51
|
Dyrkheeva NS, Lomzov AA, Pyshnyi DV, Khodyreva SN, Lavrik OI. Efficiency of exonucleolytic action of apurinic/apyrimidinic endonuclease 1 towards matched and mismatched dNMP at the 3' terminus of different oligomeric DNA structures correlates with thermal stability of DNA duplexes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:699-706. [PMID: 16481227 DOI: 10.1016/j.bbapap.2006.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 01/05/2006] [Accepted: 01/05/2006] [Indexed: 11/20/2022]
Abstract
Human DNA apurinic/apyrimidinic endonuclease 1 (APE1) is involved in the DNA base excision repair process. In addition to its AP (apurinic/apyrimidinic) endonucleolytic function, APE1 possesses 3' phosphodiesterase and 3'-5' exonuclease activities. The 3'-5' exonuclease activity is considered important in proofreading of DNA synthesis catalyzed by DNA polymerase beta. Here, we examine the removal of matched and mismatched dNMP from the 3' terminus of the 3'-recessed and nicked DNA by the APE1 activity using two different reaction buffers. To investigate whether the ability of APE1 to excise nucleotides from the 3' terminus depends on the thermal stability of the DNA duplex, we studied this characteristic of the DNAs that were used in the exonuclease assays in these two buffers. Our data confirm that APE1 removes mismatched nucleotides from the 3' terminus of DNA more efficiently than matched pairs. Both the efficiency of the 3'-5' exonuclease activity of APE1 and the thermal stability of DNA duplexes varied depending on the nature of the flanking group at the 5' margin of the nick. The 3'-5' exonuclease activity of APE1 shows a preference for substrates with a hydroxyl group at the 5' margin of the nick as well as for flapped and recessed DNAs.
Collapse
Affiliation(s)
- Nadezhda S Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, pr. Lavrenteva 8, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|
52
|
|
53
|
Friedrich-Heineken E, Toueille M, Tännler B, Bürki C, Ferrari E, Hottiger MO, Hübscher U. The two DNA clamps Rad9/Rad1/Hus1 complex and proliferating cell nuclear antigen differentially regulate flap endonuclease 1 activity. J Mol Biol 2005; 353:980-9. [PMID: 16216273 DOI: 10.1016/j.jmb.2005.09.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/05/2005] [Accepted: 09/07/2005] [Indexed: 11/22/2022]
Abstract
DNA damage leads to activation of several mechanisms such as DNA repair and cell-cycle checkpoints. It is evident that these different cellular mechanisms have to be finely co-ordinated. Growing evidence suggests that the Rad9/Rad1/Hus1 cell-cycle checkpoint complex (9-1-1 complex), which is recruited to DNA lesion upon DNA damage, plays a major role in DNA repair. This complex has been shown to interact with and stimulate several proteins involved in long-patch base excision repair. On the other hand, the well-characterised DNA clamp-proliferating cell nuclear antigen (PCNA) also interacts with and stimulates several of these factors. In this work, we compared the effects of the 9-1-1 complex and PCNA on flap endonuclease 1 (Fen1). Our data suggest that PCNA and the 9-1-1 complex can independently bind to and activate Fen1. Finally, acetylation of Fen1 by p300-HAT abolished the stimulatory effect of the 9-1-1 complex but not that of PCNA, suggesting a possible mechanism of regulation of this important repair pathway.
Collapse
Affiliation(s)
- Erica Friedrich-Heineken
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
DNA in living cells is constantly subjected to different chemical and physical factors of the environment and to cell metabolites. Some changes altering DNA structure occur spontaneously. This raises the potential danger of harmful mutations that could be transmitted to offspring. To avoid the danger of mutations and changing genetic information, a cell is capable to switch on multiple mechanisms of DNA repair that remove damage and restore native structure. In many cases, removal of the same damage may involve several alternative pathways; this is very important for DNA repair under the most unfavorable conditions. This review summarizes data about all known mechanisms of eukaryotic DNA repair including excision repair (base excision repair and nucleotide excision repair), mismatch repair, repair of double-strand breaks, and cross-link repair. Special attention is given to the regulation of excision repair by different proteins--proliferating cell nuclear antigen (PCNA), p53, and proteasome. The review also highlights problem of bypassing irremovable lesions in DNA.
Collapse
Affiliation(s)
- N P Sharova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
55
|
Refsland EW, Livingston DM. Interactions among DNA ligase I, the flap endonuclease and proliferating cell nuclear antigen in the expansion and contraction of CAG repeat tracts in yeast. Genetics 2005; 171:923-34. [PMID: 16079237 PMCID: PMC1456850 DOI: 10.1534/genetics.105.043448] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among replication mutations that destabilize CAG repeat tracts, mutations of RAD27, encoding the flap endonuclease, and CDC9, encoding DNA ligase I, increase the incidence of repeat tract expansions to the greatest extent. Both enzymes bind to proliferating cell nuclear antigen (PCNA). To understand whether weakening their interactions leads to CAG repeat tract expansions, we have employed alleles named rad27-p and cdc9-p that have orthologous alterations in their respective PCNA interaction peptide (PIP) box. Also, we employed the PCNA allele pol30-90, which has changes within its hydrophobic pocket that interact with the PIP box. All three alleles destabilize a long CAG repeat tract and yield more tract contractions than expansions. Combining rad27-p with cdc9-p increases the expansion frequency above the sum of the numbers recorded in the individual mutants. A similar additive increase in tract expansions occurs in the rad27-p pol30-90 double mutant but not in the cdc9-p pol30-90 double mutant. The frequency of contractions rises in all three double mutants to nearly the same extent. These results suggest that PCNA mediates the entry of the flap endonuclease and DNA ligase I into the process of Okazaki fragment joining, and this ordered entry is necessary to prevent CAG repeat tract expansions.
Collapse
Affiliation(s)
- Eric W Refsland
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
56
|
Subramanian J, Vijayakumar S, Tomkinson AE, Arnheim N. Genetic instability induced by overexpression of DNA ligase I in budding yeast. Genetics 2005; 171:427-41. [PMID: 15965249 PMCID: PMC1456761 DOI: 10.1534/genetics.105.042861] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombination and microsatellite mutation in humans contribute to disorders including cancer and trinucleotide repeat (TNR) disease. TNR expansions in wild-type yeast may arise by flap ligation during lagging-strand replication. Here we show that overexpression of DNA ligase I (CDC9) increases the rates of TNR expansion, of TNR contraction, and of mitotic recombination. Surprisingly, this effect is observed with catalytically inactive forms of Cdc9p protein, but only if they possess a functional PCNA-binding site. Furthermore, in vitro analysis indicates that the interaction of PCNA with Cdc9p and Rad27p (Fen1) is mutually exclusive. Together our genetic and biochemical analysis suggests that, although DNA ligase I seals DNA nicks during replication, repair, and recombination, higher than normal levels can yield genetic instability by disrupting the normal interplay of PCNA with other proteins such as Fen1.
Collapse
Affiliation(s)
- Jaichandar Subramanian
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, 90089-2910, USA
| | | | | | | |
Collapse
|
57
|
Bonatto D, Brendel M, Henriques JAP. A new group of plant-specific ATP-dependent DNA ligases identified by protein phylogeny, hydrophobic cluster analysis and 3-dimensional modelling. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:161-174. [PMID: 32689120 DOI: 10.1071/fp04143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 01/06/2005] [Indexed: 06/11/2023]
Abstract
The eukaryotic ATP-dependent DNA ligases comprise a group of orthologous proteins that have distinct roles in DNA metabolism. In contrast with the well-known DNA ligases of animal cells, the DNA ligases of plant cells are poorly described. Until now, only two DNA ligases (I and IV) genes of Arabidopsis thaliana (L.) Heynh were isolated and characterised. Use of the complete genomic sequences of Oryza sativa L. and A. thaliana, as well as the partially assembled genomic data of Medicago truncatula L. and Brassica spp., allowed us to identify a new family of ATP-dependent DNA ligases that are found only in the Viridiplantae kingdom. An in-depth phylogenetic analysis of protein sequences showed that this family composes a distinct clade, which shares a last universal common ancestor with DNA ligases I. In silico sequence studies indicate that these proteins have distinct physico-chemical properties when compared with those of animal and fungal DNA ligases. Moreover, hydrophobic cluster analysis and 3-dimensional modelling allowed us to map two conserved domains within these DNA ligases I-like proteins. Additional data of microsynteny analysis indicate that these DNA ligases I-like genes are linked to the S and SLL2 loci of Brassica spp. and A. thaliana, respectively. Combining the results of all analyses, we propose the creation of the DNA ligases VI (LIG6) family, which is composed by plant-specific DNA ligases.
Collapse
Affiliation(s)
- Diego Bonatto
- Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9500, 91507-970 Porto Alegre, RS, Brazil
| | - Martin Brendel
- Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9500, 91507-970 Porto Alegre, RS, Brazil
| | - João Antonio Pêgas Henriques
- Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9500, 91507-970 Porto Alegre, RS, Brazil
| |
Collapse
|
58
|
Bruning JB, Shamoo Y. Structural and Thermodynamic Analysis of Human PCNA with Peptides Derived from DNA Polymerase-δ p66 Subunit and Flap Endonuclease-1. Structure 2004; 12:2209-19. [PMID: 15576034 DOI: 10.1016/j.str.2004.09.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 09/07/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
Human Proliferating Cellular Nuclear Antigen (hPCNA), a member of the sliding clamp family of proteins, makes specific protein-protein interactions with DNA replication and repair proteins through a small peptide motif termed the PCNA-interacting protein, or PIP-box. We solved the structure of hPCNA bound to PIP-box-containing peptides from the p66 subunit of the human replicative DNA polymerase-delta (452-466) at 2.6 A and of the flap endonuclease (FEN1) (331-350) at 1.85 A resolution. Both structures demonstrate that the pol-delta p66 and FEN1 peptides interact with hPCNA at the same site shown to bind the cdk-inhibitor p21(CIP1). Binding studies indicate that peptides from the p66 subunit of the pol-delta holoenzyme and FEN1 bind hPCNA from 189- to 725-fold less tightly than those of p21. Thus, the PIP-box and flanking regions provide a small docking peptide whose affinities can be readily adjusted in accord with biological necessity to mediate the binding of DNA replication and repair proteins to hPCNA.
Collapse
Affiliation(s)
- John B Bruning
- Department of Biochemistry and Cell Biology, Rice University, 6100 South Main Street, MS140, Houston, TX 77005, USA
| | | |
Collapse
|
59
|
Levin DS, Vijayakumar S, Liu X, Bermudez VP, Hurwitz J, Tomkinson AE. A Conserved Interaction between the Replicative Clamp Loader and DNA Ligase in Eukaryotes. J Biol Chem 2004; 279:55196-201. [PMID: 15502161 DOI: 10.1074/jbc.m409250200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recruitment of DNA ligase I to replication foci and the efficient joining of Okazaki fragments is dependent on the interaction between DNA ligase I and proliferating cell nuclear antigen (PCNA). Although the PCNA sliding clamp tethers DNA ligase I to nicked duplex DNA circles, the interaction does not enhance DNA joining. This suggests that other factors may be involved in the joining of Okazaki fragments. In this study, we describe an association between replication factor C (RFC), the clamp loader, and DNA ligase I in human cell extracts. Subsequently, we demonstrate that there is a direct physical interaction between these proteins that involves both the N- and C-terminal domains of DNA ligase I, the N terminus of the large RFC subunit p140, and the p36 and p38 subunits of RFC. Although RFC inhibited DNA joining by DNA ligase I, the addition of PCNA alleviated inhibition by RFC. Notably, the effect of PCNA on ligation was dependent on the PCNA-binding site of DNA ligase I. Together, these results provide a molecular explanation for the key in vivo role of the DNA ligase I/PCNA interaction and suggest that the joining of Okazaki fragments is coordinated by pairwise interactions among RFC, PCNA, and DNA ligase I.
Collapse
Affiliation(s)
- David S Levin
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | | | | | | | | | | |
Collapse
|
60
|
Wang W, Brandt P, Rossi ML, Lindsey-Boltz L, Podust V, Fanning E, Sancar A, Bambara RA. The human Rad9-Rad1-Hus1 checkpoint complex stimulates flap endonuclease 1. Proc Natl Acad Sci U S A 2004; 101:16762-7. [PMID: 15556996 PMCID: PMC534749 DOI: 10.1073/pnas.0407686101] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The toroidal damage checkpoint complex Rad9-Rad1-Hus1 (9-1-1) has been characterized as a sensor of DNA damage. Flap endonuclease 1 (FEN1) is a structure-specific nuclease involved both in removing initiator RNA from Okazaki fragments and in DNA repair pathways. FEN1 activity is stimulated by proliferating cell nuclear antigen (PCNA), a toroidal sliding clamp that acts as a platform for DNA replication and repair complexes. We show that 9-1-1 also binds and stimulates FEN1. Stimulation is observed on a variety of flap, nick, and gapped substrates simulating repair intermediates. Blocking 9-1-1 entry to the double strands prevents a portion of the stimulation. Like PCNA stimulation, 9-1-1 stimulation cannot circumvent the tracking mechanism by which FEN1 enters the substrate; however, 9-1-1 does not substitute for PCNA in the stimulation of DNA polymerase beta. This suggests that 9-1-1 is a damage-specific activator of FEN1.
Collapse
Affiliation(s)
- Wensheng Wang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Kao HI, Bambara RA. The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit Rev Biochem Mol Biol 2004; 38:433-52. [PMID: 14693726 DOI: 10.1080/10409230390259382] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An initiator RNA (iRNA) is required to prime cellular DNA synthesis. The structure of double-stranded DNA allows the synthesis of one strand to be continuous but the other must be generated discontinuously. Frequent priming of the discontinuous strand results in the formation of many small segments, designated Okazaki fragments. These short pieces need to be processed and joined to form an intact DNA strand. Our knowledge of the mechanism of iRNA removal is still evolving. Early reconstituted systems suggesting that the removal of iRNA requires sequential action of RNase H and flap endonuclease 1 (FEN1) led to the RNase H/FEN1 model. However, genetic analyses implied that Dna2p, an essential helicase/nuclease, is required. Subsequent biochemical studies suggested sequential action of RPA, Dna2p, and FEN1 for iRNA removal, leading to the second model, the Dna2p/RPA/FEN1 model. Studies of strand-displacement synthesis by polymerase delta indicated that in a reconstituted system, FEN1 could act as soon as short flaps are created, giving rise to a third model, the FEN1-only model. Each of the three pathways is supported by different genetic and biochemical results. Properties of the major protein components in this process will be discussed, and the validity of each model as a true representation of Okazaki fragment processing will be critically evaluated in this review.
Collapse
Affiliation(s)
- Hui-I Kao
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
62
|
Kesti T, McDonald WH, Yates JR, Wittenberg C. Cell Cycle-dependent Phosphorylation of the DNA Polymerase Epsilon Subunit, Dpb2, by the Cdc28 Cyclin-dependent Protein Kinase. J Biol Chem 2004; 279:14245-55. [PMID: 14747467 DOI: 10.1074/jbc.m313289200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA polymerase epsilon (Polepsilon), one of the three major eukaryotic replicative polymerases, is comprised of the essential catalytic subunit, called Pol2 in budding yeast, and three accessory subunits, only one of which, Dpb2, is essential. Polepsilon is recruited to replication origins during late G(1) phase prior to activation of replication. In this work we show that the budding yeast Dpb2 is phosphorylated in a cell cycle-dependent manner during late G(1) phase. Phosphorylation results in the appearance of a lower mobility species. The appearance of that species in vivo is dependent upon the Cdc28 cyclin-dependent protein kinase (CDK), which can directly phosphorylate Dpb2 in vitro. Either G(1) cyclin (Cln) or B-type cyclin (Clb)-associated CDK is sufficient for phosphorylation. Mapping of phosphorylation sites by mass spectrometry using a novel gel-based proteolysis protocol shows that, of the three consensus CDK phosphorylation sites, at least two, Ser-144 and Ser-616, are phosphorylated in vivo. The Cdc28 CDK phosphorylates only Ser-144 in vitro. Using site-directed mutagenesis, we show that Ser-144 is sufficient for the formation of the lower mobility form of Dpb2 in vivo. In contrast, Ser-616 appears not to be phosphorylated by Cdc28. Finally, inactivation of all three CDK consensus sites in Dpb2 results in a synthetic phenotype with the pol2-11 mutation, leading to decreased spore viability, slow growth, and increased thermosensitivity. We suggest that phosphorylation of Dpb2 during late G(1) phase at CDK consensus sites facilitates the interaction with Pol2 or the activity of Polepsilon
Collapse
Affiliation(s)
- Tapio Kesti
- Departments of Molecular Biology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
63
|
Riva F, Savio M, Cazzalini O, Stivala LA, Scovassi IA, Cox LS, Ducommun B, Prosperi E. Distinct pools of proliferating cell nuclear antigen associated to DNA replication sites interact with the p125 subunit of DNA polymerase δ or DNA ligase I. Exp Cell Res 2004; 293:357-67. [PMID: 14729473 DOI: 10.1016/j.yexcr.2003.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication, repair, and cell cycle control. PCNA is a homotrimeric ring that, when encircling DNA, is not easily extractable. Consequently, the dynamics of protein-protein interactions established by PCNA at DNA replication sites is not well understood. We have used DNase I to release DNA-bound PCNA together with replication proteins including the p125-catalytic subunit of DNA polymerase delta (p125-pol delta), DNA ligase I, cyclin A, and cyclin-dependent kinase 2 (CDK2). Interaction with these proteins was investigated by immunoprecipitation with antibodies binding near the interdomain connector loop or to the C-terminal domain of PCNA, respectively, or with antibodies to p125-pol delta or DNA ligase I. PCNA interaction with p125-pol delta or DNA ligase I was detected only by the latter antibodies, and found to be mutually exclusive. In contrast, antibodies to PCNA co-immunoprecipitated only CDK2. A GST-p21(waf1/cip1) C-terminal peptide displaced p125-pol delta and DNA ligase I, but not CDK2, from PCNA. These results suggest that PCNA trimers bound to DNA during the S phase are organized as distinct pools able to bind selectively different partners. Among them, p125-pol delta and DNA ligase I interact with PCNA in a mutually exclusive manner.
Collapse
Affiliation(s)
- Federica Riva
- Istituto di Genetica Molecolare del CNR, Dipartimento di Biologia Animale, sezione Istochimica e Citometria, Università di Pavia, Piazza Botta 10, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Kao HI, Veeraraghavan J, Polaczek P, Campbell JL, Bambara RA. On the roles of Saccharomyces cerevisiae Dna2p and Flap endonuclease 1 in Okazaki fragment processing. J Biol Chem 2004; 279:15014-24. [PMID: 14747468 DOI: 10.1074/jbc.m313216200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Short DNA segments designated Okazaki fragments are intermediates in eukaryotic DNA replication. Each contains an initiator RNA/DNA primer (iRNA/DNA), which is converted into a 5'-flap and then removed prior to fragment joining. In one model for this process, the flap endonuclease 1 (FEN1) removes the iRNA. In the other, the single-stranded binding protein, replication protein A (RPA), coats the flap, inhibits FEN1, but stimulates cleavage by the Dna2p helicase/nuclease. RPA dissociates from the resultant short flap, allowing FEN1 cleavage. To determine the most likely process, we analyzed cleavage of short and long 5'-flaps. FEN1 cleaves 10-nucleotide fixed or equilibrating flaps in an efficient reaction, insensitive to even high levels of RPA or Dna2p. On 30-nucleotide fixed or equilibrating flaps, RPA partially inhibits FEN1. CTG flaps can form foldback structures and were inhibitory to both nucleases, however, addition of a dT(12) to the 5'-end of a CTG flap allowed Dna2p cleavage. The presence of high Dna2p activity, under reaction conditions favoring helicase activity, substantially stimulated FEN1 cleavage of tailed-foldback flaps and also 30-nucleotide unstructured flaps. Our results suggest Dna2p is not used for processing of most flaps. However, Dna2p has a role in a pathway for processing structured flaps, in which it aids FEN1 using both its nuclease and helicase activities.
Collapse
Affiliation(s)
- Hui-I Kao
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | | | | | | | |
Collapse
|
65
|
Majka J, Burgers PMJ. The PCNA-RFC families of DNA clamps and clamp loaders. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:227-60. [PMID: 15210332 DOI: 10.1016/s0079-6603(04)78006-x] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The proliferating cell nuclear antigen PCNA functions at multiple levels in directing DNA metabolic pathways. Unbound to DNA, PCNA promotes localization of replication factors with a consensus PCNA-binding domain to replication factories. When bound to DNA, PCNA organizes various proteins involved in DNA replication, DNA repair, DNA modification, and chromatin modeling. Its modification by ubiquitin directs the cellular response to DNA damage. The ring-like PCNA homotrimer encircles double-stranded DNA and slides spontaneously across it. Loading of PCNA onto DNA at template-primer junctions is performed in an ATP-dependent process by replication factor C (RFC), a heteropentameric AAA+ protein complex consisting of the Rfc1, Rfc2, Rfc3, Rfc4, and Rfc5 subunits. Loading of yeast PCNA (POL30) is mechanistically distinct from analogous processes in E. coli (beta subunit by the gamma complex) and bacteriophage T4 (gp45 by gp44/62). Multiple stepwise ATP-binding events to RFC are required to load PCNA onto primed DNA. This stepwise mechanism should permit editing of this process at individual steps and allow for divergence of the default process into more specialized modes. Indeed, alternative RFC complexes consisting of the small RFC subunits together with an alternative Rfc1-like subunit have been identified. A complex required for the DNA damage checkpoint contains the Rad24 subunit, a complex required for sister chromatid cohesion contains the Ctf18 subunit, and a complex that aids in genome stability contains the Elg1 subunit. Only the RFC-Rad24 complex has a known associated clamp, a heterotrimeric complex consisting of Rad17, Mec3, and Ddc1. The other putative clamp loaders could either act on clamps yet to be identified or act on the two known clamps.
Collapse
Affiliation(s)
- Jerzy Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
66
|
Abstract
Base excision repair (BER) is the major mechanism for processing of mutagenic and genotoxic DNA base lesions caused by cellular environmental or exogenous mutagens. In vitro base excision repair assays have been used in studies aimed at understanding the nature of various human diseases, aging and mechanisms of genome recovery after mutagenic stress. This review describes the key base excision repair assays and addresses their advantages and limitations.
Collapse
Affiliation(s)
- Grigory L Dianov
- MRC Radiation and Genome Stability Unit, Medical Research Council, Harwell, OX11 0RD Oxfordshire, UK.
| |
Collapse
|
67
|
Ferrari G, Rossi R, Arosio D, Vindigni A, Biamonti G, Montecucco A. Cell cycle-dependent phosphorylation of human DNA ligase I at the cyclin-dependent kinase sites. J Biol Chem 2003; 278:37761-7. [PMID: 12851383 DOI: 10.1074/jbc.m304462200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have described previously that, during S-phase, human DNA ligase I is phosphorylated on Ser66, a casein kinase II site. Here we investigate the phosphorylation status of DNA ligase I during the cell cycle by gel shift analysis and electrospray mass spectrometry. We show that three residues (Ser51, Ser76, and Ser91), which are part of cyclin-dependent kinase sites, are phosphorylated in a cell cycle-dependent manner. Phosphorylation of Ser91 occurs at G1/S transition and depends on a cyclin binding site in the C-terminal part of the protein. This modification is required for the ensuing phosphorylation of Ser76 detectable in G2/M extracts. The substitution of serines at positions 51, 66, 76, and 91 with aspartic acid to mimic the phosphorylated enzyme hampers the association of DNA ligase I with the replication foci. We suggest that the phosphorylation of DNA ligase I and possibly other replicative enzymes is part of the mechanism that directs the disassembly of the replication machinery at the completion of S-phase.
Collapse
Affiliation(s)
- Giovanni Ferrari
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
68
|
Larsen E, Gran C, Saether BE, Seeberg E, Klungland A. Proliferation failure and gamma radiation sensitivity of Fen1 null mutant mice at the blastocyst stage. Mol Cell Biol 2003; 23:5346-53. [PMID: 12861020 PMCID: PMC165721 DOI: 10.1128/mcb.23.15.5346-5353.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flap endonuclease 1 (FEN1) has been shown to remove 5' overhanging flap intermediates during base excision repair and to process the 5' ends of Okazaki fragments during lagging-strand DNA replication in vitro. To assess the in vivo role of the mammalian enzyme in repair and replication, we used a gene-targeting approach to generate mice lacking a functional Fen1 gene. Heterozygote animals appear normal, whereas complete depletion of FEN1 causes early embryonic lethality. Fen1(-/-) blastocysts fail to form inner cell mass during cellular outgrowth, and a complete inactivation of DNA synthesis in giant cells of blastocyst outgrowth was observed. Exposure of Fen1(-/-) blastocysts to gamma radiation caused extensive apoptosis, implying an essential role for FEN1 in the repair of radiation-induced DNA damage in vivo. Our data thus provide in vivo evidence for an essential function of FEN1 in DNA repair, as well as in DNA replication.
Collapse
Affiliation(s)
- Elisabeth Larsen
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, The National Hospital, University of Oslo, 0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
69
|
Abstract
DNA polymerase sliding clamps are a family of ring-shaped proteins that play essential roles in DNA metabolism. The proteins from the three domains of life, Bacteria, Archaea and Eukarya, as well as those from bacteriophages and viruses, were shown to interact with a large number of cellular factors and to influence their activity. In the last several years a large number of such proteins have been identified and studied. Here the various proteins that have been shown to interact with the sliding clamps of Bacteria, Archaea and Eukarya are summarized.
Collapse
Affiliation(s)
- Jonathan B Vivona
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | |
Collapse
|
70
|
Frouin I, Montecucco A, Spadari S, Maga G. DNA replication: a complex matter. EMBO Rep 2003; 4:666-70. [PMID: 12835753 PMCID: PMC1326325 DOI: 10.1038/sj.embor.embor886] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 05/21/2003] [Indexed: 02/01/2023] Open
Abstract
In eukaryotic cells, the essential function of DNA replication is carried out by a network of enzymes and proteins, which work together to rapidly and accurately duplicate the genetic information of the cell. Many of the components of this DNA replication apparatus associate with other cellular factors as components of multiprotein complexes, which act cooperatively in networks to regulate cell cycle progression and checkpoint control, but are distinct from the pre-replication complexes that associate with the origins and regulate their firing. In this review, we summarize current knowledge about the composition and dynamics of these large multiprotein complexes in mammalian cells and their relationships to the replication factories.
Collapse
Affiliation(s)
- Isabelle Frouin
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, I-27100
Pavia, Italy
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8050
Zürich, Switzerland
| | - Alessandra Montecucco
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, I-27100
Pavia, Italy
| | - Silvio Spadari
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, I-27100
Pavia, Italy
| | - Giovanni Maga
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, I-27100
Pavia, Italy
- Tel: +39 0382 546355; Fax: +39 0382 422286;
| |
Collapse
|
71
|
Namekawa S, Hamada F, Ishii S, Ichijima Y, Yamaguchi T, Nara T, Kimura S, Ishizaki T, Iwabata K, Koshiyama A, Teraoka H, Sakaguchi K. Coprinus cinereus DNA ligase I during meiotic development. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1627:47-55. [PMID: 12759191 DOI: 10.1016/s0167-4781(03)00073-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA ligase I is thought to be essential for DNA replication, repair and recombination, at least in the mitotic cell cycle, but whether this is also the case during the meiotic cell cycle is still obscure. To investigate the role of DNA ligase I during the meiotic cell cycle, we cloned the Coprinus cinereus DNA ligase I cDNA (CcLIG1). Northern blotting analysis indicated that CcLIG1 is expressed not only in the premeiotic S-phase but also during the meiotic cell cycle itself. Especially, intense signals were observed in the leptotene and zygotene stages. Western blotting analysis indicated that CcLIG1 is expressed through the meiotic cell cycle and immunofluorescence also showed CcLIG1 protein staining in meiotic cells. Interestingly, the patterns was similar to that for the C. cinereus proliferating cell nuclear antigen gene (CcPCNA) and immunoprecipitation analysis suggested that CcPCNA binds to CcLIG1 in crude extracts of meiotic prophase I tissues. Based on these observations, relationships and roles during the meiotic cell cycle are discussed.
Collapse
Affiliation(s)
- Satoshi Namekawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Chiba 278-0022, Noda, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Liu Y, Bambara RA. Analysis of human flap endonuclease 1 mutants reveals a mechanism to prevent triplet repeat expansion. J Biol Chem 2003; 278:13728-39. [PMID: 12554738 DOI: 10.1074/jbc.m212061200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Flap endonuclease 1 (FEN1), involved in the joining of Okazaki fragments, has been proposed to restrain DNA repeat sequence expansion, a process associated with aging and disease. Here we analyze properties of human FEN1 having mutations at two conserved glycines (G66S and G242D) causing defects in nuclease activity. Introduction of these mutants into yeast led to sequence expansions. Reconstituting triplet repeat expansion in vitro, we previously found that DNA ligase I promotes expansion, but FEN1 prevents the ligation that forms expanded products. Here we show that among the intermediates that could generate sequence expansion, a bubble is necessary for ligation to produce the expansion product. Severe exonuclease defects in the mutant FEN1 suggested that the inability to degrade bubbles exonucleolytically leads to expansion. However, even wild type FEN1 exonuclease cannot compete with DNA ligase I to degrade a bubble structure before it can be ligated. Instead, we propose that FEN1 suppresses sequence expansion by degrading flaps that equilibrate with bubbles, thereby reducing bubble concentration. In this way FEN1 employs endonuclease rather than exonuclease to prevent expansions. A model is presented describing the roles of DNA structure, DNA ligase I, and FEN1 in sequence expansion.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | |
Collapse
|
73
|
Ayyagari R, Gomes XV, Gordenin DA, Burgers PMJ. Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2. J Biol Chem 2003; 278:1618-25. [PMID: 12424238 DOI: 10.1074/jbc.m209801200] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the presence of proliferating cell nuclear antigen, yeast DNA polymerase delta (Pol delta) replicated DNA at a rate of 40-60 nt/s. When downstream double-stranded DNA was encountered, Pol delta paused, but most replication complexes proceeded to carry out strand-displacement synthesis at a rate of 1.5 nt/s. In the presence of the flap endonuclease FEN1 (Rad27), the complex carried out nick translation (1.7 nt/s). The Dna2 nuclease/helicase alone did not efficiently promote nick translation, nor did it affect nick translation with FEN1. Maturation in the presence of DNA ligase was studied with various downstream primers. Downstream DNA primers, RNA primers, and small 5'-flaps were efficiently matured by Pol delta and FEN1, and Dna2 did not stimulate maturation. However, maturation of long 5'-flaps to which replication protein A can bind required both DNA2 and FEN1. The maturation kinetics were optimal with a slight molar excess over DNA of Pol delta, FEN1, and proliferating cell nuclear antigen. A large molar excess of DNA ligase substantially enhanced the rate of maturation and shortened the nick-translation patch (nucleotides excised past the RNA/DNA junction before ligation) to 4-6 nt from 8-12 nt with equimolar ligase. These results suggest that FEN1, but not DNA ligase, is a stable component of the maturation complex.
Collapse
Affiliation(s)
- Rao Ayyagari
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
74
|
Dionne I, Nookala RK, Jackson SP, Doherty AJ, Bell SD. A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Cell 2003; 11:275-82. [PMID: 12535540 DOI: 10.1016/s1097-2765(02)00824-9] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sliding clamp, PCNA, of the archaeon Sulfolobus solfataricus P2 is a heterotrimer of three distinct subunits (PCNA1, 2, and 3) that assembles in a defined manner. The PCNA heterotrimer, but not individual subunits, stimulates the activities of the DNA polymerase, DNA ligase I, and the flap endonuclease (FEN1) of S. solfataricus. Distinct PCNA subunits contact DNA polymerase, DNA ligase, or FEN1, imposing a defined architecture at the lagging strand fork and suggesting the existence of a preformed scanning complex at the fork. This provides a mechanism to tightly couple DNA synthesis and Okazaki fragment maturation. Additionally, unique subunit-specific interactions between components of the clamp loader, RFC, suggest a model for clamp loading of PCNA.
Collapse
Affiliation(s)
- Isabelle Dionne
- Medical Research Council Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | | | | | | | |
Collapse
|
75
|
Schmidt KH, Derry KL, Kolodner RD. Saccharomyces cerevisiae RRM3, a 5' to 3' DNA helicase, physically interacts with proliferating cell nuclear antigen. J Biol Chem 2002; 277:45331-7. [PMID: 12239216 DOI: 10.1074/jbc.m207263200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) plays an essential role in eukaryotic DNA replication, and numerous DNA replication proteins have been found to interact with PCNA through a conserved eight-amino acid motif called the PIP-box. We have searched the genome of the yeast Saccharomyces cerevisiae for open reading frames that encode proteins with putative PIP-boxes and initiated testing of 135 novel candidates for their ability to interact with PCNA-conjugated agarose beads. The first new PCNA-binding protein identified in this manner is the 5' to 3' DNA helicase RRM3. Yeast two-hybrid tests show that N-terminal deletions of RRM3, which remove the PIP-box but leave the helicase motifs intact, abolish the interaction with PCNA. In addition, mutating the two phenylalanine residues in the PIP-box to alanine or aspartic acid reduces binding to PCNA, confirming that the PIP-box in RRM3 is responsible for interaction with PCNA. The results presented here suggest that the RRM3 helicase functions at the replication fork.
Collapse
Affiliation(s)
- Kristina H Schmidt
- Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, California 92093-0660, USA
| | | | | |
Collapse
|
76
|
Ranalli TA, Tom S, Bambara RA. AP endonuclease 1 coordinates flap endonuclease 1 and DNA ligase I activity in long patch base excision repair. J Biol Chem 2002; 277:41715-24. [PMID: 12200445 DOI: 10.1074/jbc.m207207200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Base loss is common in cellular DNA, resulting from spontaneous degradation and enzymatic removal of damaged bases. Apurinic/apyrimidinic (AP) endonucleases recognize and cleave abasic (AP) sites during base excision repair (BER). APE1 (REF1, HAP1) is the predominant AP endonuclease in mammalian cells. Here we analyzed the influences of APE1 on the human BER pathway. Specifically, APE1 enhanced the enzymatic activity of both flap endonuclease1 (FEN1) and DNA ligase I. FEN1 was stimulated on all tested substrates, regardless of flap length. Interestingly, we have found that APE1 can also inhibit the activities of both enzymes on substrates with a tetrahydrofuran (THF) residue on the 5'-downstream primer of a nick, simulating a reduced abasic site. However once the THF residue was displaced at least a single nucleotide, stimulation of FEN1 activity by APE1 resumes. Stimulation of DNA ligase I required the traditional nicked substrate. Furthermore, APE1 was able to enhance overall product formation in reconstitution of BER steps involving FEN1 cleavage followed by ligation. Overall, APE1 both stimulated downstream components of BER and prevented a futile cleavage and ligation cycle, indicating a far-reaching role in BER.
Collapse
Affiliation(s)
- Tamara A Ranalli
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642
| | | | | |
Collapse
|
77
|
Parlanti E, Fortini P, Macpherson P, Laval J, Dogliotti E. Base excision repair of adenine/8-oxoguanine mispairs by an aphidicolin-sensitive DNA polymerase in human cell extracts. Oncogene 2002; 21:5204-12. [PMID: 12149642 DOI: 10.1038/sj.onc.1205561] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Revised: 03/06/2002] [Accepted: 03/28/2002] [Indexed: 11/08/2022]
Abstract
Replication of DNA containing 8-oxo-7,8-dihydroguanine (8oxoG) can generate 8oxoG/A base pairs which, if uncorrected, lead to G-->T transversions. It is generally accepted that the repair of these promutagenic base pairs in human cells is initiated by the MutY DNA glycosylase homolog (hMYH). Here we provide biochemical evidence that human cell extracts perform base excision repair (BER) on both DNA strands of an 8oxoG/A mismatch. At early repair times the specificity of nucleotide incorporation indicates a preferential insertion of C opposite 8oxoG leading to the formation of 8oxoG/C pairs. This is followed by repair synthesis on the opposite DNA strand that is consistent with hOGG1-mediated correction of 8oxoG/C to G/C. Repair synthesis on either strand is completely inhibited by aphidicolin suggesting that a replicative DNA polymerase is involved in the gap filling. This is the first demonstration that repair of 8oxoG/A base pairs is by two BER events likely mediated by Poldelta/epsilon. We suggest that the Poldelta/epsilon-mediated BER is the general mode of repair when BER lesions are formed at replication forks.
Collapse
Affiliation(s)
- Eleonora Parlanti
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
78
|
Pascucci B, Maga G, Hübscher U, Bjoras M, Seeberg E, Hickson ID, Villani G, Giordano C, Cellai L, Dogliotti E. Reconstitution of the base excision repair pathway for 7,8-dihydro-8-oxoguanine with purified human proteins. Nucleic Acids Res 2002; 30:2124-30. [PMID: 12000832 PMCID: PMC115284 DOI: 10.1093/nar/30.10.2124] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In mammalian cells, repair of the most abundant endogenous premutagenic lesion in DNA, 7,8-dihydro-8-oxoguanine (8-oxoG), is initiated by the bifunctional DNA glycosylase OGG1. By using purified human proteins, we have reconstituted repair of 8-oxoG lesions in DNA in vitro on a plasmid DNA substrate containing a single 8-oxoG residue. It is shown that efficient and complete repair requires only hOGG1, the AP endonuclease HAP1, DNA polymerase (Pol) beta and DNA ligase I. After glycosylase base removal, repair occurred through the AP lyase step of hOGG1 followed by removal of the 3'-terminal sugar phosphate by the 3'-diesterase activity of HAP1. Addition of PCNA had a slight stimulatory effect on repair. Fen1 or high concentrations of Pol beta were required to induce strand displacement DNA synthesis at incised 8-oxoG in the absence of DNA ligase. Fen1 induced Pol beta strand displacement DNA synthesis at HAP1-cleaved AP sites differently from that at gaps introduced by hOGG1/HAP1 at 8-oxoG sites. In the presence of DNA ligase I, the repair reaction at 8-oxoG was confined to 1 nt replacement, even in the presence of high levels of Pol beta and Fen1. Thus, the assembly of all the core proteins for 8-oxoG repair catalyses one major pathway that involves single nucleotide repair patches.
Collapse
Affiliation(s)
- B Pascucci
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Kao HI, Henricksen LA, Liu Y, Bambara RA. Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J Biol Chem 2002; 277:14379-89. [PMID: 11825897 DOI: 10.1074/jbc.m110662200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is a structure-specific nuclease that cleaves substrates containing unannealed 5'-flaps during Okazaki fragment processing. Cleavage removes the flap at or near the point of annealing. The preferred substrate for archaeal FEN1 or the 5'-nuclease domains of bacterial DNA polymerases is a double-flap structure containing a 3'-tail on the upstream primer adjacent to the 5'-flap. We report that FEN1 in Saccharomyces cerevisiae (Rad27p) exhibits a similar specificity. Cleavage was most efficient when the upstream primer contained a 1-nucleotide 3'-tail as compared with the fully annealed upstream primer traditionally tested. The site of cleavage was exclusively at a position one nucleotide into the annealed region, allowing human DNA ligase I to seal all resulting nicks. In contrast, a portion of the products from traditional flap substrates is not ligated. The 3'-OH of the upstream primer is not critical for double-flap recognition, because Rad27p is tolerant of modifications. However, the positioning of the 3'-nucleotide defines the site of cleavage. We have tested substrates having complementary tails that equilibrate to many structures by branch migration. FEN1 only cleaved those containing a 1-nucleotide 3'-tail. Equilibrating substrates containing 12-ribonucleotides at the end of the 5'-flap simulates the situation in vivo. Rad27p cleaves this substrate in the expected 1-nucleotide 3'-tail configuration. Overall, these results suggest that the double-flap substrate is formed and cleaved during eukaryotic DNA replication in vivo.
Collapse
Affiliation(s)
- Hui-I Kao
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
80
|
Bentley DJ, Harrison C, Ketchen AM, Redhead NJ, Samuel K, Waterfall M, Ansell JD, Melton DW. DNA ligase I null mouse cells show normal DNA repair activity but altered DNA replication and reduced genome stability. J Cell Sci 2002; 115:1551-61. [PMID: 11896201 DOI: 10.1242/jcs.115.7.1551] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA ligase I is the key ligase for DNA replication in mammalian cells and has also been reported to be involved in a number of recombination and repair processes. Our previous finding that Lig1 knockout mouse embryos developed normally to mid-term before succumbing to a specific haematopoietic defect was difficult to reconcile with a report that DNA ligase I is essential for the viability of cultured mammalian cells. To address this issue, we generated a second Lig1 targeted allele and found that the phenotypes of our two Lig1 mutant mouse lines are identical. Widely different levels of Lig1 fusion transcripts were detected from the two targeted alleles, but we could not detect any DNA ligase I protein, and we believe both are effective Lig1 null alleles. Using foetal liver cells to repopulate the haematopoietic system of lethally irradiated adult mice, we demonstrate that the haematopoietic defect in DNA-ligase-I-deficient embryos is a quantitative deficiency relating to reduced proliferation rather than a qualitative block in any haematopoietic lineage. DNA ligase I null fibroblasts from Lig1 mutant embryos showed an accumulation of DNA replication intermediates and increased genome instability. In the absence of a demonstrable deficiency in DNA repair we postulate that, unusually, genome instability may result directly from the DNA replication defect. Lig1null mouse cells performed better in the survival and replication assays than a human LIG1 point mutant, and we suggest that the complete absence of DNA ligase I may make it easier for another ligase to compensate for DNA ligase I deficiency.
Collapse
Affiliation(s)
- Darren J Bentley
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Ranalli TA, DeMott MS, Bambara RA. Mechanism underlying replication protein a stimulation of DNA ligase I. J Biol Chem 2002; 277:1719-27. [PMID: 11698410 DOI: 10.1074/jbc.m109053200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein that participates in multiple DNA transactions that include replication and repair. Base excision repair is a central DNA repair pathway, responsible for the removal of damaged bases. We have shown previously that RPA was able to stimulate long patch base excision repair reconstituted in vitro. Herein we show that human RPA stimulates the activity of the base excision repair component human DNA ligase I by approximately 15-fold. Other analyzed single-stranded binding proteins would not substitute, attesting to the specificity of the stimulation. Conversely, RPA was unable to stimulate the functionally homologous ATP-dependent ligase from T4 bacteriophage. Kinetic analyses suggest that catalysis of ligation is enhanced by RPA, as a 4-fold increase in k(cat) is observed, whereas K(m) is not significantly changed. Substrate competition experiments further support the conclusion that RPA does not alter the specificity or rate of substrate binding by DNA ligase I. Additionally, RPA is unable to significantly enhance ligation on substrates containing an unannealed 3'-upstream primer terminus, suggesting that RPA does not stabilize the nick site to enhance ligase recognition. Furthermore when DNA ligase I is pre-bound to the substrate and limited to a single turnover, RPA is still able to stimulate ligation. Overall, the results support a mechanism of stimulation that involves increasing the rate of catalysis of ligation.
Collapse
Affiliation(s)
- Tamara A Ranalli
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
82
|
Tom S, Ranalli TA, Podust VN, Bambara RA. Regulatory roles of p21 and apurinic/apyrimidinic endonuclease 1 in base excision repair. J Biol Chem 2001; 276:48781-9. [PMID: 11641413 DOI: 10.1074/jbc.m109626200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many types of DNA damage induce a cellular response that inhibits replication but allows repair by up-regulating the p53 pathway and inducing p21(Cip1, Waf1, Sdi1). The p21 regulatory protein can bind proliferating cell nuclear antigen (PCNA) and prohibit DNA replication. We show here that p21 also inhibits PCNA stimulation of long patch base excision repair (BER) in vitro. p21 disrupts PCNA-directed stimulation of flap endonuclease 1 (FEN1), DNA ligase I, and DNA polymerase delta. The dilemma is to understand how p21 prevents DNA replication but allows BER in vivo. Differential regulation by p21 is likely to relate to the utilization of DNA polymerase beta, which is not sensitive to p21, in the repair pathway. We have also found that apurinic/apyrimidinic endonuclease 1 (APE1) stimulates long patch BER. Furthermore, neither APE1 activity nor its ability to stimulate long patch BER is significantly affected by p21 in vitro. We propose that APE1 serves as an assembly and coordination factor for long patch BER proteins. APE1 initially cleaves the DNA and then facilitates the sequential binding and catalysis by DNA polymerase beta, DNA polymerase delta, FEN1, and DNA ligase I. This model implies that BER can be regulated differentially, based upon the assembly of relevant proteins around APE1 in the presence or absence of PCNA.
Collapse
Affiliation(s)
- S Tom
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|