51
|
Functional Analyses of Cytokinesis Regulators in Bloodstream Stage Trypanosoma brucei Parasites Identify Functions and Regulations Specific to the Life Cycle Stage. mSphere 2019; 4:4/3/e00199-19. [PMID: 31043517 PMCID: PMC6495339 DOI: 10.1128/msphere.00199-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The early divergent protozoan parasite Trypanosoma brucei is the causative agent of sleeping sickness in humans and nagana in cattle in sub-Saharan Africa. This parasite has a complex life cycle by alternating between the insect vector and the mammalian hosts and proliferates by binary cell fission. The control of cell division in trypanosomes appears to be distinct from that in its human host and differs substantially between two life cycle stages, the procyclic (insect) form and the bloodstream form. Cytokinesis, the final step of binary cell fission, is regulated by a novel signaling cascade consisting of two evolutionarily conserved protein kinases and a cohort of trypanosome-specific regulators in the procyclic form, but whether this signaling pathway operates in a similar manner in the bloodstream form is unclear. In this report, we performed a functional analysis of multiple cytokinesis regulators and discovered their distinct functions and regulations in the bloodstream form. The early divergent protozoan parasite Trypanosoma brucei alternates between the insect vector and the mammalian hosts during its life cycle and proliferates through binary cell fission. The cell cycle control system in T. brucei differs substantially from that in its mammalian hosts and possesses distinct mitosis-cytokinesis checkpoint controls between two life cycle stages, the procyclic form and the bloodstream form. T. brucei undergoes an unusual mode of cytokinesis, which is controlled by a novel signaling cascade consisting of evolutionarily conserved protein kinases and trypanosome-specific regulatory proteins in the procyclic form. However, given the distinct mitosis-cytokinesis checkpoints between the two forms, it is unclear whether the cytokinesis regulatory pathway discovered in the procyclic form also operates in a similar manner in the bloodstream form. Here, we showed that the three regulators of cytokinesis initiation, cytokinesis initiation factor 1 (CIF1), CIF2, and CIF3, are interdependent for subcellular localization but not for protein stability as in the procyclic form. Further, we demonstrated that KLIF, a regulator of cytokinesis completion in the procyclic form, plays limited roles in cytokinesis in the bloodstream form. Finally, we showed that the cleavage furrow-localizing protein FRW1 is required for cytokinesis initiation in the bloodstream form but is nonessential for cytokinesis in the procyclic form. Together, these results identify conserved and life cycle-specific functions of cytokinesis regulators, highlighting the distinction in the regulation of cytokinesis between different life cycle stages of T. brucei. IMPORTANCE The early divergent protozoan parasite Trypanosoma brucei is the causative agent of sleeping sickness in humans and nagana in cattle in sub-Saharan Africa. This parasite has a complex life cycle by alternating between the insect vector and the mammalian hosts and proliferates by binary cell fission. The control of cell division in trypanosomes appears to be distinct from that in its human host and differs substantially between two life cycle stages, the procyclic (insect) form and the bloodstream form. Cytokinesis, the final step of binary cell fission, is regulated by a novel signaling cascade consisting of two evolutionarily conserved protein kinases and a cohort of trypanosome-specific regulators in the procyclic form, but whether this signaling pathway operates in a similar manner in the bloodstream form is unclear. In this report, we performed a functional analysis of multiple cytokinesis regulators and discovered their distinct functions and regulations in the bloodstream form.
Collapse
|
52
|
Chikne V, Shanmugha Rajan K, Shalev-Benami M, Decker K, Cohen-Chalamish S, Madmoni H, Biswas VK, Kumar Gupta S, Doniger T, Unger R, Tschudi C, Ullu E, Michaeli S. Small nucleolar RNAs controlling rRNA processing in Trypanosoma brucei. Nucleic Acids Res 2019; 47:2609-2629. [PMID: 30605535 PMCID: PMC6411936 DOI: 10.1093/nar/gky1287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
In trypanosomes, in contrast to most eukaryotes, the large subunit (LSU) ribosomal RNA is fragmented into two large and four small ribosomal RNAs (srRNAs) pieces, and this additional processing likely requires trypanosome-specific factors. Here, we examined the role of 10 abundant small nucleolar RNAs (snoRNAs) involved in rRNA processing. We show that each snoRNA involved in LSU processing associates with factors engaged in either early or late biogenesis steps. Five of these snoRNAs interact with the intervening sequences of rRNA precursor, whereas the others only guide rRNA modifications. The function of the snoRNAs was explored by silencing snoRNAs. The data suggest that the LSU rRNA processing events do not correspond to the order of rRNA transcription, and that srRNAs 2, 4 and 6 which are part of LSU are processed before srRNA1. Interestingly, the 6 snoRNAs that affect srRNA1 processing guide modifications on rRNA positions that span locations from the protein exit tunnel to the srRNA1, suggesting that these modifications may serve as check-points preceding the liberation of srRNA1. This study identifies the highest number of snoRNAs so far described that are involved in rRNA processing and/or rRNA folding and highlights their function in the unique trypanosome rRNA maturation events.
Collapse
Affiliation(s)
- Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kathryn Decker
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Hava Madmoni
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Viplov K Biswas
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Sachin Kumar Gupta
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA
| | - Elisabetta Ullu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06536, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| |
Collapse
|
53
|
Huet D, Blisnick T, Perrot S, Bastin P. IFT25 is required for the construction of the trypanosome flagellum. J Cell Sci 2019; 132:jcs.228296. [PMID: 30709917 DOI: 10.1242/jcs.228296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Intraflagellar transport (IFT), the movement of protein complexes responsible for the assembly of cilia and flagella, is remarkably conserved from protists to humans. However, two IFT components (IFT25 and IFT27) are missing from multiple unrelated eukaryotic species. In mouse, IFT25 (also known as HSPB11) and IFT27 are not required for assembly of several cilia with the noticeable exception of the flagellum of spermatozoa. Here, we show that the Trypanosoma brucei IFT25 protein is a proper component of the IFT-B complex and displays typical IFT trafficking. By performing bimolecular fluorescence complementation assays, we reveal that IFT25 and IFT27 interact within the flagellum in live cells during the IFT process. IFT25-depleted cells construct tiny disorganised flagella that accumulate IFT-B proteins (with the exception of IFT27, the binding partner of IFT25) but not IFT-A proteins. This phenotype is comparable to the one following depletion of IFT27 and shows that IFT25 and IFT27 constitute a specific module that is necessary for proper IFT and flagellum construction in trypanosomes. Possible reasons why IFT25 and IFT27 would be required for only some types of cilia are discussed.
Collapse
Affiliation(s)
- Diego Huet
- Sorbonne université, École doctorale complexité du vivant, ED 515, 7 Quai Saint-Bernard, case 32, 75252 Paris cedex 05, France
| | - Thierry Blisnick
- Sorbonne université, École doctorale complexité du vivant, ED 515, 7 Quai Saint-Bernard, case 32, 75252 Paris cedex 05, France
| | - Sylvie Perrot
- Sorbonne université, École doctorale complexité du vivant, ED 515, 7 Quai Saint-Bernard, case 32, 75252 Paris cedex 05, France
| | - Philippe Bastin
- Sorbonne université, École doctorale complexité du vivant, ED 515, 7 Quai Saint-Bernard, case 32, 75252 Paris cedex 05, France
| |
Collapse
|
54
|
Voyton CM, Choi J, Qiu Y, Morris MT, Ackroyd PC, Morris JC, Christensen KA. A Microfluidic-Based Microscopy Platform for Continuous Interrogation of Trypanosoma brucei during Environmental Perturbation. Biochemistry 2019; 58:875-882. [PMID: 30638014 DOI: 10.1021/acs.biochem.8b01269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The African trypanosome, Trypanosoma brucei, is the causative agent of human African trypanosomiasis (HAT). African trypanosomes are extracellular parasites that possess a single flagellum that imparts a high degree of motility to the microorganisms. In addition, African trypanosomes show significant metabolic and structural adaptation to environmental conditions. Analysis of the ways that environmental cues affect these organisms generally requires rapid perfusion experiments in combination with single-cell imaging, which are difficult to apply under conditions of rapid motion. Microfluidic devices have been used previously as a strategy for trapping small motile cells in a variety of organisms, including trypanosomes; however, in the past, such devices required individual fabrication in a cleanroom, limiting their application. Here we demonstrate that a commercial microfluidic device, typically used for bacterial trapping, can trap bloodstream and procyclic form trypanosomes, allowing for rapid buffer exchange via perfusion. As a result, time-lapse single-cell microscopy images of these highly motile parasites were acquired during environmental variations. Using these devices, we have been able to perform and analyze perfusion-based single-cell tracking experiments of the responses of the parasite to changes in glucose availability, which is a major step in resolving the mechanisms of adaptation of kinetoplasts to their individual biological niches; we demonstrate utility of this tool for making measurements of procyclic form trypanosome intracellular glucose levels as a function of changes in extracellular glucose concentrations. These experiments demonstrate that cytosolic glucose equilibrates with external conditions as fast as, or faster than, the rate of solution exchange in the instrument.
Collapse
Affiliation(s)
- Charles M Voyton
- Department of Chemistry , Clemson University , Clemson , South Carolina 29634 , United States.,Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Jongsu Choi
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Yijian Qiu
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry , Clemson University , Clemson , South Carolina 29634 , United States
| | - Meredith T Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry , Clemson University , Clemson , South Carolina 29634 , United States
| | - P Christine Ackroyd
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - James C Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry , Clemson University , Clemson , South Carolina 29634 , United States
| | - Kenneth A Christensen
- Department of Chemistry , Clemson University , Clemson , South Carolina 29634 , United States.,Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| |
Collapse
|
55
|
A Grow-and-Lock Model for the Control of Flagellum Length in Trypanosomes. Curr Biol 2018; 28:3802-3814.e3. [DOI: 10.1016/j.cub.2018.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022]
|
56
|
Bonnefoy S, Watson CM, Kernohan KD, Lemos M, Hutchinson S, Poulter JA, Crinnion LA, Berry I, Simmonds J, Vasudevan P, O'Callaghan C, Hirst RA, Rutman A, Huang L, Hartley T, Grynspan D, Moya E, Li C, Carr IM, Bonthron DT, Leroux M, Boycott KM, Bastin P, Sheridan EG. Biallelic Mutations in LRRC56, Encoding a Protein Associated with Intraflagellar Transport, Cause Mucociliary Clearance and Laterality Defects. Am J Hum Genet 2018; 103:727-739. [PMID: 30388400 PMCID: PMC6218757 DOI: 10.1016/j.ajhg.2018.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/01/2018] [Indexed: 01/15/2023] Open
Abstract
Primary defects in motile cilia result in dysfunction of the apparatus responsible for generating fluid flows. Defects in these mechanisms underlie disorders characterized by poor mucus clearance, resulting in susceptibility to chronic recurrent respiratory infections, often associated with infertility; laterality defects occur in about 50% of such individuals. Here we report biallelic variants in LRRC56 (known as oda8 in Chlamydomonas) identified in three unrelated families. The phenotype comprises laterality defects and chronic pulmonary infections. High-speed video microscopy of cultured epithelial cells from an affected individual showed severely dyskinetic cilia but no obvious ultra-structural abnormalities on routine transmission electron microscopy (TEM). Further investigation revealed that LRRC56 interacts with the intraflagellar transport (IFT) protein IFT88. The link with IFT was interrogated in Trypanosoma brucei. In this protist, LRRC56 is recruited to the cilium during axoneme construction, where it co-localizes with IFT trains and is required for the addition of dynein arms to the distal end of the flagellum. In T. brucei carrying LRRC56-null mutations, or a variant resulting in the p.Leu259Pro substitution corresponding to the p.Leu140Pro variant seen in one of the affected families, we observed abnormal ciliary beat patterns and an absence of outer dynein arms restricted to the distal portion of the axoneme. Together, our findings confirm that deleterious variants in LRRC56 result in a human disease and suggest that this protein has a likely role in dynein transport during cilia assembly that is evolutionarily important for cilia motility.
Collapse
Affiliation(s)
- Serge Bonnefoy
- Trypanosome Cell Biology Unit & INSERM U1201, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
| | - Christopher M Watson
- Yorkshire Regional Genetics Service, St. James's University Hospital, Leeds LS9 7TF, UK; School of Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Moara Lemos
- Trypanosome Cell Biology Unit & INSERM U1201, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sebastian Hutchinson
- Trypanosome Cell Biology Unit & INSERM U1201, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
| | - James A Poulter
- School of Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Laura A Crinnion
- Yorkshire Regional Genetics Service, St. James's University Hospital, Leeds LS9 7TF, UK; School of Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Ian Berry
- Yorkshire Regional Genetics Service, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Jennifer Simmonds
- Yorkshire Regional Genetics Service, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Pradeep Vasudevan
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, RKCSB, University of Leicester, Leicester LE2 7LX, UK
| | - Chris O'Callaghan
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, RKCSB, University of Leicester, Leicester LE2 7LX, UK; Respiratory, Critical Care & Anaesthesia, Institute of Child Health, University College London & Great Ormond Street Children's Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, RKCSB, University of Leicester, Leicester LE2 7LX, UK
| | - Andrew Rutman
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, RKCSB, University of Leicester, Leicester LE2 7LX, UK
| | - Lijia Huang
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - David Grynspan
- Department of Pathology, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Eduardo Moya
- Bradford Royal Infirmary, Bradford, West Yorkshire BD9 6R, UK
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ian M Carr
- School of Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, UK
| | - David T Bonthron
- Yorkshire Regional Genetics Service, St. James's University Hospital, Leeds LS9 7TF, UK; School of Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Michel Leroux
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Philippe Bastin
- Trypanosome Cell Biology Unit & INSERM U1201, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France.
| | - Eamonn G Sheridan
- Yorkshire Regional Genetics Service, St. James's University Hospital, Leeds LS9 7TF, UK; School of Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, UK.
| |
Collapse
|
57
|
Zhou Q, An T, Pham KTM, Hu H, Li Z. The CIF1 protein is a master orchestrator of trypanosome cytokinesis that recruits several cytokinesis regulators to the cytokinesis initiation site. J Biol Chem 2018; 293:16177-16192. [PMID: 30171070 DOI: 10.1074/jbc.ra118.004888] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
To proliferate, the parasitic protozoan Trypanosoma brucei undergoes binary fission in a unidirectional manner along the cell's longitudinal axis from the cell anterior toward the cell posterior. This unusual mode of cell division is controlled by a regulatory pathway composed of two evolutionarily conserved protein kinases, Polo-like kinase and Aurora B kinase, and three trypanosome-specific proteins, CIF1, CIF2, and CIF3, which act in concert at the cytokinesis initiation site located at the distal tip of the newly assembled flagellum attachment zone (FAZ). However, additional regulators that function in this cytokinesis signaling cascade remain to be identified and characterized. Using proximity biotinylation, co-immunofluorescence microscopy, and co-immunoprecipitation, we identified 52 CIF1-associated proteins and validated six CIF1-interacting proteins, including the putative protein phosphatase KPP1, the katanin p80 subunit KAT80, the cleavage furrow-localized proteins KLIF and FRW1, and the FAZ tip-localized proteins FAZ20 and FPRC. Further analyses of the functional interplay between CIF1 and its associated proteins revealed a requirement of CIF1 for localization of a set of CIF1-associated proteins, an interdependence between KPP1 and CIF1, and an essential role of katanin in the completion of cleavage furrow ingression. Together, these results suggest that CIF1 acts as a master regulator of cytokinesis in T. brucei by recruiting a cohort of cytokinesis regulatory proteins to the cytokinesis initiation site.
Collapse
Affiliation(s)
- Qing Zhou
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Tai An
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Kieu T M Pham
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Huiqing Hu
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Ziyin Li
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
58
|
Voyton CM, Morris MT, Ackroyd PC, Morris JC, Christensen KA. FRET Flow Cytometry-Based High Throughput Screening Assay To Identify Disrupters of Glucose Levels in Trypanosoma brucei. ACS Infect Dis 2018; 4:1058-1066. [PMID: 29741365 DOI: 10.1021/acsinfecdis.8b00058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trypanosoma brucei, which causes human African typanosomiasis (HAT), derives cellular ATP from glucose metabolism while in the mammalian host. Targeting glucose uptake or regulation in the parasite has been proposed as a potential therapeutic strategy. However, few methods have been described to identify and characterize potential inhibitors of glucose uptake and regulation. Here, we report development of a screening assay that identifies small molecule disrupters of glucose levels in the cytosol and glycosomes. Using an endogenously expressed fluorescent protein glucose sensor expressed in cytosol or glycosomes, we monitored intracellular glucose depletion in the different cellular compartments. Two glucose level disrupters were identified, one of which only exhibited inhibition of glycosomal glucose and did not affect cytosolic levels. In addition to inhibiting glucose uptake with relatively high potency (EC50 = 700 nM), the compound also showed modest bloodstream form parasite killing activity. Expanding this assay will allow for identification of candidate compounds that disrupt parasite glucose metabolism.
Collapse
Affiliation(s)
- Charles M. Voyton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84601, United States
| | | | - P. Christine Ackroyd
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84601, United States
| | | | - Kenneth A. Christensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84601, United States
| |
Collapse
|
59
|
Abstract
Trypanosoma brucei is a highly invasive pathogen capable of penetrating deeply into host tissues. To understand how flagellar motility facilitates cell penetration, we used cryo-electron tomography (cryo-ET) to visualize two genetically anucleate mutants with different flagellar motility behaviors. We found that the T. brucei cell body is highly deformable as defined by changes in cytoskeletal twist and spacing, in response to flagellar beating and environmental conditions. Based on the cryo-ET models, we proposed a mechanism of how flagellum motility is coupled to cell shape changes, which may facilitate penetration through size-limiting barriers. In the unicellular parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, complex swimming behavior is driven by a flagellum laterally attached to the long and slender cell body. Using microfluidic assays, we demonstrated that T. brucei can penetrate through an orifice smaller than its maximum diameter. Efficient motility and penetration depend on active flagellar beating. To understand how active beating of the flagellum affects the cell body, we genetically engineered T. brucei to produce anucleate cytoplasts (zoids and minis) with different flagellar attachment configurations and different swimming behaviors. We used cryo-electron tomography (cryo-ET) to visualize zoids and minis vitrified in different motility states. We showed that flagellar wave patterns reflective of their motility states are coupled to cytoskeleton deformation. Based on these observations, we propose a mechanism for how flagellum beating can deform the cell body via a flexible connection between the flagellar axoneme and the cell body. This mechanism may be critical for T. brucei to disseminate in its host through size-limiting barriers.
Collapse
|
60
|
Voyton CM, Qiu Y, Morris MT, Ackroyd PC, Suryadi J, Crowe L, Morris JC, Christensen KA. A FRET flow cytometry method for monitoring cytosolic and glycosomal glucose in living kinetoplastid parasites. PLoS Negl Trop Dis 2018; 12:e0006523. [PMID: 29851949 PMCID: PMC5997345 DOI: 10.1371/journal.pntd.0006523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/12/2018] [Accepted: 05/11/2018] [Indexed: 11/18/2022] Open
Abstract
The bloodstream lifecycle stage of the kinetoplastid parasite Trypanosoma brucei relies solely on glucose metabolism for ATP production, which occurs in peroxisome-like organelles (glycosomes). Many studies have been conducted on glucose uptake and metabolism, but none thus far have been able to monitor changes in cellular and organellar glucose concentration in live parasites. We have developed a non-destructive technique for monitoring changes in cytosolic and glycosomal glucose levels in T. brucei using a fluorescent protein biosensor (FLII12Pglu-700μδ6) in combination with flow cytometry. T. brucei parasites harboring the biosensor allowed for observation of cytosolic glucose levels. Appending a type 1 peroxisomal targeting sequence caused biosensors to localize to glycosomes, which enabled observation of glycosomal glucose levels. Using this approach, we investigated cytosolic and glycosomal glucose levels in response to changes in external glucose or 2-deoxyglucose concentration. These data show that procyclic form and bloodstream form parasites maintain different glucose concentrations in their cytosol and glycosomes. In procyclic form parasites, the cytosol and glycosomes maintain indistinguishable glucose levels (3.4 ± 0.4mM and 3.4 ± 0.5mM glucose respectively) at a 6.25mM external glucose concentration. In contrast, bloodstream form parasites maintain glycosomal glucose levels that are ~1.8-fold higher than the surrounding cytosol, equating to 1.9 ± 0.6mM in cytosol and 3.5 ± 0.5mM in glycosomes. While the mechanisms of glucose transport operating in the glycosomes of bloodstream form T. brucei remain unresolved, the methods described here will provide a means to begin to dissect the cellular machinery required for subcellular distribution of this critical hexose. African sleeping sickness is caused by Trypanosoma brucei. Tens of millions of people living in endemic areas are at risk for the disease. Within the mammalian bloodstream, T. brucei parasites sustain all their energy needs by metabolizing glucose present in the host’s blood within specialized organelles known as glycosomes. In vitro, bloodstream parasites rapidly die if glucose is removed from their environment. This reliance on glucose for survival has made glucose metabolism in T. brucei an important area of study with the aim to develop targeted therapeutics that disrupt glucose metabolism. However, there have previously been no reported methods to study glucose uptake and distribution dynamics in intact glycosomes in live T. brucei. Here we describe development of approaches for observing changes in glucose concentration in glycosomes in live T. brucei. Results obtained using these methods provide new insights into how T. brucei acquires and transports glucose to sustain cell survival.
Collapse
Affiliation(s)
- Charles M. Voyton
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Yijian Qiu
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Meredith T. Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - P. Christine Ackroyd
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Jimmy Suryadi
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Logan Crowe
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - James C. Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Kenneth A. Christensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
- * E-mail:
| |
Collapse
|
61
|
An T, Li Z. An orphan kinesin controls trypanosome morphology transitions by targeting FLAM3 to the flagellum. PLoS Pathog 2018; 14:e1007101. [PMID: 29813136 PMCID: PMC5993322 DOI: 10.1371/journal.ppat.1007101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/08/2018] [Accepted: 05/15/2018] [Indexed: 02/05/2023] Open
Abstract
Trypanosoma brucei undergoes life cycle form transitions from trypomastigotes to epimastigotes in the insect vector by re-positioning the mitochondrial genome and re-locating the flagellum and flagellum-associated cytoskeletal structures. The mechanism underlying these dramatic morphology transitions remains poorly understood. Here we report the regulatory role of the orphan kinesin KIN-E in controlling trypanosome morphology transitions. KIN-E localizes to the flagellum and is enriched at the flagellar tip, and this localization depends on the C-terminal m-calpain domain III-like domains. Depletion of KIN-E in the trypomastigote form of T. brucei causes major morphology changes and a gradual increase in the level of EP procyclin, generating epimastigote-like cells. Mechanistically, through its C-terminal importin α-like domain, KIN-E targets FLAM3, a flagellar protein involved in morphology transitions, to the flagellum to promote elongation of the flagellum attachment zone and positioning of the flagellum and flagellum-associated cytoskeletal structure, thereby maintaining trypomastigote cell morphology. Our findings suggest that morphology transitions in trypanosomes require KIN-E-mediated transport of FLAM3 to the flagellum. Trypanosoma brucei, the causative agent of sleeping sickness in humans and nagana in cattle in sub-Saharan Africa, has a complex life cycle by alternating between the tsetse fly vector and the mammalian hosts. In the gut of tsetse flies, trypanosomes undergo life cycle transitions from the trypomastigote form to the epimastigote form by re-positioning the mitochondrial genome and re-locating the flagellum and flagellum-associated cytoskeletal structures. Previous work demonstrated that elongation of the flagellum attachment zone plays an important role in controlling morphology transitions, but how it is regulated remains poorly understood. This work discovered that an orphan kinesin plays an essential role in regulating trypanosome morphology transitions. This novel kinesin localizes to the flagellum and targets FLAM3, one of the two flagellar proteins involved in morphology transitions, to the flagellum. This work suggests that trypanosome morphology transitions require kinesin-mediated transport of FLAM3 to the flagellum to promote the elongation of the flagellum attachment zone, thereby maintaining flagellum-cell body attachment and positioning the flagellum and flagellum-associated cytoskeletal structures to assume trypomastigote cell morphology.
Collapse
Affiliation(s)
- Tai An
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
62
|
Kurasawa Y, Hu H, Zhou Q, Li Z. The trypanosome-specific protein CIF3 cooperates with the CIF1 protein to promote cytokinesis in Trypanosoma brucei. J Biol Chem 2018; 293:10275-10286. [PMID: 29764941 DOI: 10.1074/jbc.ra118.003113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/24/2018] [Indexed: 11/06/2022] Open
Abstract
Cytokinesis, the terminal step in cell division, in the protist human pathogen Trypanosoma brucei occurs along the longitudinal axis from the anterior tip of the new flagellum attachment zone (FAZ) toward the posterior cell tip. This process is regulated by a signaling cascade composed of the Polo-like kinase homolog TbPLK, the Aurora B kinase homolog TbAUK1, and the trypanosome-specific CIF1-CIF2 protein complex. However, the regulatory mechanism and the signaling pathway for this unusual mode of cytokinesis remain poorly understood. Here, we report another trypanosome-specific protein assembly, the CIF1-CIF3 complex, and its essential role in cytokinesis initiation. Through biochemical and genetic approaches, we demonstrate that CIF3 interacts with CIF1 in a TbPLK-dependent manner and maintains CIF1 localization at the new FAZ tip. Conversely, CIF1 maintains CIF3 stability at the new FAZ tip. We further show that TbPLK is required for CIF3 localization and that CIF3 is necessary for targeting TbAUK1 to the new FAZ tip during anaphase. These results suggest that two trypanosome-specific CIF1-containing protein complexes cooperate with the evolutionarily conserved Polo-like kinase and Aurora B kinase to promote cytokinesis in T. brucei.
Collapse
Affiliation(s)
- Yasuhiro Kurasawa
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Huiqing Hu
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Qing Zhou
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Ziyin Li
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
63
|
Amodeo S, Jakob M, Ochsenreiter T. Characterization of the novel mitochondrial genome replication factor MiRF172 in Trypanosoma brucei. J Cell Sci 2018; 131:jcs211730. [PMID: 29626111 PMCID: PMC5963845 DOI: 10.1242/jcs.211730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
The unicellular parasite Trypanosoma brucei harbors one mitochondrial organelle with a singular genome called the kinetoplast DNA (kDNA). The kDNA consists of a network of concatenated minicircles and a few maxicircles that form the kDNA disc. More than 30 proteins involved in kDNA replication have been described. However, several mechanistic questions are only poorly understood. Here, we describe and characterize minicircle replication factor 172 (MiRF172), a novel mitochondrial genome replication factor that is essential for cell growth and kDNA maintenance. By performing super-resolution microscopy, we show that MiRF172 is localized to the kDNA disc, facing the region between the genome and the mitochondrial membranes. We demonstrate that depletion of MiRF172 leads to a loss of minicircles and maxicircles. Detailed analysis suggests that MiRF172 is involved in the reattachment of replicated minicircles to the kDNA disc. Furthermore, we provide evidence that the localization of the replication factor MiRF172 not only depends on the kDNA itself, but also on the mitochondrial genome segregation machinery, suggesting an interaction between the two essential entities.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Simona Amodeo
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern CH-3012, Switzerland
| | - Martin Jakob
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
64
|
Zhou Q, Dong G, Li Z. Flagellum inheritance in Trypanosoma brucei requires a kinetoplastid-specific protein phosphatase. J Biol Chem 2018; 293:8508-8520. [PMID: 29666191 DOI: 10.1074/jbc.ra118.002106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/16/2018] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei causes sleeping sickness in humans and nagana in cattle in sub-Saharan Africa and alternates between its mammalian hosts and its insect vector, the tsetse fly. T. brucei uses a flagellum for motility, cell division, and cell-cell communication. Proper positioning and attachment of the newly assembled flagellum rely on the faithful duplication and segregation of flagellum-associated cytoskeletal structures. These processes are regulated by the polo-like kinase homolog TbPLK, whose activity and abundance are under stringent control to ensure spatiotemporally regulated phosphorylation of its substrates. However, it remains unclear whether a protein phosphatase that counteracts TbPLK activity is also involved in this regulation. Here, we report that a putative kinetoplastid-specific protein phosphatase, named KPP1, has essential roles in regulating flagellum positioning and attachment in T. brucei KPP1 localized to multiple flagellum-associated cytoskeletal structures and co-localized with TbPLK in several cytoskeletal structures at different cell-cycle stages. KPP1 depletion abolished basal body segregation, inhibited the duplication of the centrin arm and the hook complex of the bilobe structure, and disrupted the elongation of the flagellum attachment zone, leading to flagellum misplacement and detachment and cytokinesis arrest. Importantly, KPP1-depleted cells lacked dephosphorylation of TbCentrin2, a TbPLK substrate, at late cell-cycle stages. Together, these results suggest that KPP1-mediated protein dephosphorylation regulates the duplication and segregation of flagellum-associated cytoskeletal structures, thereby promoting flagellum positioning and attachment. These findings highlight the requirement of reversible protein phosphorylation, mediated by TbPLK and KPP1, in regulating flagellum inheritance in T. brucei.
Collapse
Affiliation(s)
- Qing Zhou
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030 and
| | - Gang Dong
- the Max F. Perutz Laboratories, Vienna Bio-center, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Ziyin Li
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030 and
| |
Collapse
|
65
|
Morriswood B, Engstler M. Let's get fISSical: fast in silico synchronization as a new tool for cell division cycle analysis. Parasitology 2018; 145:196-209. [PMID: 28166845 PMCID: PMC5964468 DOI: 10.1017/s0031182017000038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/23/2022]
Abstract
Cell cycle progression is a question of fundamental biological interest. The coordinated duplication and segregation of all cellular structures and organelles is however an extremely complex process, and one which remains only partially understood even in the most intensively researched model organisms. Trypanosomes are in an unusual position in this respect - they are both outstanding model systems for fundamental questions in eukaryotic cell biology, and pathogens that are the causative agents of three of the neglected tropical diseases. As a failure to successfully complete cell division will be deleterious or lethal, analysis of the cell division cycle is of relevance both to basic biology and drug design efforts. Cell division cycle analysis is however experimentally challenging, as the analysis of phenotypes associated with it remains hypothesis-driven and therefore biased. Current methods of analysis are extremely labour-intensive, and cell synchronization remains difficult and unreliable. Consequently, there exists a need - both in basic and applied trypanosome biology - for a global, unbiased, standardized and high-throughput analysis of cell division cycle progression. In this review, the requirements - both practical and computational - for such a system are considered and compared with existing techniques for cell cycle analysis.
Collapse
Affiliation(s)
- Brooke Morriswood
- Department of Cell & Developmental Biology,University of Würzburg,Biocentre, Am Hubland, 97074 Würzburg,Germany
| | - Markus Engstler
- Department of Cell & Developmental Biology,University of Würzburg,Biocentre, Am Hubland, 97074 Würzburg,Germany
| |
Collapse
|
66
|
Elaadli H, Kim I, Mackey ZB. Depletion of the extracellular-signal regulated kinase 8 homolog in Trypanosoma brucei in vivo reduces its virulence in a mouse target validation study. Mol Biochem Parasitol 2017; 220:1-4. [PMID: 29287675 DOI: 10.1016/j.molbiopara.2017.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/01/2022]
Abstract
Trypanosoma brucei sub-species are vector borne kinetoplastid parasites that cause the potentially lethal disease Human African trypanosomiasis. The target-based therapy for curing this parasitic disease relies on one drug, Eflornithine. The roles of mitogen-activated protein kinases in regulating key cellular processes in eukaryotic cells such as proliferation, stress response and differentiation plus their druggability make them attractive targets for therapeutic exploitation. The extracellular-regulated kinase 8 homolog in T. brucei (TbERK8) is a MAPK that is required for the parasite to proliferate normally in culture. We examined the importance of TbERK8 for permitting T. brucei to thrive in mice. Here we show that depleting TbERK8 in vivo negatively affected the virulence of T. brucei reducing its ability to progress to lethal infections or cause significant pathology in mice, which validates it as an attractive target.
Collapse
Affiliation(s)
- Haitham Elaadli
- Department of Biochemistry and Fralin Life Science Institute, Vector-Borne Disease Division, Virginia Tech, Blacksburg, VA 24061, United States; Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Inyoung Kim
- Department of Statistics, Virginia Polytechnic Institute and State University, United States
| | - Zachary B Mackey
- Department of Biochemistry and Fralin Life Science Institute, Vector-Borne Disease Division, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
67
|
Steinmann ME, Schmidt RS, Macêdo JP, Kunz Renggli C, Bütikofer P, Rentsch D, Mäser P, Sigel E. Identification and characterization of the three members of the CLC family of anion transport proteins in Trypanosoma brucei. PLoS One 2017; 12:e0188219. [PMID: 29244877 PMCID: PMC5731698 DOI: 10.1371/journal.pone.0188219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/02/2017] [Indexed: 11/19/2022] Open
Abstract
CLC type anion transport proteins are homo-dimeric or hetero-dimeric with an integrated transport function in each subunit. We have identified and partially characterized three members of this family named TbVCL1, TbVCL2 and TbVCL3 in Trypanosoma brucei. Among the human CLC family members, the T. brucei proteins display highest similarity to CLC-6 and CLC-7. TbVCL1, but not TbVCL2 and TbVCL3 is able to complement growth of a CLC-deficient Saccharomyces cerevisiae mutant. All TbVCL-HA fusion proteins localize intracellulary in procyclic form trypanosomes. TbVCL1 localizes close to the Golgi apparatus and TbVCL2 and TbVCL3 to the endoplasmic reticulum. Upon expression in Xenopus oocytes, all three proteins induce similar outward rectifying chloride ion currents. Currents are sensitive to low concentrations of DIDS, insensitive to the pH in the range 5.4 to 8.4 and larger in nitrate than in chloride medium.
Collapse
Affiliation(s)
- Michael E. Steinmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Remo S. Schmidt
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Juan P. Macêdo
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Christina Kunz Renggli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
68
|
Trépout S, Tassin AM, Marco S, Bastin P. STEM tomography analysis of the trypanosome transition zone. J Struct Biol 2017; 202:51-60. [PMID: 29248600 DOI: 10.1016/j.jsb.2017.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 02/06/2023]
Abstract
The protist Trypanosoma brucei is an emerging model for the study of cilia and flagella. Here, we used scanning transmission electron microscopy (STEM) tomography to describe the structure of the trypanosome transition zone (TZ). At the base of the TZ, nine transition fibres irradiate from the B microtubule of each doublet towards the membrane. The TZ adopts a 9 + 0 structure throughout its length of ∼300 nm and its lumen contains an electron-dense structure. The proximal portion of the TZ has an invariant length of 150 nm and is characterised by a collarette surrounding the membrane and the presence of electron-dense material between the membrane and the doublets. The distal portion exhibits more length variation (from 55 to 235 nm) and contains typical Y-links. STEM analysis revealed a more complex organisation of the Y-links compared to what was reported by conventional transmission electron microscopy. Observation of the very early phase of flagellum assembly demonstrated that the proximal portion and the collarette are assembled early during construction. The presence of the flagella connector that maintains the tip of the new flagellum to the side of the old was confirmed and additional filamentous structures making contact with the membrane of the flagellar pocket were also detected. The structure and potential functions of the TZ in trypanosomes are discussed, as well as its mode of assembly.
Collapse
Affiliation(s)
- Sylvain Trépout
- Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, F-91405 Orsay, France; INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France
| | - Anne-Marie Tassin
- Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, F-91405 Orsay, France; INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Sergio Marco
- Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, F-91405 Orsay, France; INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
69
|
Schmidt JC, Manhães L, Fragoso SP, Pavoni DP, Krieger MA. Involvement of STI1 protein in the differentiation process of Trypanosoma cruzi. Parasitol Int 2017; 67:131-139. [PMID: 29081390 DOI: 10.1016/j.parint.2017.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022]
Abstract
The protozoan Trypanosoma cruzi is a parasite exposed to several environmental stressors inside its invertebrate and vertebrate hosts. Although stress conditions are involved in its differentiation processes, little information is available about the stress response proteins engaged in these activities. This work reports the first known association of the stress-inducible protein 1 (STI1) with the cellular differentiation process in a unicellular eukaryote. Albeit STI1 expression is constitutive in epimastigotes and metacyclic trypomastigotes, higher protein levels were observed in late growth phase epimastigotes subjected to nutritional stress. Analysis by indirect immunofluorescence revealed that T. cruzi STI1 (TcSTI1) is located throughout the cell cytoplasm, with some cytoplasmic granules appearing in greater numbers in late growing epimastigotes and late growing epimastigotes subjected to nutritional stress. We observed that part of the fluorescence signal from both TcSTI1 and TcHSP70 colocalized around the nucleus. Gene silencing of sti1 in Trypanosoma brucei did not affect cell growth. Similarly, the growth of T. cruzi mutant parasites with a single allele sti1 gene knockout was not affected. However, the differentiation of epimastigotes in metacyclic trypomastigotes (metacyclogenesis) was compromised. Lower production rates and numbers of metacyclic trypomastigotes were obtained from the mutant parasites compared with the wild-type parasites. These data indicate that reduced levels of TcSTI1 decrease the rate of in vitro metacyclogenesis, suggesting that this protein may participate in the differentiation process of T. cruzi.
Collapse
Affiliation(s)
- Juliana C Schmidt
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil; Health Science Department, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, Santa Catarina, Brazil
| | - Lauro Manhães
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil
| | - Stenio P Fragoso
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil
| | - Daniela P Pavoni
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil.
| | - Marco A Krieger
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil; Instituto de Biologia Molecular do Paraná (IBMP), Curitiba, Paraná, Brazil
| |
Collapse
|
70
|
Hu H, Majneri P, Li D, Kurasawa Y, An T, Dong G, Li Z. Functional analyses of the CIF1-CIF2 complex in trypanosomes identify the structural motifs required for cytokinesis. J Cell Sci 2017; 130:4108-4119. [PMID: 29074577 DOI: 10.1242/jcs.207134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis in trypanosomes occurs uni-directionally along the longitudinal axis from the cell anterior towards the cell posterior and requires a trypanosome-specific CIF1-CIF2 protein complex. However, little is known about the contribution of the structural motifs in CIF1 and CIF2 to complex assembly and cytokinesis. Here, we demonstrate that the two zinc-finger motifs but not the coiled-coil motif in CIF1 are required for interaction with the EF-hand motifs in CIF2. We further show that localization of CIF1 depends on the coiled-coil motif and the first zinc-finger motif and that localization of CIF2 depends on the EF-hand motifs. Deletion of the coiled-coil motif and mutation of either zinc-finger motif in CIF1 disrupts cytokinesis. Furthermore, mutation of either zinc-finger motif in CIF1 mislocalizes CIF2 to the cytosol and destabilizes CIF2, whereas deletion of the coiled-coil motif in CIF1 spreads CIF2 over to the new flagellum attachment zone and stabilizes CIF2. Together, these results uncover the requirement of the coiled-coil and zinc-finger motifs for CIF1 function in cytokinesis and for CIF2 localization and stability, providing structural insights into the functional interplay between the two cytokinesis regulators.
Collapse
Affiliation(s)
- Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Paul Majneri
- Max F. Perutz Laboratories, Vienna Bio-center, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dielan Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yasuhiro Kurasawa
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tai An
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Gang Dong
- Max F. Perutz Laboratories, Vienna Bio-center, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
71
|
Abstract
African trypanosomiasis is caused by infection with the protozoan parasite Trypanosoma brucei. During infection, this pathogen divides rapidly to high density in the bloodstream of its mammalian host in a manner similar to that of leukemia. Like all eukaryotes, T. brucei has a cell cycle involving the de novo synthesis of DNA regulated by ribonucleotide reductase (RNR), which catalyzes the conversion of ribonucleotides into their deoxy form. As an essential enzyme for the cell cycle, RNR is a common target for cancer chemotherapy. We hypothesized that inhibition of RNR by genetic or pharmacological means would impair parasite growth in vitro and prolong the survival of infected animals. Our results demonstrate that RNR inhibition is highly effective in suppressing parasite growth both in vitro and in vivo. These results support drug discovery efforts targeting the cell cycle, not only for African trypanosomiasis but possibly also for other infections by eukaryotic pathogens. The development of drugs to treat infections with eukaryotic pathogens is challenging because many key virulence factors have closely related homologues in humans. Drug toxicity greatly limits these development efforts. For pathogens that replicate at a high rate, especially in the blood, an alternative approach is to target the cell cycle directly, much as is done to treat some hematologic malignancies. The results presented here indicate that targeting the cell cycle via inhibition of ribonucleotide reductase is effective at killing trypanosomes and prolonging the survival of infected animals.
Collapse
|
72
|
The unconventional kinetoplastid kinetochore: from discovery toward functional understanding. Biochem Soc Trans 2017; 44:1201-1217. [PMID: 27911702 PMCID: PMC5095916 DOI: 10.1042/bst20160112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
The kinetochore is the macromolecular protein complex that drives chromosome segregation in eukaryotes. Its most fundamental function is to connect centromeric DNA to dynamic spindle microtubules. Studies in popular model eukaryotes have shown that centromere protein (CENP)-A is critical for DNA-binding, whereas the Ndc80 complex is essential for microtubule-binding. Given their conservation in diverse eukaryotes, it was widely believed that all eukaryotes would utilize these components to make up a core of the kinetochore. However, a recent study identified an unconventional type of kinetochore in evolutionarily distant kinetoplastid species, showing that chromosome segregation can be achieved using a distinct set of proteins. Here, I review the discovery of the two kinetochore systems and discuss how their studies contribute to a better understanding of the eukaryotic chromosome segregation machinery.
Collapse
|
73
|
Rojas F, Koszela J, Búa J, Llorente B, Burchmore R, Auer M, Mottram JC, Téllez-Iñón MT. The ubiquitin-conjugating enzyme CDC34 is essential for cytokinesis in contrast to putative subunits of a SCF complex in Trypanosoma brucei. PLoS Negl Trop Dis 2017; 11:e0005626. [PMID: 28609481 PMCID: PMC5507466 DOI: 10.1371/journal.pntd.0005626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/11/2017] [Accepted: 05/06/2017] [Indexed: 12/31/2022] Open
Abstract
The ubiquitin-proteasome system is a post-translational regulatory pathway for controlling protein stability and activity that underlies many fundamental cellular processes, including cell cycle progression. Target proteins are tagged with ubiquitin molecules through the action of an enzymatic cascade composed of E1 ubiquitin activating enzymes, E2 ubiquitin conjugating enzymes, and E3 ubiquitin ligases. One of the E3 ligases known to be responsible for the ubiquitination of cell cycle regulators in eukaryotes is the SKP1-CUL1-F-box complex (SCFC). In this work, we identified and studied the function of homologue proteins of the SCFC in the life cycle of Trypanosoma brucei, the causal agent of the African sleeping sickness. Depletion of trypanosomal SCFC components TbRBX1, TbSKP1, and TbCDC34 by RNAi resulted in decreased growth rate and contrasting cell cycle abnormalities for both procyclic (PCF) and bloodstream (BSF) forms. Depletion of TbRBX1 in PCF cells interfered with kinetoplast replication, whilst depletion of TbSKP1 arrested PCF and BSF cells in the G1/S transition. Silencing of TbCDC34 in BSF cells resulted in a block in cytokinesis and caused rapid clearance of parasites from infected mice. We also show that TbCDC34 is able to conjugate ubiquitin in vitro and in vivo, and that its activity is necessary for T. brucei infection progression in mice. This study reveals that different components of a putative SCFC have contrasting phenotypes once depleted from the cells, and that TbCDC34 is essential for trypanosome replication, making it a potential target for therapeutic intervention. African sleeping sickness is a neglected tropical disease caused by infection with the protozoan parasite Trypanosoma brucei, which is transmitted to humans by tsetse flies (Glossina genus). Treatment of the disease is complex and relies on limited pharmaceutical options. Understanding how T. brucei regulates cell cycle progression at a molecular level when alternating between the mammalian host and the insect vector could lead to better therapies. In this study, we examined different T. brucei proteins with homology to components of the SKP1-CUL1-F-box ubiquitin ligase complex (SCFC), previously characterized in other eukaryotes as a regulator of cell cycle progression. We found that depletion of the homologues of a putative SCFC cause T. brucei to develop abnormally, generating different phenotypes of the mammalian and insect stages. Interestingly, depletion of the ubiquitin conjugating enzyme TbCDC34 arrest cells in a pre-cytokinesis stage, indicating that this protein is essential for cytokinesis. In addition to improving our fundamental understanding of the molecular regulation underlying the sophisticated life cycle of T. brucei, this work pinpoints a potential target for drug development against trypanosomiasis.
Collapse
Affiliation(s)
- Federico Rojas
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
- * E-mail:
| | - Joanna Koszela
- Institute of Quantitative Biology Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | - Jacqueline Búa
- Instituto Nacional de Parasitología ‘Dr. M. Fatala Chabén’, A.N.L.I.S., ‘Dr. Carlos G. Malbrán’, Buenos Aires, Argentina
| | - Briardo Llorente
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Manfred Auer
- Institute of Quantitative Biology Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | - Jeremy C. Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - María Teresa Téllez-Iñón
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| |
Collapse
|
74
|
Chikne V, Gupta SK, Doniger T, K SR, Cohen-Chalamish S, Waldman Ben-Asher H, Kolet L, Yahia NH, Unger R, Ullu E, Kolev NG, Tschudi C, Michaeli S. The Canonical Poly (A) Polymerase PAP1 Polyadenylates Non-Coding RNAs and Is Essential for snoRNA Biogenesis in Trypanosoma brucei. J Mol Biol 2017; 429:3301-3318. [PMID: 28456523 DOI: 10.1016/j.jmb.2017.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/14/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022]
Abstract
The parasite Trypanosoma brucei is the causative agent of African sleeping sickness and is known for its unique RNA processing mechanisms that are common to all the kinetoplastidea including Leishmania and Trypanosoma cruzi. Trypanosomes possess two canonical RNA poly (A) polymerases (PAPs) termed PAP1 and PAP2. PAP1 is encoded by one of the only two genes harboring cis-spliced introns in this organism, and its function is currently unknown. In trypanosomes, all mRNAs, and non-coding RNAs such as small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs), undergo trans-splicing and polyadenylation. Here, we show that the function of PAP1, which is located in the nucleus, is to polyadenylate non-coding RNAs, which undergo trans-splicing and polyadenylation. Major substrates of PAP1 are the snoRNAs and lncRNAs. Under the silencing of either PAP1 or PAP2, the level of snoRNAs is reduced. The dual polyadenylation of snoRNA intermediates is carried out by both PAP2 and PAP1 and requires the factors essential for the polyadenylation of mRNAs. The dual polyadenylation of the precursor snoRNAs by PAPs may function to recruit the machinery essential for snoRNA processing.
Collapse
Affiliation(s)
- Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sachin Kumar Gupta
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shanmugha Rajan K
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Liat Kolet
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Nasreen Hag Yahia
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Elisabetta Ullu
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA
| | - Nikolay G Kolev
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA
| | - Christian Tschudi
- Department of Internal Medicine, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA; Cell Biology, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
75
|
Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite. PLoS Negl Trop Dis 2017; 11:e0005552. [PMID: 28414727 PMCID: PMC5407850 DOI: 10.1371/journal.pntd.0005552] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/27/2017] [Accepted: 04/04/2017] [Indexed: 12/01/2022] Open
Abstract
The mitochondrial (mt) FoF1-ATP synthase of the digenetic parasite, Trypanosoma brucei, generates ATP during the insect procyclic form (PF), but becomes a perpetual consumer of ATP in the mammalian bloodstream form (BF), which lacks a canonical respiratory chain. This unconventional dependence on FoF1-ATPase is required to maintain the essential mt membrane potential (Δψm). Normally, ATP hydrolysis by this rotary molecular motor is restricted to when eukaryotic cells experience sporadic hypoxic conditions, during which this compulsory function quickly depletes the cellular ATP pool. To protect against this cellular treason, the highly conserved inhibitory factor 1 (IF1) binds the enzyme in a manner that solely inhibits the hydrolytic activity. Intriguingly, we were able to identify the IF1 homolog in T. brucei (TbIF1), but determined that its expression in the mitochondrion is tightly regulated throughout the life cycle as it is only detected in PF cells. TbIF1 appears to primarily function as an emergency brake in PF cells, where it prevented the restoration of the Δψm by FoF1-ATPase when respiration was chemically inhibited. In vitro, TbIF1 overexpression specifically inhibits the hydrolytic activity but not the synthetic capability of the FoF1-ATP synthase in PF mitochondria. Furthermore, low μM amounts of recombinant TbIF1 achieve the same inhibition of total mt ATPase activity as the FoF1-ATPase specific inhibitors, azide and oligomycin. Therefore, even minimal ectopic expression of TbIF1 in BF cells proved lethal as the indispensable Δψm collapsed due to inhibited FoF1-ATPase. In summary, we provide evidence that T. brucei harbors a natural and potent unidirectional inhibitor of the vital FoF1-ATPase activity that can be exploited for future structure-based drug design. Enzymes are catalysts that drive both a forward and reverse chemical reaction depending on the thermodynamic properties. FoF1-ATP synthase is a multiprotein enzyme that under normal physiological conditions generates ATP. However, when respiration is impeded, this rotary molecular machine reverses and hydrolyzes ATP to pump protons and maintain the essential mitochondrial membrane potential. While this activity is exceptional in most eukaryotic cells, the unique composition of the Trypanosoma brucei mitochondrion dictates that the infectious stage of this human parasite is utterly dependent on the hydrolytic activity of FoF1-ATPase. While searching for better chemotherapeutics against Human African Trypanosomiasis, several trypanocidal compounds were determined to interact with this enzyme, but they indiscriminately inhibit both the ATP hydrolytic and synthetic activities. A more promising approach involves the conserved eukaryotic protein IF1, a unidirectional inhibitor that prevents just ATP hydrolysis. Auspiciously, we identified this protein homolog in T. brucei (TbIF1) and its expression is tightly regulated between life stages of the parasite. Importantly, the introduction of exogenous TbIF1 protein specifically inhibits FoF1-ATPase and is lethal for the infectious stage of T. brucei. Therefore, we have identified a natural inhibitor of an essential and druggable enzyme that can be exploited for future structure-based drug design.
Collapse
|
76
|
de Lima Stein ML, Icimoto MY, de Castro Levatti EV, Oliveira V, Straus AH, Schenkman S. Characterization and role of the 3-methylglutaconyl coenzyme A hidratase in Trypanosoma brucei. Mol Biochem Parasitol 2017; 214:36-46. [PMID: 28366667 DOI: 10.1016/j.molbiopara.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 01/30/2023]
Abstract
Trypanosoma brucei, the agent of African Trypanosomiasis, is a flagellated protozoan parasite that develops in tsetse flies and in the blood of various mammals. The parasite acquires nutrients such as sugars, lipids and amino acids from their hosts. Amino acids are used to generate energy and for protein and lipid synthesis. However, it is still unknown how T. brucei catabolizes most of the acquired amino acids. Here we explored the role of an enzyme of the leucine catabolism, the 3-methylglutaconyl-Coenzyme A hydratase (3-MGCoA-H). It catalyzes the hydration of 3-methylglutaconyl-Coenzyme A (3-MGCoA) into 3-hydroxymethylglutaryl-Coenzyme A (3-HMGCoA). We found that 3-MGCoA-H localizes in the mitochondrial matrix and is expressed in both insect and mammalian bloodstream forms of the parasite. The depletion of 3-MGCoA-H by RNA interference affected minimally the proliferation of both forms. However, an excess of leucine in the culture medium caused growth defects in cells depleted of 3-MGCoA-H, which could be reestablished by mevalonate, a precursor of isoprenoids and steroids. Indeed, procyclics depleted of the 3-MGCoA-H presented reduced levels of synthesized steroids relative to cholesterol that is scavenged by the parasite, and these levels were also reestablished by mevalonate. These results suggest that accumulation of leucine catabolites could affect the level of mevalonate and consequently inhibit the sterol biosynthesis, required for T. brucei growth.
Collapse
Affiliation(s)
- Mariana Leão de Lima Stein
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Yudi Icimoto
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Vitor Oliveira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Anita Hilda Straus
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
77
|
Lin S, Voyton C, Morris MT, Ackroyd PC, Morris JC, Christensen KA. pH regulation in glycosomes of procyclic form Trypanosoma brucei. J Biol Chem 2017; 292:7795-7805. [PMID: 28348078 DOI: 10.1074/jbc.m117.784173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Indexed: 01/17/2023] Open
Abstract
Here we report the use of a fluorescein-tagged peroxisomal targeting sequence peptide (F-PTS1, acetyl-C{K(FITC)}GGAKL) for investigating pH regulation of glycosomes in live procyclic form Trypanosoma brucei When added to cells, this fluorescent peptide is internalized within vesicular structures, including glycosomes, and can be visualized after 30-60 min. Using F-PTS1 we are able to observe the pH conditions inside glycosomes in response to starvation conditions. Previous studies have shown that in the absence of glucose, the glycosome exhibits mild acidification from pH 7.4 ± 0.2 to 6.8 ± 0.2. Our results suggest that this response occurs under proline starvation as well. This pH regulation is found to be independent from cytosolic pH and requires a source of Na+ ions. Glycosomes were also observed to be more resistant to external pH changes than the cytosol; placement of cells in acidic buffers (pH 5) reduced the pH of the cytosol by 0.8 ± 0.1 pH units, whereas glycosomal pH decreases by 0.5 ± 0.1 pH units. This observation suggests that regulation of glycosomal pH is different and independent from cytosolic pH regulation. Furthermore, pH regulation is likely to work by an active process, because cells depleted of ATP with 2-deoxyglucose and sodium azide were unable to properly regulate pH. Finally, inhibitor studies with bafilomycin and EIPA suggest that both V-ATPases and Na+/H+ exchangers are required for glycosomal pH regulation.
Collapse
Affiliation(s)
- Sheng Lin
- From the Departments of Chemistry and
| | - Charles Voyton
- From the Departments of Chemistry and.,the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Meredith T Morris
- Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634 and
| | - P Christine Ackroyd
- the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - James C Morris
- Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634 and
| | - Kenneth A Christensen
- the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| |
Collapse
|
78
|
Exosome secretion affects social motility in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006245. [PMID: 28257521 PMCID: PMC5352147 DOI: 10.1371/journal.ppat.1006245] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/15/2017] [Accepted: 02/16/2017] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EV) secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL) exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB) utilizing the endosomal sorting complexes required for transport (ESCRT), through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo). This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites. Trypanosomes are the causative agent of major parasitic diseases such as African sleeping sickness, leishmaniosis and Chagas' disease that affect millions of people. These parasites cycle between an insect and a mammalian host. Communication between the parasites and the host must be essential for executing a productive infection and for cycling of the parasite between its hosts. Exosomes are 40-100nm vesicles of endocytic origin, and were shown to affect a variety of biological processes and human diseases. Exosomes were also shown to help pathogens evade the immune system. In this study, we demonstrate that exosomes are secreted from Trypanosoma brucei parasites when trans-splicing is inhibited. These exosomes contain, among many other constituents, a type of RNA known as spliced leader RNA (SL RNA), which is essential in these parasites for formation of all mature mRNA. These exosomes are able to enter neighboring trypanosomes, and only intact exosomes affect the social motility of these parasites. We propose that exosomes can potentially control parasite migration in the insect host by acting as a repellent that drives the fit parasites away from either damaged cells or an unfavorable environment. This mechanism could secure a productive infection.
Collapse
|
79
|
Li K, Zhou S, Guo Q, Chen X, Lai DH, Lun ZR, Guo X. The eIF3 complex of Trypanosoma brucei: composition conservation does not imply the conservation of structural assembly and subunits function. RNA (NEW YORK, N.Y.) 2017; 23:333-345. [PMID: 27932584 PMCID: PMC5311491 DOI: 10.1261/rna.058651.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/24/2016] [Indexed: 05/03/2023]
Abstract
The multisubunit eukaryotic initiation factor 3 (eIF3) plays multiple roles in translation but is poorly understood in trypanosomes. The putative subunits eIF3a and eIF3f of Trypanosoma brucei (TbIF3a and TbIF3f) were overexpressed and purified, and 11 subunits were identified, TbIF3a through l minus j, which form a tight complex. Both TbIF3a and TbIF3f are essential for the viability of T. brucei RNAi knockdown of either of them severely reduced total translation and the ratio of the polysome/80S peak area. TbIF3f and TbIF3a RNAi cell lines were modified to express tagged-TbIF3a and -TbIF3f, respectively. RNAi in combination with affinity purification assays indicated that both subunits are variably required for TbIF3 stability and integrity. The relative abundance of other subunits in the TbIF3f-tag complex changed little upon TbIF3a depletion; while only subunits TbIF3b, i, and e copurified comparably with TbIF3a-tag upon TbIF3f depletion. A genome-wide UV-crosslinking assay showed that several TbIF3 subunits have direct RNA-binding activity, with TbIF3c showing the strongest signal. In addition, CrPV IRES, but neither EMCV IRES nor HCV IRES, was found to mediate translation in T. brucei These results together imply that the structure of TbIF3 and the subunits function have trypanosome-specific features, although the composition is evolutionarily conserved.
Collapse
Affiliation(s)
- Kunrao Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Shuru Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Qixuan Guo
- Chengde Nursing Vocational College, Chengde 067000, China
| | - Xin Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - De-Hua Lai
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhao-Rong Lun
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xuemin Guo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
80
|
Hackler A, Patrick SL, Kahney EW, Flaherty DP, Sharlow ER, Morris JC, Golden JE. Antiparasitic lethality of sulfonamidebenzamides in kinetoplastids. Bioorg Med Chem Lett 2017; 27:755-758. [PMID: 28119024 DOI: 10.1016/j.bmcl.2017.01.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/26/2022]
Abstract
A sulfonamidebenzamide series was assessed for anti-kinetoplastid parasite activity based on structural similarity to the antiparasitic drug, nifurtimox. Through structure-activity optimization, derivatives with limited mammalian cell toxicity and increased potency toward African trypanosomes and Leishmania promastigotes were developed. Compound 22 had the best potency against the trypanosome (EC50=0.010μM) while several compounds showed ∼10-fold less potency against Leishmania promastigotes without impacting mammalian cells (EC50>25μM). While the chemotype originated from an unrelated optimization program aimed at selectively activating an apoptotic pathway in mammalian cancer cells, our preliminary results suggest that a distinct mechanism of action from that observed in mammalian cells is responsible for the promising activity observed in parasites.
Collapse
Affiliation(s)
- Amber Hackler
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Stephen L Patrick
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Elizabeth W Kahney
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Daniel P Flaherty
- KU Specialized Chemistry Center, University of Kansas, Lawrence, KS 66047, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA 22908, USA
| | - James C Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Jennifer E Golden
- KU Specialized Chemistry Center, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
81
|
Mantilla BS, Marchese L, Casas-Sánchez A, Dyer NA, Ejeh N, Biran M, Bringaud F, Lehane MJ, Acosta-Serrano A, Silber AM. Proline Metabolism is Essential for Trypanosoma brucei brucei Survival in the Tsetse Vector. PLoS Pathog 2017; 13:e1006158. [PMID: 28114403 PMCID: PMC5289646 DOI: 10.1371/journal.ppat.1006158] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/02/2017] [Accepted: 12/29/2016] [Indexed: 01/18/2023] Open
Abstract
Adaptation to different nutritional environments is essential for life cycle completion by all Trypanosoma brucei sub-species. In the tsetse fly vector, L-proline is among the most abundant amino acids and is mainly used by the fly for lactation and to fuel flight muscle. The procyclic (insect) stage of T. b. brucei uses L-proline as its main carbon source, relying on an efficient catabolic pathway to convert it to glutamate, and then to succinate, acetate and alanine as the main secreted end products. Here we investigated the essentiality of an undisrupted proline catabolic pathway in T. b. brucei by studying mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase (TbP5CDH), which catalyzes the irreversible conversion of gamma-glutamate semialdehyde (γGS) into L-glutamate and NADH. In addition, we provided evidence for the absence of a functional proline biosynthetic pathway. TbP5CDH expression is developmentally regulated in the insect stages of the parasite, but absent in bloodstream forms grown in vitro. RNAi down-regulation of TbP5CDH severely affected the growth of procyclic trypanosomes in vitro in the absence of glucose, and altered the metabolic flux when proline was the sole carbon source. Furthermore, TbP5CDH knocked-down cells exhibited alterations in the mitochondrial inner membrane potential (ΔΨm), respiratory control ratio and ATP production. Also, changes in the proline-glutamate oxidative capacity slightly affected the surface expression of the major surface glycoprotein EP-procyclin. In the tsetse, TbP5CDH knocked-down cells were impaired and thus unable to colonize the fly’s midgut, probably due to the lack of glucose between bloodmeals. Altogether, our data show that the regulated expression of the proline metabolism pathway in T. b. brucei allows this parasite to adapt to the nutritional environment of the tsetse midgut. Bloodsucking insects play a major role in the transmission of pathogens that cause major tropical diseases. Their capacity to transmit these diseases is directly associated with the availability and turnover of energy sources. Proline is the main readily-mobilizable fuel of the tsetse fly, which is the vector of sub-species of Trypanosoma brucei parasites that cause human sleeping sickness and are partly responsible for animal trypanosomiasis (Nagana disease) in sub-Saharan Africa. Once trypanosomes are ingested from an infected host by the tsetse, the parasites encounter an environment that is poor in glucose (as it is rapidly metabolized by the fly) but rich in proline, which then becomes the main carbon source once the parasite differentiates into the first insect (procyclic) stage. In this work, we provide evidence on the essentiality of T. b. brucei proline catabolism for procyclic survival within the tsetse’s digestive tract, as this organism is unable to synthesize this amino acid and strictly depends on the proline provided by the fly. We also show that parasites deficient in TbP5CDH, a mitochondrial enzyme involved in the proline degradative pathway, failed to proliferate in vitro, showed a diminished respiratory capacity, and showed compromised maintenance of energy levels and metabolic flux when proline was offered as the main carbon source. Thus, the integrity of the trypanosome proline degradation pathway is needed to maintain essential functions related to parasite bioenergetics, replication and infectivity within the insect host. Our observations answer a long-standing question on the role of parasite proline metabolism in tsetse-trypanosome interplay.
Collapse
Affiliation(s)
- Brian S. Mantilla
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Letícia Marchese
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aitor Casas-Sánchez
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Naomi A. Dyer
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicholas Ejeh
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marc Biran
- Centre de Résonance Magnétique des Systemes Biologiques, Université Bordeaux, Bordeaux, France
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systemes Biologiques, Université Bordeaux, Bordeaux, France
| | - Michael J. Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alvaro Acosta-Serrano
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (AMS); (AAS)
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail: (AMS); (AAS)
| |
Collapse
|
82
|
Proximity Interactions among Basal Body Components in Trypanosoma brucei Identify Novel Regulators of Basal Body Biogenesis and Inheritance. mBio 2017; 8:mBio.02120-16. [PMID: 28049148 PMCID: PMC5210500 DOI: 10.1128/mbio.02120-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basal body shares similar architecture with centrioles in animals and is involved in nucleating flagellar axonemal microtubules in flagellated eukaryotes. The early-branching Trypanosoma brucei possesses a motile flagellum nucleated from the basal body that consists of a mature basal body and an adjacent pro-basal body. Little is known about the basal body proteome and its roles in basal body biogenesis and flagellar axoneme assembly in T. brucei. Here, we report the identification of 14 conserved centriole/basal body protein homologs and 25 trypanosome-specific basal body proteins. These proteins localize to distinct subdomains of the basal body, and several of them form a ring-like structure surrounding the basal body barrel. Functional characterization of representative basal body proteins revealed distinct roles in basal body duplication/separation and flagellar axoneme assembly. Overall, this work identified novel proteins required for basal body duplication and separation and uncovered new functions of conserved basal body proteins in basal body duplication and separation, highlighting an unusual mechanism of basal body biogenesis and inheritance in this early divergent eukaryote. The basal body in the early-branching protozoan Trypanosoma brucei nucleates flagellum assembly and also regulates organelle segregation, cell morphogenesis, and cell division. However, the molecular composition and the assembly process of the basal body remain poorly understood. Here, we identify 14 conserved basal body proteins and 25 trypanosome-specific basal body proteins via bioinformatics, localization-based screening, and proximity-dependent biotin identification. We further localized these proteins to distinct subdomains of the basal body by using fluorescence microscopy and superresolution microscopy, discovered novel regulators of basal body duplication and separation, and uncovered new functions of conserved basal body proteins in basal body duplication and separation. This work lays the foundation for dissecting the mechanisms underlying basal body biogenesis and inheritance in T. brucei.
Collapse
|
83
|
Hu H, Zhou Q, Han X, Li Z. CRL4WDR1 Controls Polo-like Kinase Protein Abundance to Promote Bilobe Duplication, Basal Body Segregation and Flagellum Attachment in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006146. [PMID: 28052114 PMCID: PMC5241021 DOI: 10.1371/journal.ppat.1006146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/17/2017] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
The Polo-like kinase homolog in Trypanosoma brucei, TbPLK, plays essential roles in basal body segregation, flagellum attachment and cytokinesis. The level of TbPLK protein is tightly controlled, but the underlying mechanism remains elusive. Here, we report a Cullin-RING ubiquitin ligase composed of Cullin4, the DNA damage-binding protein 1 homolog TbDDB1 and a WD40-repeat protein WDR1 that controls TbPLK abundance in the basal body and the bilobe. WDR1, through its C-terminal domain, interacts with the PEST motif in TbPLK and, through its N-terminal WD40 motif, binds to TbDDB1. Depletion of WDR1 inhibits bilobe duplication and basal body segregation, disrupts the assembly of the new flagellum attachment zone filament and detaches the new flagellum. Consistent with its role in TbPLK degradation, depletion of WDR1 causes excessive accumulation of TbPLK in the basal body and the bilobe, leading to continuous phosphorylation of TbCentrin2 in the bilobe at late cell cycle stages. Together, these results identify a novel WD40-repeat protein as a TbPLK receptor in the Cullin4-DDB1 ubiquitin ligase complex for degrading TbPLK in the basal body and the bilobe after the G1/S cell cycle transition, thereby promoting bilobe duplication, basal body separation and flagellum-cell body adhesion.
Collapse
Affiliation(s)
- Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Xianxian Han
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
84
|
Romero-Meza G, Vélez-Ramírez DE, Florencio-Martínez LE, Román-Carraro FC, Manning-Cela R, Hernández-Rivas R, Martínez-Calvillo S. Maf1 is a negative regulator of transcription in Trypanosoma brucei. Mol Microbiol 2016; 103:452-468. [PMID: 27802583 DOI: 10.1111/mmi.13568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 11/29/2022]
Abstract
RNA polymerase III (Pol III) produces small RNA molecules that play essential roles in mRNA processing and translation. Maf1, originally described as a negative regulator of Pol III transcription, has been studied from yeast to human. Here we characterized Maf1 in the parasitic protozoa Trypanosoma brucei (TbMaf1), representing the first report to analyse Maf1 in an early-diverged eukaryote. While Maf1 is generally encoded by a single-copy gene, the T. brucei genome contains two almost identical TbMaf1 genes. The TbMaf1 protein has the three conserved sequences and is predicted to fold into a globular structure. Unlike in yeast, TbMaf1 localizes to the nucleus in procyclic forms of T. brucei under normal growth conditions. Cell lines that either downregulate or overexpress TbMaf1 were generated, and growth curve analysis with them suggested that TbMaf1 participates in the regulation of cell growth of T. brucei. Nuclear run-on and chromatin immunoprecipitation analyses demonstrated that TbMaf1 represses Pol III transcription of tRNA and U2 snRNA genes by associating with their promoters. Interestingly, 5S rRNA levels do not change after TbMaf1 ablation or overexpression. Notably, our data also revealed that TbMaf1 regulates Pol I transcription of procyclin gene and Pol II transcription of SL RNA genes.
Collapse
Affiliation(s)
- Gabriela Romero-Meza
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF, 07360, México
| | - Daniel E Vélez-Ramírez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México
| | - Fiordaliso C Román-Carraro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México
| | - Rebeca Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF, 07360, México
| | - Rosaura Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF, 07360, México
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México
| |
Collapse
|
85
|
Koch H, Raabe M, Urlaub H, Bindereif A, Preußer C. The polyadenylation complex of Trypanosoma brucei: Characterization of the functional poly(A) polymerase. RNA Biol 2016; 13:221-31. [PMID: 26727667 DOI: 10.1080/15476286.2015.1130208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The generation of mature mRNA in the protozoan parasite Trypanosoma brucei requires coupled polyadenylation and trans splicing. In contrast to other eukaryotes, we still know very little on components, mechanisms, and dynamics of the 3' end-processing machinery in trypanosomes. To characterize the catalytic core of the polyadenylation complex in T. brucei, we first identified the poly(A) polymerase [Tb927.7.3780] as the major functional, nuclear-localized enzyme in trypanosomes. In contrast, another poly(A) polymerase, encoded by an intron-containing gene [Tb927.3.3160], localizes mainly in the cytoplasm and appears not to be functional in general 3' end processing of mRNAs. Based on tandem-affinity purification with tagged CPSF160 and mass spectrometry, we identified ten associated components of the trypanosome polyadenylation complex, including homologues to all four CPSF subunits, Fip1, CstF50/64, and Symplekin, as well as two hypothetical proteins. RNAi-mediated knockdown revealed that most of these factors are essential for growth and required for both in vivo polyadenylation and trans splicing, arguing for a general coupling of these two mRNA-processing reactions.
Collapse
Affiliation(s)
- Henrik Koch
- a Institute of Biochemistry, Justus Liebig University of Giessen , D-35392 Giessen , Germany
| | - Monika Raabe
- b Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry , D-37077 Göttingen , Germany
| | - Henning Urlaub
- b Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry , D-37077 Göttingen , Germany.,c Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen , D-37075 Göttingen , Germany
| | - Albrecht Bindereif
- a Institute of Biochemistry, Justus Liebig University of Giessen , D-35392 Giessen , Germany
| | - Christian Preußer
- a Institute of Biochemistry, Justus Liebig University of Giessen , D-35392 Giessen , Germany
| |
Collapse
|
86
|
Leija C, Rijo-Ferreira F, Kinch LN, Grishin NV, Nischan N, Kohler JJ, Hu Z, Phillips MA. Pyrimidine Salvage Enzymes Are Essential for De Novo Biosynthesis of Deoxypyrimidine Nucleotides in Trypanosoma brucei. PLoS Pathog 2016; 12:e1006010. [PMID: 27820863 PMCID: PMC5098729 DOI: 10.1371/journal.ppat.1006010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023] Open
Abstract
The human pathogenic parasite Trypanosoma brucei possess both de novo and salvage routes for the biosynthesis of pyrimidine nucleotides. Consequently, they do not require salvageable pyrimidines for growth. Thymidine kinase (TK) catalyzes the formation of dTMP and dUMP and is one of several salvage enzymes that appear redundant to the de novo pathway. Surprisingly, we show through analysis of TK conditional null and RNAi cells that TK is essential for growth and for infectivity in a mouse model, and that a catalytically active enzyme is required for its function. Unlike humans, T. brucei and all other kinetoplastids lack dCMP deaminase (DCTD), which provides an alternative route to dUMP formation. Ectopic expression of human DCTD resulted in full rescue of the RNAi growth phenotype and allowed for selection of viable TK null cells. Metabolite profiling by LC-MS/MS revealed a buildup of deoxypyrimidine nucleosides in TK depleted cells. Knockout of cytidine deaminase (CDA), which converts deoxycytidine to deoxyuridine led to thymidine/deoxyuridine auxotrophy. These unexpected results suggested that T. brucei encodes an unidentified 5'-nucleotidase that converts deoxypyrimidine nucleotides to their corresponding nucleosides, leading to their dead-end buildup in TK depleted cells at the expense of dTTP pools. Bioinformatics analysis identified several potential candidate genes that could encode 5'-nucleotidase activity including an HD-domain protein that we show catalyzes dephosphorylation of deoxyribonucleotide 5'-monophosphates. We conclude that TK is essential for synthesis of thymine nucleotides regardless of whether the nucleoside precursors originate from the de novo pathway or through salvage. Reliance on TK in the absence of DCTD may be a shared vulnerability among trypanosomatids and may provide a unique opportunity to selectively target a diverse group of pathogenic single-celled eukaryotes with a single drug.
Collapse
Affiliation(s)
- Christopher Leija
- Department of Pharmacology University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Filipa Rijo-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Lisa N. Kinch
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Nick V. Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Zeping Hu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Margaret A. Phillips
- Department of Pharmacology University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| |
Collapse
|
87
|
Valenciano AL, Knudsen GM, Mackey ZB. Extracellular-signal regulated kinase 8 of Trypanosoma brucei uniquely phosphorylates its proliferating cell nuclear antigen homolog and reveals exploitable properties. Cell Cycle 2016; 15:2827-41. [PMID: 27589575 PMCID: PMC5053586 DOI: 10.1080/15384101.2016.1222340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Trypanosoma brucei subspecies T. brucei gambiense and T. brucei rhodesiense are vector-borne pathogens that cause sleeping sickness also known as Human African Trypanosomiasis (HAT), which is fatal if left untreated. The drugs that treat HAT are ineffective and cause toxic side effects. One strategy for identifying safer and more effective HAT drugs is to therapeutically exploit essential gene targets in T. brucei. Genes that make up a basic mitogen-activated protein kinase (MAPK) network are present in T. brucei. Tb927.10.5140 encodes an essential MAPK that is homologous to the human extracellular-signal regulated kinase 8 (HsERK8) which forms a tight complex with the replication factor proliferating cell nuclear antigen (PCNA) to stabilize intracellular PCNA levels. Here we demonstrate that (TbPCNA) is uniquely phos-phorylated on serine (S) and threonine (T) residues in T. brucei and that TbERK8 phosphorylates TbPCNA at each of these residues. The ability of an ERK8 homolog to phosphorylate a PCNA homolog is a novel biochemical property that is first demonstrated here in T. brucei and may be unique to this pathogen. We demonstrate that the potent HsERK8 inhibitor Ro318220, has an IC50 for TbERK8 that is several hundred times higher than its reported IC50 for HsERK8. This indicated that the active sites of TbERK8 and HsERK8 can be selectively inhibited, which provides a rational basis for discovering inhibitors that specifically target this essential parasite MAPK to kill the parasite.
Collapse
Affiliation(s)
- Ana L Valenciano
- a Department of Biochemistry and Fralin Life Science Institute , Vector-Borne Disease Division, Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Giselle M Knudsen
- b Department of Pharmaceutical Chemistry , University of California San Francisco , San Francisco , CA , USA
| | - Zachary B Mackey
- a Department of Biochemistry and Fralin Life Science Institute , Vector-Borne Disease Division, Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| |
Collapse
|
88
|
Hope R, Egarmina K, Voloshin K, Waldman Ben-Asher H, Carmi S, Eliaz D, Drori Y, Michaeli S. Transcriptome and proteome analyses and the role of atypical calpain protein and autophagy in the spliced leader silencing pathway in Trypanosoma brucei. Mol Microbiol 2016; 102:1-21. [PMID: 27161313 DOI: 10.1111/mmi.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2016] [Indexed: 11/29/2022]
Abstract
Under persistent ER stress, Trypanosoma brucei parasites induce the spliced leader silencing (SLS) pathway. In SLS, transcription of the SL RNA gene, the SL donor to all mRNAs, is extinguished, arresting trans-splicing and leading to programmed cell death (PCD). In this study, we investigated the transcriptome following silencing of SEC63, a factor essential for protein translocation across the ER membrane, and whose silencing induces SLS. The proteome of SEC63-silenced cells was analyzed with an emphasis on SLS-specific alterations in protein expression, and modifications that do not directly result from perturbations in trans-splicing. One such protein identified is an atypical calpain SKCRP7.1/7.2. Co-silencing of SKCRP7.1/7.2 and SEC63 eliminated SLS induction due its role in translocating the PK3 kinase. This kinase initiates SLS by migrating to the nucleus and phosphorylating TRF4 leading to shut-off of SL RNA transcription. Thus, SKCRP7.1 is involved in SLS signaling and the accompanying PCD. The role of autophagy in SLS was also investigated; eliminating autophagy through VPS34 or ATG7 silencing demonstrated that autophagy is not essential for SLS induction, but is associated with PCD. Thus, this study identified factors that are used by the parasite to cope with ER stress and to induce SLS and PCD.
Collapse
Affiliation(s)
- Ronen Hope
- The Mina and Everard Goodman Faculty of Life Sciences.,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Katarina Egarmina
- The Mina and Everard Goodman Faculty of Life Sciences.,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Konstantin Voloshin
- The Mina and Everard Goodman Faculty of Life Sciences.,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | | | - Shai Carmi
- The Mina and Everard Goodman Faculty of Life Sciences.,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Dror Eliaz
- The Mina and Everard Goodman Faculty of Life Sciences.,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yaron Drori
- The Mina and Everard Goodman Faculty of Life Sciences.,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences. .,Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
89
|
McAllaster MR, Sinclair-Davis AN, Hilton NA, de Graffenried CL. A unified approach towards Trypanosoma brucei functional genomics using Gibson assembly. Mol Biochem Parasitol 2016; 210:13-21. [PMID: 27496178 DOI: 10.1016/j.molbiopara.2016.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 12/27/2022]
Abstract
Trypanosoma brucei is the causative agent of human African trypanosomiasis and nagana in cattle. Recent advances in high throughput phenotypic and interaction screens have identified a wealth of novel candidate proteins for diverse functions such as drug resistance, life cycle progression, and cytoskeletal biogenesis. Characterization of these proteins will allow a more mechanistic understanding of the biology of this important pathogen and could identify novel drug targets. However, methods for rapidly validating and prioritizing these potential targets are still being developed. While gene tagging via homologous recombination and RNA interference are available in T. brucei, a general strategy for creating the most effective constructs for these approaches is lacking. Here, we adapt Gibson assembly, a one-step isothermal process that rapidly assembles multiple DNA segments in a single reaction, to create endogenous tagging, overexpression, and long hairpin RNAi constructs that are compatible with well-established T. brucei vectors. The generality of the Gibson approach has several advantages over current methodologies and substantially increases the speed and ease with which these constructs can be assembled.
Collapse
Affiliation(s)
- Michael R McAllaster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, United States
| | - Amy N Sinclair-Davis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, United States
| | - Nicholas A Hilton
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, United States
| | | |
Collapse
|
90
|
Lopes RRS, Silveira GDO, Eitler R, Vidal RS, Kessler A, Hinger S, Paris Z, Alfonzo JD, Polycarpo C. The essential function of the Trypanosoma brucei Trl1 homolog in procyclic cells is maturation of the intron-containing tRNATyr. RNA (NEW YORK, N.Y.) 2016; 22:1190-9. [PMID: 27284166 PMCID: PMC4931112 DOI: 10.1261/rna.056242.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/20/2016] [Indexed: 05/27/2023]
Abstract
Trypanosoma brucei, the etiologic agent of sleeping sickness, encodes a single intron-containing tRNA, tRNA(Tyr), and splicing is essential for its viability. In Archaea and Eukarya, tRNA splicing requires a series of enzymatic steps that begin with intron cleavage by a tRNA-splicing endonuclease and culminates with joining the resulting tRNA exons by a splicing tRNA ligase. Here we explored the function of TbTrl1, the T. brucei homolog of the yeast Trl1 tRNA ligase. We used a combination of RNA interference and molecular biology approaches to show that down-regulation of TbTrl1 expression leads to accumulation of intron-containing tRNA(Tyr) and a concomitant growth arrest at the G1 phase. These defects were efficiently rescued by expression of an "intronless" version of tRNA(Tyr) in the same RNAi cell line. Taken together, these experiments highlight the crucial importance of the TbTrl1 for tRNA(Tyr) maturation and viability, while revealing tRNA splicing as its only essential function.
Collapse
Affiliation(s)
- Raphael R S Lopes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Caixa Postal 68041, Brazil
| | - Gilbert de O Silveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Caixa Postal 68041, Brazil
| | - Roberta Eitler
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil
| | - Raphael S Vidal
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil
| | - Alan Kessler
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Scott Hinger
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zdeněk Paris
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Juan D Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Carla Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Caixa Postal 68041, Brazil
| |
Collapse
|
91
|
Fort C, Bonnefoy S, Kohl L, Bastin P. Intraflagellar transport is required for the maintenance of the trypanosome flagellum composition but not its length. J Cell Sci 2016; 129:3026-41. [PMID: 27343245 DOI: 10.1242/jcs.188227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 01/10/2023] Open
Abstract
Intraflagellar transport (IFT) is required for construction of most cilia and flagella. Here, we used electron microscopy, immunofluorescence and live video microscopy to show that IFT is absent or arrested in the mature flagellum of Trypanosoma brucei upon RNA interference (RNAi)-mediated knockdown of IFT88 and IFT140, respectively. Flagella assembled prior to RNAi did not shorten, showing that IFT is not essential for the maintenance of flagella length. Although the ultrastructure of the axoneme was not visibly affected, flagellar beating was strongly reduced and the distribution of several flagellar components was drastically modified. The R subunit of the protein kinase A was no longer concentrated in the flagellum but was largely found in the cell body whereas the kinesin 9B motor was accumulating at the distal tip of the flagellum. In contrast, the distal tip protein FLAM8 was dispersed along the flagellum. This reveals that IFT also functions in maintaining the distribution of some flagellar proteins after construction of the organelle is completed.
Collapse
Affiliation(s)
- Cécile Fort
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France Université Pierre et Marie Curie Paris 6, Cellule Pasteur-UPMC, 25 rue du docteur Roux, Paris 75015, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France
| | - Linda Kohl
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS; CP52, 61 rue Buffon, Paris 75005, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France
| |
Collapse
|
92
|
Zhou Q, Hu H, Li Z. An EF-hand-containing Protein in Trypanosoma brucei Regulates Cytokinesis Initiation by Maintaining the Stability of the Cytokinesis Initiation Factor CIF1. J Biol Chem 2016; 291:14395-409. [PMID: 27226595 DOI: 10.1074/jbc.m116.726133] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei undergoes cytokinesis uni-directionally from the anterior tip of the new flagellum attachment zone (FAZ) toward the posterior end of the cell. We recently delineated a novel signaling pathway composed of polo-like kinase, cytokinesis initiation factor 1 (CIF1), and aurora B kinase that acts in concert at the new FAZ tip to regulate cytokinesis initiation. To identify new cytokinesis regulators, we carried out proximity-dependent biotin identification and identified many CIF1 binding partners and near neighbors. Here we report a novel CIF1-binding protein, named CIF2, and its mechanistic role in cytokinesis initiation. CIF2 interacts with CIF1 in vivo and co-localizes with CIF1 at the new FAZ tip during early cell cycle stages. RNAi of CIF2 inhibited the normal, anterior-to-posterior cytokinesis but activated an alternative, posterior-to-anterior cytokinesis. CIF2 depletion destabilized CIF1 and disrupted the localization of polo-like kinase and aurora B kinase to the new FAZ tip, thus revealing the mechanistic role of CIF2 in cytokinesis initiation. Surprisingly, overexpression of CIF2 also inhibited the normal, anterior-to-posterior cytokinesis and triggered the alternative, posterior-to-anterior cytokinesis, suggesting a tight control of CIF2 protein abundance. These results identified a new regulator in the cytokinesis regulatory pathway and reiterated that a backup cytokinesis pathway is activated by inhibiting the normal cytokinesis pathway.
Collapse
Affiliation(s)
- Qing Zhou
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Huiqing Hu
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Ziyin Li
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
93
|
A pseudouridylation switch in rRNA is implicated in ribosome function during the life cycle of Trypanosoma brucei. Sci Rep 2016; 6:25296. [PMID: 27142987 PMCID: PMC4855143 DOI: 10.1038/srep25296] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/14/2016] [Indexed: 12/27/2022] Open
Abstract
The protozoan parasite Trypanosoma brucei, which causes devastating diseases in humans and animals in sub-Saharan Africa, undergoes a complex life cycle between the mammalian host and the blood-feeding tsetse fly vector. However, little is known about how the parasite performs most molecular functions in such different environments. Here, we provide evidence for the intriguing possibility that pseudouridylation of rRNA plays an important role in the capacity of the parasite to transit between the insect midgut and the mammalian bloodstream. Briefly, we mapped pseudouridines (Ψ) on rRNA by Ψ-seq in procyclic form (PCF) and bloodstream form (BSF) trypanosomes. We detected 68 Ψs on rRNA, which are guided by H/ACA small nucleolar RNAs (snoRNA). The small RNome of both life cycle stages was determined by HiSeq and 83 H/ACAs were identified. We observed an elevation of 21 Ψs modifications in BSF as a result of increased levels of the guiding snoRNAs. Overexpression of snoRNAs guiding modification on H69 provided a slight growth advantage to PCF parasites at 30 °C. Interestingly, these modifications are predicted to significantly alter the secondary structure of the large subunit (LSU) rRNA suggesting that hypermodified positions may contribute to the adaption of ribosome function during cycling between the two hosts.
Collapse
|
94
|
Vodnala M, Ranjbarian F, Pavlova A, de Koning HP, Hofer A. Trypanosoma brucei Methylthioadenosine Phosphorylase Protects the Parasite from the Antitrypanosomal Effect of Deoxyadenosine: IMPLICATIONS FOR THE PHARMACOLOGY OF ADENOSINE ANTIMETABOLITES. J Biol Chem 2016; 291:11717-26. [PMID: 27036940 DOI: 10.1074/jbc.m116.715615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 02/03/2023] Open
Abstract
Trypanosoma brucei causes African sleeping sickness for which no vaccine exists and available treatments are of limited use due to their high toxicity or lack of efficacy. T. brucei cultivated in the presence of deoxyadenosine accumulates high levels of dATP in an adenosine kinase-dependent process and dies within a few hours. Here we show that T. brucei treated with 1 mm deoxyadenosine accumulates higher dATP levels than mammalian cells but that this effect diminishes quickly as the concentration of the deoxynucleoside decreases. Radioactive tracer studies showed that the parasites are partially protected against lower concentrations of deoxyadenosine by the ability to cleave it and use the adenine for ATP synthesis. T. brucei methylthioadenosine phosphorylase (TbMTAP) was found to be responsible for the cleavage as indicated by the phosphate dependence of deoxyadenosine cleavage in T. brucei cell extracts and increased deoxyadenosine sensitivity in TbMTAP knockdown cells. Recombinant TbMTAP exhibited higher turnover number (kcat) and Km values for deoxyadenosine than for the regular substrate, methylthioadenosine. One of the reaction products, adenine, inhibited the enzyme, which might explain why TbMTAP-mediated protection is less efficient at higher deoxyadenosine concentrations. Consequently, T. brucei grown in the presence of adenine demonstrated increased sensitivity to deoxyadenosine. For deoxyadenosine/adenosine analogues to remain intact and be active against the parasite, they need to either be resistant to TbMTAP-mediated cleavage, which is the case with the three known antitrypanosomal agents adenine arabinoside, tubercidin, and cordycepin, or they need to be combined with TbMTAP inhibitors.
Collapse
Affiliation(s)
- Munender Vodnala
- From the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden and
| | - Farahnaz Ranjbarian
- From the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden and
| | - Anna Pavlova
- From the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden and
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - Anders Hofer
- From the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden and
| |
Collapse
|
95
|
Marques CA, Tiengwe C, Lemgruber L, Damasceno JD, Scott A, Paape D, Marcello L, McCulloch R. Diverged composition and regulation of the Trypanosoma brucei origin recognition complex that mediates DNA replication initiation. Nucleic Acids Res 2016; 44:4763-84. [PMID: 26951375 PMCID: PMC4889932 DOI: 10.1093/nar/gkw147] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/01/2016] [Indexed: 01/14/2023] Open
Abstract
Initiation of DNA replication depends upon recognition of genomic sites, termed origins, by AAA+ ATPases. In prokaryotes a single factor binds each origin, whereas in eukaryotes this role is played by a six-protein origin recognition complex (ORC). Why eukaryotes evolved a multisubunit initiator, and the roles of each component, remains unclear. In Trypanosoma brucei, an ancient unicellular eukaryote, only one ORC-related initiator, TbORC1/CDC6, has been identified by sequence homology. Here we show that three TbORC1/CDC6-interacting factors also act in T. brucei nuclear DNA replication and demonstrate that TbORC1/CDC6 interacts in a high molecular complex in which a diverged Orc4 homologue and one replicative helicase subunit can also be found. Analysing the subcellular localization of four TbORC1/CDC6-interacting factors during the cell cycle reveals that one factor, TbORC1B, is not a static constituent of ORC but displays S-phase restricted nuclear localization and expression, suggesting it positively regulates replication. This work shows that ORC architecture and regulation are diverged features of DNA replication initiation in T. brucei, providing new insight into this key stage of eukaryotic genome copying.
Collapse
Affiliation(s)
- Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Calvin Tiengwe
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Jeziel D Damasceno
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Alan Scott
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Daniel Paape
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Lucio Marcello
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
96
|
Two distinct cytokinesis pathways drive trypanosome cell division initiation from opposite cell ends. Proc Natl Acad Sci U S A 2016; 113:3287-92. [PMID: 26929336 DOI: 10.1073/pnas.1601596113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis in Trypanosoma brucei, an early branching protozoan, occurs along its longitudinal axis uni-directionally from the anterior tip of the new flagellum attachment zone filament toward the cell's posterior end. However, the underlying mechanisms remain elusive. Here we report that cytokinesis in T. brucei is regulated by a concerted action of Polo-like kinase, Aurora B kinase, and a trypanosome-specific protein CIF1. Phosphorylation of CIF1 by Polo-like kinase targets it to the anterior tip of the new flagellum attachment zone filament, where it subsequently recruits Aurora B kinase to initiate cytokinesis. Consistent with its role, CIF1 depletion inhibits cytokinesis initiation from the anterior end of the cell, but, surprisingly, triggers cytokinesis initiation from the posterior end of the cell, suggesting the activation of an alternative cytokinesis from the opposite cell end. Our results reveal the mechanistic roles of CIF1 and Polo-like kinase in cytokinesis initiation and elucidate the mechanism underlying the recruitment of Aurora B kinase to the cytokinesis initiation site at late anaphase. These findings also delineate a signaling cascade controlling cytokinesis initiation from the anterior end of the cell and uncover a backup cytokinesis that is initiated from the posterior end of the cell when the typical anterior-to-posterior cytokinesis is compromised.
Collapse
|
97
|
Vaughan S, Gull K. Basal body structure and cell cycle-dependent biogenesis in Trypanosoma brucei. Cilia 2016; 5:5. [PMID: 26862392 PMCID: PMC4746817 DOI: 10.1186/s13630-016-0023-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/19/2016] [Indexed: 11/10/2022] Open
Abstract
Basal bodies are microtubule-based organelles that assemble cilia and flagella, which are critical for motility and sensory functions in all major eukaryotic lineages. The core structure of the basal body is highly conserved, but there is variability in biogenesis and additional functions that are organism and cell type specific. Work carried out in the protozoan parasite Trypanosoma brucei has arguably produced one of the most detailed dissections of basal body structure and biogenesis within the context of the flagellar pocket and associated organelles. In this review, we provide a detailed overview of the basic basal body structure in T. brucei along with the accessory structures and show how basal body movements during the basal body duplication cycle orchestrate cell and organelle morphogenesis. With this in-depth three-dimensional knowledge, identification of many basal body genes coupled with excellent genetic tools makes it an attractive model organism to study basal body biogenesis and maintenance.
Collapse
Affiliation(s)
- Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, OX3 0BP UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE UK
| |
Collapse
|
98
|
Characterization of an African trypanosome mutant refractory to lectin-induced death. Biochem Biophys Rep 2015; 4:33-38. [PMID: 26393238 PMCID: PMC4574508 DOI: 10.1016/j.bbrep.2015.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Incubation of African trypanosomes with the lectin concanavalin A (conA) leads to alteration in cellular DNA content, DNA degradation, and surface membrane blebbing. Here, we report the generation and characterization of a conA-refractory Trypanosoma brucei line. These insect stage parasites were resistant to conA killing, with a median lethal dose at least 50-fold greater than the parental line. Fluorescence-based experiments revealed that the resistant cells bound less lectin when compared to the parental line. Western blotting and mass spectrometry confirmed that the resistant line lacked an N-glycan required for conA binding on the cellular receptors, EP procyclin proteins. The failure to N-glycosylate the EP procyclins was not the consequence of altered N-glycan precursor biosynthesis, as another glycosylated protein (Fla1p) was normally modified. These findings support the likelihood that resistance to conA was a consequence of failure to bind the lectin trigger.
Concanavalin A is toxic to Trypanosoma brucei. A mutant has been identified that is resistant to the concanavalin A killing. The mutant does not properly N-glycosylate the major lectin receptor, hence its resistance.
Collapse
|
99
|
Valenciano AL, Ramsey AC, Mackey ZB. Deviating the level of proliferating cell nuclear antigen in Trypanosoma brucei elicits distinct mechanisms for inhibiting proliferation and cell cycle progression. Cell Cycle 2015; 14:674-88. [PMID: 25701409 DOI: 10.4161/15384101.2014.987611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The DNA replication machinery is spatially and temporally coordinated in all cells to reproduce a single exact copy of the genome per division, but its regulation in the protozoan parasite Trypanosoma brucei is not well characterized. We characterized the effects of altering the levels of proliferating cell nuclear antigen, a key component of the DNA replication machinery, in bloodstream form T. brucei. This study demonstrated that tight regulation of TbPCNA levels was critical for normal proliferation and DNA replication in the parasite. Depleting TbPCNA mRNA reduced proliferation, severely diminished DNA replication, arrested the synthesis of new DNA and caused the parasites to accumulated in G2/M. Attenuating the parasite by downregulating TbPCNA caused it to become hypersensitive to hydroxyurea. Overexpressing TbPCNA in T. brucei arrested proliferation, inhibited DNA replication and prevented the parasite from exiting G2/M. These results indicate that distinct mechanisms of cell cycle arrest are associated with upregulating or downregulating TbPCNA. The findings of this study validate deregulating intra-parasite levels of TbPCNA as a potential strategy for therapeutically exploiting this target in bloodstream form T. brucei.
Collapse
Key Words
- CDK, cyclin dependent kinase
- Cd, Cluster of differentiation
- DAPI, 4′, 6-diamidino-2-phenylindole
- DNA replication
- EdU, 5-Ethynyl-2′deoxyuridine
- GINS, Go, Ichi, Nii, complex
- Gadd, growth arrest and DNA-damage
- H2O2, hydrogen peroxide
- HU, hydroxyurea
- Hs, Homo sapiens
- Mcm, mini-chromosome maintenance proteins
- MyD, myeloid differentiation primary response gene
- Orc, origin recognition complex
- PCNA, proliferating cell nuclear antigen
- RT-PCR, reverse transcriptase-polymerase chain reaction
- Sc, Saccharomyces cerevisiae
- Sp, Schizosaccharomyces pombe
- Tb, Trypanosoma brucei
- attenuate
- chemosensitize
- hydroxyurea
- proliferation
Collapse
Affiliation(s)
- Ana L Valenciano
- a Department of Biochemistry ; Virginia Polytechnic Institute and State University ; Blacksburg , VA USA
| | | | | |
Collapse
|
100
|
Hu H, Zhou Q, Li Z. SAS-4 Protein in Trypanosoma brucei Controls Life Cycle Transitions by Modulating the Length of the Flagellum Attachment Zone Filament. J Biol Chem 2015; 290:30453-63. [PMID: 26504079 DOI: 10.1074/jbc.m115.694109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 01/05/2023] Open
Abstract
The evolutionarily conserved centriole/basal body protein SAS-4 regulates centriole duplication in metazoa and basal body duplication in flagellated and ciliated organisms. Here, we report that the SAS-4 homolog in the flagellated protozoan Trypanosoma brucei, TbSAS-4, plays an unusual role in controlling life cycle transitions by regulating the length of the flagellum attachment zone (FAZ) filament, a specialized cytoskeletal structure required for flagellum adhesion and cell morphogenesis. TbSAS-4 is concentrated at the distal tip of the FAZ filament, and depletion of TbSAS-4 in the trypomastigote form disrupts the elongation of the new FAZ filament, generating cells with a shorter FAZ associated with a longer unattached flagellum and repositioned kinetoplast and basal body, reminiscent of epimastigote-like morphology. Further, we show that TbSAS-4 associates with six additional FAZ tip proteins, and depletion of TbSAS-4 disrupts the enrichment of these FAZ tip proteins at the new FAZ tip, suggesting a role of TbSAS-4 in maintaining the integrity of this FAZ tip protein complex. Together, these results uncover a novel function of TbSAS-4 in regulating the length of the FAZ filament to control basal body positioning and life cycle transitions in T. brucei.
Collapse
Affiliation(s)
- Huiqing Hu
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas 77030
| | - Qing Zhou
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas 77030
| | - Ziyin Li
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas 77030
| |
Collapse
|