different ts alleles (rrp43-1, rrp43-2 and rrp43-3), and by analyzing Rrp43p interactions with the remaining exosome subunits. In the ts strains, endogenous mRNAs (ACT1 and PAB1), as well as a heterologous reporter mRNA (CATpG) showed longer half-lives, relative to a control strain carrying wild-type RRP43. The mutants also accumulated a degradation intermediate of the reporter mRNA that is typical of defective mRNA decay. These results allow us to propose that Rrp43p is required for mRNA degradation. Rrp43p interacts with the exosome complex via Rrp46p, as determined by two-hybrid analyses. Interestingly, the rrp43 ts mutant proteins do not interact with Rrp46p, indicating that the ts phenotype may be caused by disruption of the Rrp43p- Rrp46p interaction. The ts strains also showed a pre-rRNA processing defect, which is consistent with previous studies on Rrp43p function.
Collapse
Affiliation(s)
- Carla C Oliveira
- Department of Biochemistry, Chemistry Institute, USP, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-900, Brazil.
| | | | | |
Collapse
|
88
|
Hollams EM, Giles KM, Thomson AM, Leedman PJ. MRNA stability and the control of gene expression: implications for human disease. Neurochem Res 2002; 27:957-80. [PMID: 12462398 DOI: 10.1023/a:1020992418511] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulation of gene expression is essential for the homeostasis of an organism, playing a pivotal role in cellular proliferation, differentiation, and response to specific stimuli. Multiple studies over the last two decades have demonstrated that the modulation of mRNA stability plays an important role in regulating gene expression. The stability of a given mRNA transcript is determined by the presence of sequences within an mRNA known as cis-elements, which can be bound by trans-acting RNA-binding proteins to inhibit or enhance mRNA decay. These cis-trans interactions are subject to a control by a wide variety of factors including hypoxia, hormones, and cytokines. In this review, we describe mRNA biosynthesis and degradation, and detail the cis-elements and RNA-binding proteins known to affect mRNA turnover. We present recent examples in which dysregulation of mRNA stability has been associated with human diseases including cancer, inflammatory disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Elysia M Hollams
- Laboratory for Cancer Medicine and University Department of Medicine, Western Australian Institute for Medical Research and University of Western Australia, Perth, Australia
| | | | | | | |
Collapse
|
89
|
Aloy P, Ciccarelli FD, Leutwein C, Gavin AC, Superti-Furga G, Bork P, Bottcher B, Russell RB. A complex prediction: three-dimensional model of the yeast exosome. EMBO Rep 2002; 3:628-35. [PMID: 12101094 PMCID: PMC1084189 DOI: 10.1093/embo-reports/kvf135] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We present a model of the yeast exosome based on the bacterial degradosome component polynucleotide phosphorylase (PNPase). Electron microscopy shows the exosome to resemble PNPase but with key differences likely related to the position of RNA binding domains, and to the location of domains unique to the exosome. We use various techniques to reduce the many possible models of exosome subunits based on PNPase to just one. The model suggests numerous experiments to probe exosome function, particularly with respect to subunits making direct atomic contacts and conserved, possibly functional residues within the predicted central pore of the complex.
Collapse
|
90
|
Chekanova JA, Dutko JA, Mian IS, Belostotsky DA. Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3'-->5' exonuclease containing S1 and KH RNA-binding domains. Nucleic Acids Res 2002; 30:695-700. [PMID: 11809881 PMCID: PMC100302 DOI: 10.1093/nar/30.3.695] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The exosome, an evolutionarily conserved complex of multiple 3'-->5' exoribonucleases, is responsible for a variety of RNA processing and degradation events in eukaryotes. In this report Arabidopsis thaliana AtRrp4p is shown to be an active 3'-->5' exonuclease that requires a free 3'-hydroxyl and degrades RNA hydrolytically and distributively, releasing nucleoside 5'-monophosphate products. AtRrp4p behaves as an approximately 500 kDa species during sedimentation through a 10-30% glycerol gradient, co-migrating with AtRrp41p, another exosome subunit, and it interacts in vitro with AtRrp41p, suggesting that it is also present in the plant cell as a subunit of the exosome. We found that, in addition to a previously reported S1-type RNA-binding domain, members of the Rrp4p family of proteins contain a KH-type RNA-binding domain in the C-terminal half and show that either domain alone can bind RNA. However, only the full-length protein is capable of degrading RNA and interacting with AtRrp41p.
Collapse
Affiliation(s)
- Julia A Chekanova
- Department of Biological Sciences, State University of New York at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | | | |
Collapse
|
91
|
Abstract
Recent studies of the eukaryotic ribosomal RNA processing pathway have identified a complex of ten riboexonucleases called the exosome that plays a central role in the precise formation of the 3' ends of several types of RNAs. The exosome also destroys excess ribosomal RNA precursors and unused intermediates and degrades poly(A)-mRNAs in the cytoplasm. In the nucleus, the complex appears to function in a regulated mRNA surveillance system that degrades transcripts in response to defects in the mRNA processing and export pathways. How the cell regulates the nucleolytic prowess of the exosome to ensure correct and timely synthesis and destruction of RNAs is a central focus of current research.
Collapse
Affiliation(s)
- J Scott Butler
- Dept of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Box 672 601, Elmwood Ave, Rochester, NY 14642, USA.
| |
Collapse
|
92
|
Raijmakers R, Noordman YE, van Venrooij WJ, Pruijn GJM. Protein-protein interactions of hCsl4p with other human exosome subunits. J Mol Biol 2002; 315:809-18. [PMID: 11812149 DOI: 10.1006/jmbi.2001.5265] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The exosome is a complex of 3'-->5' exoribonucleases, which functions in a variety of cellular processes, all requiring the processing or degradation of RNA. We demonstrate that the two human proteins hCsl4p and hRrp42p, which have been identified on the basis of their sequence homology with Saccharomyces cerevisiae proteins, are associated with the human exosome. By mammalian two-hybrid and GST pull-down assays, we show that the hCsl4p protein interacts directly with two other exosome proteins, hRrp42p and hRrp46p. Mutants of hCsl4p that fail to interact with either hRrp42p or hRrp46p are also not able to associate with exosome complexes in vivo. These results indicate that the association of hCsl4p with the exosome is mediated by protein-protein interactions with hRrp42p and hRrp46p.
Collapse
Affiliation(s)
- Reinout Raijmakers
- Department of Biochemistry, University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
93
|
Mukherjee D, Gao M, O’Connor J, Raijmakers R, Pruijn G, Lutz CS, Wilusz J. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 2002; 21:165-74. [PMID: 11782436 PMCID: PMC125812 DOI: 10.1093/emboj/21.1.165] [Citation(s) in RCA: 295] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HeLa cytoplasmic extracts contain both 3'-5' and 5'-3' exonuclease activities that may play important roles in mRNA decay. Using an in vitro RNA deadenylation/decay assay, mRNA decay intermediates were trapped using phosphothioate-modified RNAs. These data indicate that 3'-5' exonucleolytic decay is the major pathway of RNA degradation following deadenylation in HeLa cytoplasmic extracts. Immunodepletion using antibodies specific for the exosomal protein PM-Scl75 demonstrated that the human exosome complex is required for efficient 3'-5' exonucleolytic decay. Furthermore, 3'-5' exonucleolytic decay was stimulated dramatically by AU-rich instability elements (AREs), implicating a role for the exosome in the regulation of mRNA turnover. Finally, PM-Scl75 protein was found to interact specifically with AREs. These data suggest that the interaction between the exosome and AREs plays a key role in regulating the efficiency of ARE-containing mRNA turnover.
Collapse
Affiliation(s)
| | | | - J.Patrick O’Connor
- Department of Microbiology and Molecular Genetics,
Department of Orthopaedics and Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA and Department of Biochemistry, University of Nijmegen, The Netherlands Corresponding author e-mail:
| | - Reinout Raijmakers
- Department of Microbiology and Molecular Genetics,
Department of Orthopaedics and Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA and Department of Biochemistry, University of Nijmegen, The Netherlands Corresponding author e-mail:
| | - Ger Pruijn
- Department of Microbiology and Molecular Genetics,
Department of Orthopaedics and Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA and Department of Biochemistry, University of Nijmegen, The Netherlands Corresponding author e-mail:
| | - Carol S. Lutz
- Department of Microbiology and Molecular Genetics,
Department of Orthopaedics and Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA and Department of Biochemistry, University of Nijmegen, The Netherlands Corresponding author e-mail:
| | - Jeffrey Wilusz
- Department of Microbiology and Molecular Genetics,
Department of Orthopaedics and Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA and Department of Biochemistry, University of Nijmegen, The Netherlands Corresponding author e-mail:
| |
Collapse
|
94
|
Olson MOJ, Hingorani K, Szebeni A. Conventional and nonconventional roles of the nucleolus. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 219:199-266. [PMID: 12211630 PMCID: PMC7133188 DOI: 10.1016/s0074-7696(02)19014-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As the most prominent of subnuclear structures, the nucleolus has a well-established role in ribosomal subunit assembly. Additional nucleolar functions, not related to ribosome biogenesis, have been discovered within the last decade. Built around multiple copies of the genes for preribosomal RNA (rDNA), nucleolar structure is largely dependent on the process of ribosome assembly. The nucleolus is disassembled during mitosis at which time preribosomal RNA transcription and processing are suppressed; it is reassembled at the end of mitosis in part from components preserved from the previous cell cycle. Expression of preribosomal RNA (pre-rRNA) is regulated by the silencing of individual rDNA genes via alterations in chromatin structure or by controlling RNA polymerase I initiation complex formation. Preribosomal RNA processing and posttranscriptional modifications are guided by a multitude of small nucleolar RNAs. Nearly completed ribosomal subunits are exported to the cytoplasm by an established nuclear export system with the aid of specialized adapter molecules. Some preribosomal and nucleolar components are transiently localized in Cajal bodies, presumably for modification or assembly. The nonconventional functions of nucleolus include roles in viral infections, nuclear export, sequestration of regulatory molecules, modification of small RNAs, RNP assembly, and control of aging, although some of these functions are not well established. Additional progress in defining the mechanisms of each step in ribosome biogenesis as well as clarification of the precise role of the nucleolus in nonconventional activities is expected in the next decade.
Collapse
Affiliation(s)
- Mark O J Olson
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|
95
|
Roessner U, Willmitzer L, Fernie AR. High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. PLANT PHYSIOLOGY 2001; 127:749-764. [PMID: 11706160 DOI: 10.1104/pp.010316] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We conducted a comprehensive metabolic phenotyping of potato (Solanum tuberosum L. cv Desiree) tuber tissue that had been modified either by transgenesis or exposure to different environmental conditions using a recently developed gas chromatography-mass spectrometry profiling protocol. Applying this technique, we were able to identify and quantify the major constituent metabolites of the potato tuber within a single chromatographic run. The plant systems that we selected to profile were tuber discs incubated in varying concentrations of fructose, sucrose, and mannitol and transgenic plants impaired in their starch biosynthesis. The resultant profiles were then compared, first at the level of individual metabolites and then using the statistical tools hierarchical cluster analysis and principal component analysis. These tools allowed us to assign clusters to the individual plant systems and to determine relative distances between these clusters; furthermore, analyzing the loadings of these analyses enabled identification of the most important metabolites in the definition of these clusters. The metabolic profiles of the sugar-fed discs were dramatically different from the wild-type steady-state values. When these profiles were compared with one another and also with those we assessed in previous studies, however, we were able to evaluate potential phenocopies. These comparisons highlight the importance of such an approach in the functional and qualitative assessment of diverse systems to gain insights into important mediators of metabolism.
Collapse
Affiliation(s)
- U Roessner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | |
Collapse
|
96
|
Abstract
The yeast exosome is a complex of at least 10 essential 3'-5' riboexonucleases which is involved in 3'-processing of many RNA species. An exosome-like complex has been found or predicted to exist in other eukaryotes but not in Escherichia coli. The unicellular parasite Trypanosoma brucei diverged very early in eukaryotic evolution. We show here that T.brucei contains at least eight exosome subunit homologs, but only a subset of these associate in a complex. Accordingly, the T.brucei exosome is smaller than that of yeast. Both free and complex-associated homologs are essential for cell viability and are involved in 5.8S rRNA maturation. We suggest that the exosome was present in primitive eukaryotes, and became increasingly complex during subsequent evolution.
Collapse
Affiliation(s)
- A M Estévez
- Zentrum für Molekulare Biologie, Heidelberg Universität, Im Neuenheimer Feld 282, 69120-Heidelberg, Germany.
| | | | | |
Collapse
|
97
|
|