51
|
Intranuclear crosstalk between extracellular regulated kinase1/2 and signal transducer and activator of transcription 3 regulates JEG-3 choriocarcinoma cell invasion and proliferation. ScientificWorldJournal 2013; 2013:259845. [PMID: 24288470 PMCID: PMC3833059 DOI: 10.1155/2013/259845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/24/2013] [Indexed: 12/04/2022] Open
Abstract
Invasiveness of trophoblast and choriocarcinoma cells is in part mediated via leukemia inhibitory factor- (LIF-) induced activation of signal transducer and activator of transcription 3 (STAT3). The regulation of STAT3 phosphorylation at its ser727 binding site, possible crosstalk with intracellular MAPK signaling, and their functional implications are the object of the present investigation. JEG-3 choriocarcinoma cells were cultured in presence/absence of LIF and the specific ERK1/2 inhibitor (U0126). Phosphorylation of signaling molecules (p-STAT3 (ser727 and tyr705) and p-ERK1/2 (thr 202/tyr 204)) was assessed per Western blot. Immunocytochemistry confirmed results, but also pinpointed the location of phosphorylated signaling molecules. STAT3 DNA-binding capacity was studied with a colorimetric ELISA-based assay. Cell viability and invasion capability were assessed by MTS and Matrigel assays. Our results demonstrate that LIF-induced phosphorylation of STAT3 (tyr705 and ser727) is significantly increased after blocking ERK1/2. STAT3 DNA-binding capacity and cell invasiveness are enhanced after LIF stimulation and ERK1/2 blockage. In contrast, proliferation is enhanced by LIF but reduced after ERK1/2 inhibition. The findings herein show that blocking ERK1/2 increases LIF-induced STAT3 phosphorylation and STAT3 DNA-binding capacity by an intranuclear crosstalk, which leads to enhanced invasiveness and reduced proliferation.
Collapse
|
52
|
Fahlbusch FB, Ruebner M, Huebner H, Volkert G, Zuern C, Thiel F, Koch M, Menendez-Castro C, Wachter DL, Hartner A, Rascher W. The tumor suppressor gastrokine-1 is expressed in placenta and contributes to the regulation of trophoblast migration. Placenta 2013; 34:1027-35. [PMID: 23993393 DOI: 10.1016/j.placenta.2013.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Gastrokine-1 (GKN1) is a secreted auto-/paracrine protein, described to be expressed in the gastric mucosa. In gastric cancers GKN1 expression is commonly down-regulated. While current research focusses on the exploration of tumor-suppressive properties of GKN1 with regard to its potential clinical use in the treatment of gastroenterologic tumor disease, nothing is known about GKN1 expression and function in other organ systems. We investigated GKN1 expression in placental tissue and cells. MATERIALS AND METHODS GKN1 was localized using immunohistochemistry in first and third trimester placental tissue, hydatidiform moles and various gestational trophoblastic neoplasias. We determined the expression of GKN1 in immunomagnetic bead-separated term placental cells and in choriocarcinoma cell lines. The role of GKN1 for JEG-3 migration was studied using live cell imaging. E-cadherin, MMP-2 and -9, TIMP-1 and -2, as well as urokinase (uPA) expression levels were determined. RESULTS GKN1 is expressed in healthy third trimester placentas. Its expression is specifically limited to the extravillous trophoblast (EVT). GKN1 expression is significantly reduced in choriocarcinoma cell lines and gestational trophoblastic neoplasias. GKN1 attenuates the migration of JEG-3 choriocarcinoma cells in vitro, possibly via AKT-mediated induction of E-cadherin. GKN1 treatment reduced MMP-9 expression in JEG-3. DISCUSSION Besides its role in gastric physiology our results clearly indicate regulatory functions of GKN1 in the EVT at the feto-maternal interface during pregnancy. Based on our findings in the JEG-3 choriocarcinoma cell line, an auto-/paracrine role of GKN1 for EVT motility and villous anchorage at the basal plate is conceivable. Thus, the tumor suppressor GKN1 is expressed in placental EVT and might contribute to the regulation of EVT migration/invasion.
Collapse
Affiliation(s)
- F B Fahlbusch
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Zhou Z, Zhang Q, Lu X, Wang R, Wang H, Wang YL, Zhu C, Lin HY, Wang H. The proprotein convertase furin is required for trophoblast syncytialization. Cell Death Dis 2013; 4:e593. [PMID: 23598405 PMCID: PMC3641329 DOI: 10.1038/cddis.2013.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The multinucleated syncytial trophoblast, which forms the outermost layer of the placenta and serves multiple functions, is differentiated from and maintained by cytotrophoblast cell fusion. Deficiencies in syncytial trophoblast differentiation or maintenance likely contribute to intrauterine growth restriction and pre-eclampsia, two common gestational diseases. The cellular and molecular mechanisms governing trophoblast syncytialization are poorly understood. We report here that the proprotein convertase furin is highly expressed in syncytial trophoblast in the first trimester human placentas, and expression of furin in the syncytiotrophoblast is significantly lower in the placentas from pre-eclamptic patients as compared with their gestational age-matched control placentas. Using multiple experimental models including induced fusion of choriocarcinoma BeWo cells and spontaneous fusion of primary cultured cytotrophoblast cells or placental explants, we demonstrate that cytotrophoblast cell fusion and syncytialization are accompanied by furin expression. Furin-specific siRNAs or inhibitors inhibit cell fusion in BeWo cells, as well as trophoblast syncytialization in human placental explants. Furthermore, type 1 IGF receptor (IGF1R) is indicated in this study as a substrate of furin, and processing of IGF1R by furin is an essential mechanism for syncytialization. Finally, using lentivirus-mediated RNAi targeting to mouse trophectoderm, we demonstrate that furin function is required for the development of syncytiotrophoblast structure in the labyrinth layer, as well as for normal embryonic development.
Collapse
Affiliation(s)
- Z Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Human trophoblast progenitor cells differentiate via two distinct pathways, to become the highly invasive extravillous cytotrophoblast (CTB) cells (EVT) or fuse to form syncytiotrophoblast. Inadequate trophoblast differentiation results in poor placenta perfusion, or even complications such as pre-eclampsia (PE). Cullin1 (CUL1), a scaffold protein in cullin-based ubiquitin ligases, plays an important role in early embryonic development. However, the role of CUL1 in trophoblast differentiation during placenta development has not been examined. Here we show that CUL1 was expressed in CTB cells and EVT in the first trimester human placentas by immunohistochemistry. CUL1 siRNA significantly inhibited outgrowth of extravillous explants in vitro, as well as invasion and migration of HTR8/SVneo cells of EVT origin. This inhibition was accompanied by decreased gelatinolytic activities of matrix metalloproteinase (MMP)-9 and increased expression of tissue inhibitors of MMPs (TIMP-1 and -2). Consistently, exogenous CUL1 promoted invasion and migration of HTR8/SVneo cells. Notably, CUL1 was gradually decreased during trophoblast syncytialization and CUL1 siRNA significantly enhanced forskolin-induced fusion of choriocarcinoma BeWo cells. CUL1 protein levels in human pre-eclamptic placental villi were significantly lower as compared to their matched control placentas. Taken together, our results suggest that CUL1 promotes human trophoblast cell invasion and dysregulation of CUL1 expression may be associated with PE.
Collapse
|
55
|
5-Aza-dC treatment induces mesenchymal-to-epithelial transition in 1st trimester trophoblast cell line HTR8/SVneo. Biochem Biophys Res Commun 2013; 432:116-22. [PMID: 23376068 DOI: 10.1016/j.bbrc.2013.01.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 11/20/2022]
Abstract
Placental trophoblast invasion involves a cellular transition from epithelial to mesenchymal phenotype. Cytotrophoblasts undergo epithelial to mesenchymal transition (EMT) when differentiating into extravillous trophoblasts and gaining the capacity of invasion. In this research, we investigated the role of DNA methylation in trophoblasts during this EMT. First, using BeWo and HTR8/SVneo cell lines as models of cytotrophoblasts and extravillous trophoblasts, respectively, we analyzed the gene expression and DNA methylation status of the known epithelial marker genes, E-Cadherin and Cytokeratin7. We found that, in HTR8/SVneo cells, both genes were silenced and their promoters hypermethylated, as compared with the high-level gene expression and promoter hypomethylation observed in BeWo cells. This result suggests that dynamic DNA methylation of epithelial marker genes plays a critical role in the trophoblast EMT process. To verify these results, we treated HTR8/SVneo cells with 5-aza-dC, a known inhibitor of DNA methyltransferase, for three days. Five-Aza-dC treatment significantly increased the expression of epithelial marker genes and slightly decreased the expression of mesenchymal genes, as detected by qRT-PCR, immunocytochemistry and Western blot. Furthermore, 5-aza-dC treated HTR8/SVneo cells changed their morphology from mesenchymal into epithelial phenotype, indicating that 5-aza-dC induced mesenchymal to epithelial transition. Lastly, we examined the effect of 5-aza-dC on trophoblast migration and invasion capacity. We applied 5-aza-dC to HTR8/SVneo cells in trans-well cell migration and invasion assays and found that 5-aza-dC treatment decreased trophoblast migration and invasion capacity. In conclusion, DNA methylation of epithelial marker genes represents a molecular mechanism for the process of trophoblast EMT.
Collapse
|
56
|
Zhong J, Ogura K, Wang Z, Inuzuka H. Degradation of the transcription factor Twist, an oncoprotein that promotes cancer metastasis. DISCOVERY MEDICINE 2013; 15:7-15. [PMID: 23375009 PMCID: PMC5522964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factor Twist is one of the key inducers of epithelial to mesenchymal transition (EMT) that is a transdifferentiation program associated with embryo development and tumor metastasis. High level of Twist expression is shown to be correlated with cancer malignancy. Although Twist has been reported to be degraded by F-box and leucine-rich repeat protein 14 (FBXL14), the molecular mechanisms by which Twist levels are regulated have not been fully elucidated. In the present study, we identified Twist to be a ubiquitin substrate of β-transducin repeat-containing protein (β-TRCP), the adaptor subunit of SCF(β-TRCP) (Skp1-Cul1-F-box protein) E3 ligase complex. We observed that depletion of β-TRCP leads to an accumulation of Twist protein, which could enhance tumor cell motility and cancer metastasis. Moreover, phosphorylation of Twist by inhibitor of KappaB kinase β (IKKβ) at multiple sites triggers its cytoplasmic translocation and the destruction by SCF(β-TRCP). Thus, our results provide the potential molecular mechanism of how the mesenchymal marker Twist is degraded, thereby shedding lights into regulation of the EMT, and providing the rationale for development of new therapeutic intervention to achieve better treatment outcomes in human cancer.
Collapse
Affiliation(s)
- Jiateng Zhong
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
57
|
Lee SA, Ding C. The dysfunctional placenta epigenome: causes and consequences. Epigenomics 2012; 4:561-9. [DOI: 10.2217/epi.12.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The placenta is a fetal–maternal endocrine organ responsible for ensuring proper fetal development throughout pregnancy. Adverse insults to the intrauterine environment often lead to expression level changes in placental genes, many of which are epigenetically regulated by DNA methylation, histone modifications and ncRNA interference. These epigenetic alterations may cause placental dysfunction, resulting in offspring of low birthweight owing to adverse pregnancy complications such as intrauterine growth restriction. Numerous epidemiological studies have shown a strong correlation between low birthweight and increased risk of developing metabolic diseases and neurological imbalances in adulthood, and in subsequent generations, indicating that epigenetic regulation of gene expression can be propagated stably with long-term effects on health. This article provides an overview of the various environmental factors capable of inducing detrimental changes to the placental epigenome, as well as the corresponding mechanisms that prime the offspring for onset of disease later in life.
Collapse
Affiliation(s)
- Sue-Ann Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research (A*STAR), Brenner Center for Molecular Medicine, 30 Medical Drive, Singapore, 117609
| | - Chunming Ding
- Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research (A*STAR), Brenner Center for Molecular Medicine, 30 Medical Drive, Singapore, 117609
| |
Collapse
|
58
|
ZHANG XH, YANG ZM. Epithelial-mesenchymal Transition During Tumor Metastasis, Embryonic Development and Female Mammalian Reproduction*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
59
|
Zhang Q, Tan D, Luo W, Lu J, Tan Y. Expression of CD82 in human trophoblast and its role in trophoblast invasion. PLoS One 2012; 7:e38487. [PMID: 22679510 PMCID: PMC3367946 DOI: 10.1371/journal.pone.0038487] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Well-controlled trophoblast invasion at maternal-fetal interface is a critical event for the normal development of placenta. CD82 is a member of transmembrane 4 superfamily, which showed important role in inhibiting tumor cell invasion and migration. We surmised that CD82 are participates in trophoblast differentiation during placenta development. METHODOLOGY/PRINCIPAL FINDINGS CD82 was found to be strongly expressed in human first trimester placental villous and extravillous trophoblast cells as well as in trophoblast cell lines. To investigate whether CD82 plays a role in trophoblast invasion and migration, we further utilized human villous explants culture model on matrigel and invasion/migration assay of trophoblast cell line HTR8/SVneo. CD82 siRNA significantly promoted outgrowth of villous explants in vitro (P<0.01), as well as invasion and migration of HTR8/SVneo cells (P<0.05), whereas the trophoblast proliferation was not affected. The enhanced effect of CD82 siRNA on invasion and migration of trophoblast cells was found associated with increased gelatinolytic activities of matrix metalloproteinase MMP9 while over-expression of CD82 markedly decreased trphoblast cell invasion and migration as well as MMP9 activities. CONCLUSIONS/SIGNIFICANCE These findings suggest that CD82 is an important negative regulator at maternal-fetal interface during early pregnancy, inhibiting human trophoblast invasion and migration.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Dongmei Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Junjie Lu
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
60
|
Fahlbusch FB, Dawood Y, Hartner A, Menendez-Castro C, Nögel SC, Tzschoppe A, Schneider H, Strissel P, Beckmann MW, Schleussner E, Ruebner M, Dörr HG, Schild RL, Rascher W, Dötsch J. Cullin 7 and Fbxw 8 expression in trophoblastic cells is regulated via oxygen tension: implications for intrauterine growth restriction? J Matern Fetal Neonatal Med 2012; 25:2209-15. [DOI: 10.3109/14767058.2012.684166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
61
|
Ubiquitination and the Ubiquitin-Proteasome System as regulators of transcription and transcription factors in epithelial mesenchymal transition of cancer. Tumour Biol 2012; 33:897-910. [PMID: 22399444 DOI: 10.1007/s13277-012-0355-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/09/2012] [Indexed: 02/06/2023] Open
Abstract
Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.
Collapse
|
62
|
Abstract
The invasion of extravillous cytotrophoblasts (EVT) into the underlying maternal tissues and vasculature is a key step in human placentation. The molecular mechanisms involved in the development of the invasive phenotype of EVT include many that were first discovered for their role in cancer cell metastasis. Previous studies have demonstrated that N-cadherin and its regulatory transcription factor Twist play important roles in the onset and progression of cancers, but their roles in human trophoblastic cell invasion is not clear. The goal of the study was to examine the role of Twist and N-cadherin in human trophoblastic cell invasion. Twist and N-cadherin mRNA and protein levels were determined by RT-PCR and Western blotting in human placental tissues, highly invasive EVT, and poorly invasive JEG-3 and BeWo cells. Whether IL-1β and TGF-β1 regulate Twist mRNA and protein levels in the EVT was also examined. A small interfering RNA strategy was employed to determine the role of Twist and N-cadherin in HTR-8/SVneo cell invasion. Matrigel assays were used to assess cell invasion. Twist and N-cadherin were highly expressed in EVT but were poorly expressed in JEG-3 and BeWo cells. IL-1β and TGF-β1 differentially regulated Twist expression in EVT in a time- and concentration-dependent manner. Small interfering RNA specific for Twist decreased N-cadherin and reduced invasion of HTR-8/SVneo cells. Similarly, a reduction in N-cadherin decreased the invasive capacity of HTR-8/SVneo cells. Twist is an upstream regulator of N-cadherin-mediated invasion of human trophoblastic cells.
Collapse
Affiliation(s)
- York Hunt Ng
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada V6H 3V5
| | | | | |
Collapse
|
63
|
Ponyeam W, Hagen T. Characterization of the Cullin7 E3 ubiquitin ligase — Heterodimerization of cullin substrate receptors as a novel mechanism to regulate cullin E3 ligase activity. Cell Signal 2012; 24:290-5. [DOI: 10.1016/j.cellsig.2011.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
|
64
|
Prasad K, Prabhu GK. Image analysis tools for evaluation of microscopic views of immunohistochemically stained specimen in medical research-a review. J Med Syst 2011; 36:2621-31. [PMID: 21584771 DOI: 10.1007/s10916-011-9737-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
Abstract
The aim of this study is to review the methods being used for image analysis of microscopic views of immunohistochemically stained specimen in medical research. The solutions available range from general purpose software to commercial packages. Many studies have developed their own custom written programs based on some general purpose software available. Many groups have reported development of computer aided image analysis programs aiming at obtaining faster, simpler and cheaper solutions. Image analysis tools namely Aperio, Lucia, Metaview, Metamorph, ImageJ, Scion, Adobe Photoshop, Image Pro Plus are also used for evaluation of expressions using immunohistochemical staining. An overview of such methods used for image analysis is provided in this paper. This study concludes that there is good scope for development of freely available software for staining intensity quantification, which a medical researcher could easily use without requiring high level computer skills.
Collapse
Affiliation(s)
- Keerthana Prasad
- Manipal Centre for Information Science, Manipal University, Manipal, India.
| | | |
Collapse
|
65
|
Prasad K, Prabhu GK. Image analysis tools for evaluation of microscopic views of immunohistochemically stained specimen in medical research-a review. J Med Syst 2011. [PMID: 21584771 DOI: 10.1007/s10916-011-9737-7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study is to review the methods being used for image analysis of microscopic views of immunohistochemically stained specimen in medical research. The solutions available range from general purpose software to commercial packages. Many studies have developed their own custom written programs based on some general purpose software available. Many groups have reported development of computer aided image analysis programs aiming at obtaining faster, simpler and cheaper solutions. Image analysis tools namely Aperio, Lucia, Metaview, Metamorph, ImageJ, Scion, Adobe Photoshop, Image Pro Plus are also used for evaluation of expressions using immunohistochemical staining. An overview of such methods used for image analysis is provided in this paper. This study concludes that there is good scope for development of freely available software for staining intensity quantification, which a medical researcher could easily use without requiring high level computer skills.
Collapse
Affiliation(s)
- Keerthana Prasad
- Manipal Centre for Information Science, Manipal University, Manipal, India.
| | | |
Collapse
|
66
|
Fbxw8 is involved in the proliferation of human choriocarcinoma JEG-3 cells. Mol Biol Rep 2010; 38:1741-7. [PMID: 20878477 DOI: 10.1007/s11033-010-0288-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
Fbxw8 is the F-box component of a SCF-like E3 ubiquitin ligase complex. Mice lacking Fbxw8 exhibit pathological defects in placenta and embryo similar to fetal growth retardation, suggesting a role of Fbxw8 in placentation. Proliferative capacity of trophoblast cells is very important in placental development. In this context, we revealed that Fbxw8 was expressed in four different human trophoblast cell lines. Silencing of Fbxw8 expression by siRNA inhibited the growth of choriocarcinoma JEG-3 cells. By Western blotting, cell cycle analysis, we showed that down-regulation of Fbxw8 by RNAi induced cell-growth arrest at G2/M phase through decreasing the levels of CDK1, CDK2, cyclin A and cyclin B1 and up-regulation of p27 at protein level. Conversely, over-expression of Fbxw8 led to the opposite effect. These results suggest that Fbxw8 plays an essential role in the proliferation of human trophoblast cells, especially JEG-3 cells, via G2/M phase transition in association with regulation of CDK1, CDK2, cyclin A, cyclin B1 and p27 expression.
Collapse
|