Suetsugu S. The proposed functions of membrane curvatures mediated by the BAR domain superfamily proteins.
J Biochem 2010;
148:1-12. [PMID:
20435640 DOI:
10.1093/jb/mvq049]
[Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The plasma membrane, the outermost surface of eukaryotic cells, contains various substructures, such as protrusions or invaginations, which are associated with diverse functions, including endocytosis and cell migration. These structures of the plasma membrane can be considered as tubules or inverted tubules (protrusions) of the membrane. There are six modes of membrane curvature at the plasma membrane, which are classified by the positive or negative curvature and the location of the curvature (tip, neck or shaft of the tubules). The BAR domain superfamily proteins have structurally determined positive and negative curvatures of membrane contact at their BAR, F-BAR and I-BAR domains, which generate and maintain such curved membranes by binding to the membrane. Importantly, the SH3 domains of the BAR domain superfamily proteins bind to the actin regulatory WASP/WAVE proteins, and the BAR/F-BAR/I-BAR domain-SH3 unit could orient the actin filaments towards the membrane for each subcellular structure. These membrane tubulations are also considered to function in membrane fusion and fission.
Collapse