51
|
Meli M, Sustarsic M, Craggs TD, Kapanidis AN, Colombo G. DNA Polymerase Conformational Dynamics and the Role of Fidelity-Conferring Residues: Insights from Computational Simulations. Front Mol Biosci 2016; 3:20. [PMID: 27303671 PMCID: PMC4882331 DOI: 10.3389/fmolb.2016.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022] Open
Abstract
Herein we investigate the molecular bases of DNA polymerase I conformational dynamics that underlie the replication fidelity of the enzyme. Such fidelity is determined by conformational changes that promote the rejection of incorrect nucleotides before the chemical ligation step. We report a comprehensive atomic resolution study of wild type and mutant enzymes in different bound states and starting from different crystal structures, using extensive molecular dynamics (MD) simulations that cover a total timespan of ~5 ms. The resulting trajectories are examined via a combination of novel methods of internal dynamics and energetics analysis, aimed to reveal the principal molecular determinants for the (de)stabilization of a certain conformational state. Our results show that the presence of fidelity-decreasing mutations or the binding of incorrect nucleotides in ternary complexes tend to favor transitions from closed toward open structures, passing through an ensemble of semi-closed intermediates. The latter ensemble includes the experimentally observed ajar conformation which, consistent with previous experimental observations, emerges as a molecular checkpoint for the selection of the correct nucleotide to incorporate. We discuss the implications of our results for the understanding of the relationships between the structure, dynamics, and function of DNA polymerase I at the atomistic level.
Collapse
Affiliation(s)
- Massimiliano Meli
- Computational Biochemistry Group, Istituto di Chimica del Riconoscimento Molecolare, National Research Council of Italy Milano, Italy
| | - Marko Sustarsic
- Clarendon Laboratory, Department of Physics, Biological Physics Research Group, University of Oxford Oxford, UK
| | - Timothy D Craggs
- Clarendon Laboratory, Department of Physics, Biological Physics Research Group, University of Oxford Oxford, UK
| | - Achillefs N Kapanidis
- Clarendon Laboratory, Department of Physics, Biological Physics Research Group, University of Oxford Oxford, UK
| | - Giorgio Colombo
- Computational Biochemistry Group, Istituto di Chimica del Riconoscimento Molecolare, National Research Council of Italy Milano, Italy
| |
Collapse
|
52
|
Liu MS, Tsai HY, Liu XX, Ho MC, Wu WJ, Tsai MD. Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ. J Am Chem Soc 2016; 138:2389-98. [PMID: 26836966 DOI: 10.1021/jacs.5b13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanism of DNA polymerase (pol) fidelity is of fundamental importance in chemistry and biology. While high-fidelity pols have been well studied, much less is known about how some pols achieve medium or low fidelity with functional importance. Here we examine how human DNA polymerase λ (Pol λ) achieves medium fidelity by determining 12 crystal structures and performing pre-steady-state kinetic analyses. We showed that apo-Pol λ exists in the closed conformation, unprecedentedly with a preformed MgdNTP binding pocket, and binds MgdNTP readily in the active conformation in the absence of DNA. Since prebinding of MgdNTP could lead to very low fidelity as shown previously, it is attenuated in Pol λ by a hydrophobic core including Leu431, Ile492, and the Tyr505/Phe506 motif. We then predicted and demonstrated that L431A mutation enhances MgdNTP prebinding and lowers the fidelity. We also hypothesized that the MgdNTP-prebinding ability could stabilize a mismatched ternary complex and destabilize a matched ternary complex, and provided evidence with structures in both forms. Our results demonstrate that, while high-fidelity pols follow a common paradigm, Pol λ has developed specific conformations and mechanisms for its medium fidelity. Structural comparison with other pols also suggests that different pols likely utilize different conformational changes and microscopic mechanisms to achieve their catalytic functions with varying fidelities.
Collapse
Affiliation(s)
- Mu-Sen Liu
- Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| | | | | | - Meng-Chiao Ho
- Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| | | | - Ming-Daw Tsai
- Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
53
|
Černý J, Černá Bolfíková B, de A Zanotto PM, Grubhoffer L, Růžek D. A deep phylogeny of viral and cellular right-hand polymerases. INFECTION GENETICS AND EVOLUTION 2015; 36:275-286. [PMID: 26431690 DOI: 10.1016/j.meegid.2015.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/27/2022]
Abstract
Right-hand polymerases are important players in genome replication and repair in cellular organisms as well as in viruses. All right-hand polymerases are grouped into seven related protein families: viral RNA-dependent RNA polymerases, reverse transcriptases, single-subunit RNA polymerases, and DNA polymerase families A, B, D, and Y. Although the evolutionary relationships of right-hand polymerases within each family have been proposed, evolutionary relationships between families remain elusive because their sequence similarity is too low to allow classical phylogenetic analyses. The structure of viral RNA-dependent RNA polymerases recently was shown to be useful in inferring their evolution. Here, we address evolutionary relationships between right-hand polymerase families by combining sequence and structure information. We used a set of 22 viral and cellular polymerases representing all right-hand polymerase families with known protein structure. In contrast to previous studies, which focused only on the evolution of particular families, the current approach allowed us to present the first robust phylogenetic analysis unifying evolution of all right-hand polymerase families. All polymerase families branched into discrete lineages, following a fairly robust adjacency pattern. Only single-subunit RNA polymerases formed an inner group within DNA polymerase family A. RNA-dependent RNA polymerases of RNA viruses and reverse transcriptases of retroviruses formed two sister groups and were distinguishable from all other polymerases. DNA polymerases of DNA bacteriophages did not form a monophyletic group and are phylogenetically mixed with cellular DNA polymerase families A and B. Based on the highest genetic variability and structural simplicity, we assume that RNA-dependent RNA polymerases are the most ancient group of right-hand polymerases, in agreement with the RNA World hypothesis, because RNA-dependent RNA polymerases are enzymes that could serve in replication of RNA genomes. Moreover, our results show that protein structure can be used in phylogenetic analyses of distantly related proteins that share only limited sequence similarity.
Collapse
Affiliation(s)
- Jiří Černý
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Barbora Černá Bolfíková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 126, Suchdol, 165 21 Prague 6, Czech Republic
| | - Paolo M de A Zanotto
- Department of Microbiology, Biomedical Sciences Institute, ICB II University of Sao Paulo, 05508-000 Sao Paulo, Brazil
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| |
Collapse
|
54
|
Abstract
All biological information, since the last common ancestor of all life on Earth, has been encoded by a genetic alphabet consisting of only four nucleotides that form two base pairs. Long-standing efforts to develop two synthetic nucleotides that form a third, unnatural base pair (UBP) have recently yielded three promising candidates, one based on alternative hydrogen bonding, and two based on hydrophobic and packing forces. All three of these UBPs are replicated and transcribed with remarkable efficiency and fidelity, and the latter two thus demonstrate that hydrogen bonding is not unique in its ability to underlie the storage and retrieval of genetic information. This Review highlights these recent developments as well as the applications enabled by the UBPs, including the expansion of the evolution process to include new functionality and the creation of semi-synthetic life that stores increased information.
Collapse
Affiliation(s)
- Denis A Malyshev
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA).
| |
Collapse
|
55
|
|
56
|
Miller BR, Beese LS, Parish CA, Wu EY. The Closing Mechanism of DNA Polymerase I at Atomic Resolution. Structure 2015. [PMID: 26211612 DOI: 10.1016/j.str.2015.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA polymerases must quickly and accurately distinguish between similar nucleic acids to form Watson-Crick base pairs and avoid DNA replication errors. Deoxynucleoside triphosphate (dNTP) binding to the DNA polymerase active site induces a large conformational change that is difficult to characterize experimentally on an atomic level. Here, we report an X-ray crystal structure of DNA polymerase I bound to DNA in the open conformation with a dNTP present in the active site. We use this structure to computationally simulate the open to closed transition of DNA polymerase in the presence of a Watson-Crick base pair. Our microsecond simulations allowed us to characterize the key steps involved in active site assembly, and propose the sequence of events involved in the prechemistry steps of DNA polymerase catalysis. They also reveal new features of the polymerase mechanism, such as a conserved histidine as a potential proton acceptor from the primer 3'-hydroxyl.
Collapse
Affiliation(s)
- Bill R Miller
- Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA; Department of Chemistry, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke Building, Durham, NC 27710, USA
| | - Carol A Parish
- Department of Chemistry, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA.
| | - Eugene Y Wu
- Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA; Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke Building, Durham, NC 27710, USA.
| |
Collapse
|
57
|
Pugliese KM, Gul OT, Choi Y, Olsen TJ, Sims PC, Collins PG, Weiss GA. Processive Incorporation of Deoxynucleoside Triphosphate Analogs by Single-Molecule DNA Polymerase I (Klenow Fragment) Nanocircuits. J Am Chem Soc 2015; 137:9587-94. [PMID: 26147714 DOI: 10.1021/jacs.5b02074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DNA polymerases exhibit a surprising tolerance for analogs of deoxyribonucleoside triphosphates (dNTPs), despite the enzymes' highly evolved mechanisms for the specific recognition and discrimination of native dNTPs. Here, individual DNA polymerase I Klenow fragment (KF) molecules were tethered to a single-walled carbon nanotube field-effect transistor (SWCNT-FET) to investigate accommodation of dNTP analogs with single-molecule resolution. Each base incorporation accompanied a change in current with its duration defined by τclosed. Under Vmax conditions, the average time of τclosed was similar for all analog and native dNTPs (0.2 to 0.4 ms), indicating no kinetic impact on this step due to analog structure. Accordingly, the average rates of dNTP analog incorporation were largely determined by durations with no change in current defined by τopen, which includes molecular recognition of the incoming dNTP. All α-thio-dNTPs were incorporated more slowly, at 40 to 65% of the rate for the corresponding native dNTPs. During polymerization with 6-Cl-2APTP, 2-thio-dTTP, or 2-thio-dCTP, the nanocircuit uncovered an alternative conformation represented by positive current excursions that does not occur with native dNTPs. A model consistent with these results invokes rotations by the enzyme's O-helix; this motion can test the stability of nascent base pairs using nonhydrophilic interactions and is allosterically coupled to charged residues near the site of SWCNT attachment. This model with two opposing O-helix motions differs from the previous report in which all current excursions were solely attributed to global enzyme closure and covalent-bond formation. The results suggest the enzyme applies a dynamic stability-checking mechanism for each nascent base pair.
Collapse
Affiliation(s)
- Kaitlin M Pugliese
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - O Tolga Gul
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Yongki Choi
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Tivoli J Olsen
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Patrick C Sims
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Philip G Collins
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Gregory A Weiss
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
58
|
Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces. Sci Rep 2015; 5:12066. [PMID: 26174478 PMCID: PMC4502528 DOI: 10.1038/srep12066] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022] Open
Abstract
The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.
Collapse
|
59
|
Evans GW, Hohlbein J, Craggs T, Aigrain L, Kapanidis AN. Real-time single-molecule studies of the motions of DNA polymerase fingers illuminate DNA synthesis mechanisms. Nucleic Acids Res 2015; 43:5998-6008. [PMID: 26013816 PMCID: PMC4499156 DOI: 10.1093/nar/gkv547] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/13/2015] [Indexed: 12/30/2022] Open
Abstract
DNA polymerases maintain genomic integrity by copying DNA with high fidelity. A conformational change important for fidelity is the motion of the polymerase fingers subdomain from an open to a closed conformation upon binding of a complementary nucleotide. We previously employed intra-protein single-molecule FRET on diffusing molecules to observe fingers conformations in polymerase-DNA complexes. Here, we used the same FRET ruler on surface-immobilized complexes to observe fingers-opening and closing of individual polymerase molecules in real time. Our results revealed the presence of intrinsic dynamics in the binary complex, characterized by slow fingers-closing and fast fingers-opening. When binary complexes were incubated with increasing concentrations of complementary nucleotide, the fingers-closing rate increased, strongly supporting an induced-fit model for nucleotide recognition. Meanwhile, the opening rate in ternary complexes with complementary nucleotide was 6 s(-1), much slower than either fingers closing or the rate-limiting step in the forward direction; this rate balance ensures that, after nucleotide binding and fingers-closing, nucleotide incorporation is overwhelmingly likely to occur. Our results for ternary complexes with a non-complementary dNTP confirmed the presence of a state corresponding to partially closed fingers and suggested a radically different rate balance regarding fingers transitions, which allows polymerase to achieve high fidelity.
Collapse
Affiliation(s)
- Geraint W Evans
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Johannes Hohlbein
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Timothy Craggs
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Louise Aigrain
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Achillefs N Kapanidis
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
60
|
Gowda ASP, Moldovan GL, Spratt TE. Human DNA Polymerase ν Catalyzes Correct and Incorrect DNA Synthesis with High Catalytic Efficiency. J Biol Chem 2015; 290:16292-303. [PMID: 25963146 DOI: 10.1074/jbc.m115.653287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 01/04/2023] Open
Abstract
DNA polymerase ν (pol ν) is a low fidelity A-family polymerase with a putative role in interstrand cross-link repair and homologous recombination. We carried out pre-steady-state kinetic analysis to elucidate the kinetic mechanism of this enzyme. We found that the mechanism consists of seven steps, similar that of other A-family polymerases. pol ν binds to DNA with a Kd for DNA of 9.2 nm, with an off-rate constant of 0.013 s(-1)and an on-rate constant of 14 μm(-1) s(-1). dNTP binding is rapid with Kd values of 20 and 476 μm for the correct and incorrect dNTP, respectively. Pyrophosphorylation occurs with a Kd value for PPi of 3.7 mm and a maximal rate constant of 11 s(-1). Pre-steady-state kinetics, examination of the elemental effect using dNTPαS, and pulse-chase experiments indicate that a rapid phosphodiester bond formation step is flanked by slow conformational changes for both correct and incorrect base pair formation. These experiments in combination with computer simulations indicate that the first conformational change occurs with rate constants of 75 and 20 s(-1); rapid phosphodiester bond formation occurs with a Keq of 2.2 and 1.7, and the second conformational change occurs with rate constants of 2.1 and 0.5 s(-1), for correct and incorrect base pair formation, respectively. The presence of a mispair does not induce the polymerase to adopt a low catalytic conformation. pol ν catalyzes both correct and mispair formation with high catalytic efficiency.
Collapse
Affiliation(s)
- A S Prakasha Gowda
- From the Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - George-Lucian Moldovan
- From the Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Thomas E Spratt
- From the Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
61
|
Beese L, Wang W, Hellinga H. A Unified Picture of Nucleotide Selection by a High Fidelity DNA Polymerase I. FASEB J 2015. [DOI: 10.1096/fasebj.29.1_supplement.225.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lorena Beese
- Department of BiochemistryDuke UniversityUnited States
| | - W. Wang
- Department of BiochemistryDuke UniversityUnited States
| | - H. Hellinga
- Department of BiochemistryDuke UniversityUnited States
| |
Collapse
|
62
|
Zahn KE, Averill AM, Aller P, Wood RD, Doublié S. Human DNA polymerase θ grasps the primer terminus to mediate DNA repair. Nat Struct Mol Biol 2015; 22:304-11. [PMID: 25775267 PMCID: PMC4385486 DOI: 10.1038/nsmb.2993] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/13/2015] [Indexed: 01/14/2023]
Abstract
DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break-inducing agents, including ionizing radiation. Reported here are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contacts to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. These observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.
Collapse
Affiliation(s)
- Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | | | - Richard D Wood
- Department of Epigenetics &Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
63
|
How a homolog of high-fidelity replicases conducts mutagenic DNA synthesis. Nat Struct Mol Biol 2015; 22:298-303. [PMID: 25775266 PMCID: PMC4469489 DOI: 10.1038/nsmb.2985] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/10/2015] [Indexed: 12/26/2022]
Abstract
All DNA replicases achieve high fidelity by a conserved mechanism, but each translesion polymerase carries out mutagenic DNA synthesis in its own way. Here we report crystal structures of human DNA polymerase ν (Pol ν), which is homologous to high-fidelity replicases and yet error-prone. Instead of a simple open-to-closed movement of the O helix upon binding of a correct incoming nucleotide, Pol ν has a different open state and requires the finger domain to swing sideways and undergo both opening and closing motions to accommodate the nascent base pair. A single amino acid substitution in the O-helix of the finger domain improves the fidelity of Pol ν nearly ten-fold. A unique cavity and the flexibility of the thumb domain allow Pol ν to generate and accommodate a looped-out primer strand. Primer loopout may be a mechanism for DNA trinucloetide-repeat expansion.
Collapse
|
64
|
DNA sequencing using polymerase substrate-binding kinetics. Nat Commun 2015; 6:5936. [PMID: 25612848 PMCID: PMC4354037 DOI: 10.1038/ncomms6936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/21/2014] [Indexed: 02/08/2023] Open
Abstract
Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. Next-generation sequencing technologies vary in performance, which is often measured by metrics such as sequencing speed, accuracy and read length. Here, the authors present a new sequencing by synthesis method that monitors polymerase binding to DNA, and suggest that this method has the potential to generate longer and faster reads.
Collapse
|
65
|
Wu EY, Walsh AR, Materne EC, Hiltner EP, Zielinski B, Miller BR, Mawby L, Modeste E, Parish CA, Barnes WM, Kermekchiev MB. A conservative isoleucine to leucine mutation causes major rearrangements and cold sensitivity in KlenTaq1 DNA polymerase. Biochemistry 2015; 54:881-9. [PMID: 25537790 PMCID: PMC4310628 DOI: 10.1021/bi501198f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Assembly of polymerase chain reactions at room temperature can sometimes lead to low yields or unintentional products due to mispriming. Mutation of isoleucine 707 to leucine in DNA polymerase I from Thermus aquaticus substantially decreases its activity at room temperature without compromising its ability to amplify DNA. To understand why a conservative change to the enzyme over 20 Å from the active site can have a large impact on its activity at low temperature, we solved the X-ray crystal structure of the large (5'-to-3' exonuclease-deleted) fragment of Taq DNA polymerase containing the cold-sensitive mutation in the ternary (E-DNA-ddNTP) and binary (E-DNA) complexes. The I707L KlenTaq1 ternary complex was identical to the wild-type in the closed conformation except for the mutation and a rotamer change in nearby phenylalanine 749, suggesting that the enzyme should remain active. However, soaking out of the nucleotide substrate at low temperature results in an altered binary complex made possible by the rotamer change at F749 near the tip of the polymerase O-helix. Surprisingly, two adenosines in the 5'-template overhang fill the vacated active site by stacking with the primer strand, thereby blocking the active site at low temperature. Replacement of the two overhanging adenosines with pyrimidines substantially increased activity at room temperature by keeping the template overhang out of the active site, confirming the importance of base stacking. These results explain the cold-sensitive phenotype of the I707L mutation in KlenTaq1 and serve as an example of a large conformational change affected by a conservative mutation.
Collapse
Affiliation(s)
- Eugene Y Wu
- Department of Biology and ‡Department of Chemistry, University of Richmond , Richmond, Virginia 23173, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Miller BR, Parish CA, Wu EY. Molecular dynamics study of the opening mechanism for DNA polymerase I. PLoS Comput Biol 2014; 10:e1003961. [PMID: 25474643 PMCID: PMC4256020 DOI: 10.1371/journal.pcbi.1003961] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme:DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics.
Collapse
Affiliation(s)
- Bill R. Miller
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- Department of Chemistry, University of Richmond, Richmond, Virginia, United States of America
| | - Carol A. Parish
- Department of Chemistry, University of Richmond, Richmond, Virginia, United States of America
| | - Eugene Y. Wu
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| |
Collapse
|
67
|
Reich S, Kovermann M, Lilie H, Knick P, Geissler R, Golbik RP, Balbach J, Behrens SE. Initiation of RNA synthesis by the hepatitis C virus RNA-dependent RNA polymerase is affected by the structure of the RNA template. Biochemistry 2014; 53:7002-12. [PMID: 25310724 PMCID: PMC4230328 DOI: 10.1021/bi5006656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The
hepatitis C virus (HCV) RNA-dependent RNA polymerase NS5B is
a central enzyme of the intracellular replication of the viral (+)RNA
genome. Here, we studied the individual steps of NS5B-catalyzed RNA
synthesis by a combination of biophysical methods, including real-time
1D 1H NMR spectroscopy. NS5B was found to bind to a nonstructured
and a structured RNA template in different modes. Following NTP binding
and conversion to the catalysis-competent ternary complex, the polymerase
revealed an improved affinity for the template. By monitoring the
folding/unfolding of 3′(−)SL by 1H NMR, the
base pair at the stem’s edge was identified as the most stable
component of the structure. 1H NMR real-time analysis of
NS5B-catalyzed RNA synthesis on 3′(−)SL showed that
a pronounced lag phase preceded the processive polymerization reaction.
The presence of the double-stranded stem with the edge base pair acting
as the main energy barrier impaired RNA synthesis catalyzed by NS5B.
Our observations suggest a crucial role of RNA-modulating factors
in the HCV replication process.
Collapse
Affiliation(s)
- Stefan Reich
- Institute of Biochemistry and Biotechnology, Section of Microbial Biotechnology, ‡Institute of Physics, Section of Biophysics, §Institute of Biochemistry and Biotechnology, Section of Technical Biochemistry, Martin Luther University Halle-Wittenberg , D-06120 Halle/Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Zhao L, Pence MG, Eoff RL, Yuan S, Fercu CA, Guengerich FP. Elucidation of kinetic mechanisms of human translesion DNA polymerase κ using tryptophan mutants. FEBS J 2014; 281:4394-410. [PMID: 25065501 PMCID: PMC4182141 DOI: 10.1111/febs.12947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 02/05/2023]
Abstract
To investigate the conformational dynamics of human DNA polymerase κ (hpol κ), we generated two mutants, Y50W (N-clasp region) and Y408W (linker between the thumb and little finger domains), using a Trp-null mutant (W214Y/W392H) of the hpol κ catalytic core enzyme. These mutants retained catalytic activity and similar patterns of selectivity for bypassing the DNA adduct 7,8-dihydro-8-oxo-2'-deoxyguanosine, as indicated by the results of steady-state and pre-steady-state kinetic experiments. Stopped-flow kinetic assays with hpol κ Y50W and T408W revealed a decrease in Trp fluorescence with the template G:dCTP pair but not for any mispairs. This decrease in fluorescence was not rate-limiting and is considered to be related to a conformational change necessary for correct nucleotidyl transfer. When a free 3'-hydroxyl was present on the primer, the Trp fluorescence returned to the baseline level at a rate similar to the observed kcat , suggesting that this change occurs during or after nucleotidyl transfer. However, polymerization rates (kpol ) of extended-product formation were fast, indicating that the slow fluorescence step follows phosphodiester bond formation and is rate-limiting. Pyrophosphate formation and release were fast and are likely to precede the slower relaxation step. The available kinetic data were used to fit a simplified minimal model. The extracted rate constants confirmed that the conformational change after phosphodiester bond formation was rate-limiting for hpol κ catalysis with the template G:dCTP pair.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859 USA
| | - Matthew G. Pence
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - Robert L. Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Shuai Yuan
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - Catinca A. Fercu
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| |
Collapse
|
69
|
Hohlbein J, Craggs TD, Cordes T. Alternating-laser excitation: single-molecule FRET and beyond. Chem Soc Rev 2014; 43:1156-71. [PMID: 24037326 DOI: 10.1039/c3cs60233h] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Förster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables the sorting of fluorescently labelled species based on the number and type of fluorophores present. ALEX also provides a convenient way of accessing the correction factors necessary for determining accurate molecular distances. Here, we provide a comprehensive overview of the concept and current applications of ALEX and we explicitly discuss how to obtain fully corrected distance information across the entire FRET range. We also present new ideas for applications of ALEX which will push the limits of smFRET-based experiments in terms of temporal and spatial resolution for the study of complex biological systems.
Collapse
Affiliation(s)
- Johannes Hohlbein
- Laboratory of Biophysics, Wageningen UR, Wageningen, The Netherlands.
| | | | | |
Collapse
|
70
|
Boehr DD, Liu X, Yang X. Targeting structural dynamics of the RNA-dependent RNA polymerase for anti-viral strategies. Curr Opin Virol 2014; 9:194-200. [PMID: 25224392 DOI: 10.1016/j.coviro.2014.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The RNA-dependent RNA polymerase is responsible for genome replication of RNA viruses. Nuclear magnetic resonance experiments and molecular dynamics simulations have indicated that efficient and faithful polymerase function requires highly coordinated internal protein motions. Interference with these motions, either through amino acid substitutions or small molecule binding, can disrupt polymerase and virus function. In particular, these studies have pointed toward highly conserved structural elements, like the motif-D active-site loop, that can be modified to generate polymerases with desired properties. Viruses encoding engineered polymerases might serve as live, attenuated vaccine strains. Further elucidation of polymerase structural dynamics will also provide new avenues for anti-viral drug design.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Xinran Liu
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaorong Yang
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
71
|
Xu C, Maxwell BA, Suo Z. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis. J Mol Biol 2014; 426:2901-2917. [PMID: 24931550 DOI: 10.1016/j.jmb.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/02/2014] [Accepted: 06/07/2014] [Indexed: 11/15/2022]
Abstract
Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been performed to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol.
Collapse
Affiliation(s)
- Cuiling Xu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Brian A Maxwell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
72
|
Abstract
![]()
This review will summarize our structural
and kinetic studies of
RB69 DNA polymerase (RB69pol) as well as selected variants of the
wild-type enzyme that were undertaken to obtain a deeper understanding
of the exquisitely high fidelity of B family replicative DNA polymerases.
We discuss how the structures of the various RB69pol ternary complexes
can be used to rationalize the results obtained from pre-steady-state
kinetic assays. Our main findings can be summarized as follows. (i)
Interbase hydrogen bond interactions can increase catalytic efficiency
by 5000-fold; meanwhile, base selectivity is not solely determined
by the number of hydrogen bonds between the incoming dNTP and the
templating base. (ii) Minor-groove hydrogen bond interactions at positions n – 1 and n – 2 of the primer
strand and position n – 1 of the template
strand in RB69pol ternary complexes are essential for efficient primer
extension and base selectivity. (iii) Partial charge interactions
among the incoming dNTP, the penultimate base pair, and the hydration
shell surrounding the incoming dNTP modulate nucleotide insertion
efficiency and base selectivity. (iv) Steric clashes between mismatched
incoming dNTPs and templating bases with amino acid side chains in
the nascent base pair binding pocket (NBP) as well as weak interactions
and large gaps between the incoming dNTPs and the templating base
are some of the reasons that incorrect dNTPs are incorporated so inefficiently
by wild-type RB69pol. In addition, we developed a tC°–tCnitro Förster resonance energy transfer assay to monitor
partitioning of the primer terminus between the polymerase and exonuclease
subdomains.
Collapse
Affiliation(s)
- Shuangluo Xia
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8024, United States
| | | |
Collapse
|
73
|
Koag MC, Lee S. Metal-dependent conformational activation explains highly promutagenic replication across O6-methylguanine by human DNA polymerase β. J Am Chem Soc 2014; 136:5709-21. [PMID: 24694247 PMCID: PMC4004240 DOI: 10.1021/ja500172d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Human
DNA polymerase β (polβ) inserts, albeit slowly,
T opposite the carcinogenic lesion O6-methylguanine (O6MeG) ∼30-fold
more frequently than C. To gain insight into this promutagenic process,
we solved four ternary structures of polβ with an incoming dCTP
or dTTP analogue base-paired with O6MeG in the presence of active-site
Mg2+ or Mn2+. The Mg2+-bound structures
show that both the O6MeG·dCTP/dTTP–Mg2+ complexes
adopt an open protein conformation, staggered base pair, and one active-site
metal ion. The Mn2+-bound structures reveal that, whereas
the O6Me·dCTP–Mn2+ complex assumes the similar
altered conformation, the O6MeG·dTTP–Mn2+ complex
adopts a catalytically competent state with a closed protein conformation
and pseudo-Watson–Crick base pair. On the basis of these observations,
we conclude that polβ slows nucleotide incorporation opposite
O6MeG by inducing an altered conformation suboptimal for catalysis
and promotes mutagenic replication by allowing Watson–Crick-mode
for O6MeG·T but not for O6MeG·C in the enzyme active site.
The O6MeG·dTTP–Mn2+ ternary structure, which
represents the first structure of mismatched polβ ternary complex
with a closed protein conformation and coplanar base pair, the first
structure of pseudo-Watson–Crick O6MeG·T formed in the
active site of a DNA polymerase, and a rare, if not the first, example
of metal-dependent conformational activation of a DNA polymerase,
indicate that catalytic metal-ion coordination is utilized as a kinetic
checkpoint by polβ and is crucial for the conformational activation
of polβ. Overall, our structural studies not only explain the
promutagenic polβ catalysis across O6MeG but also provide new
insights into the replication fidelity of polβ.
Collapse
Affiliation(s)
- Myong-Chul Koag
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | | |
Collapse
|
74
|
Farooq S, Fijen C, Hohlbein J. Studying DNA-protein interactions with single-molecule Förster resonance energy transfer. PROTOPLASMA 2014; 251:317-32. [PMID: 24374460 DOI: 10.1007/s00709-013-0596-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 05/21/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) has emerged as a powerful tool for elucidating biological structure and mechanisms on the molecular level. Here, we focus on applications of smFRET to study interactions between DNA and enzymes such as DNA and RNA polymerases. SmFRET, used as a nanoscopic ruler, allows for the detection and precise characterisation of dynamic and rarely occurring events, which are otherwise averaged out in ensemble-based experiments. In this review, we will highlight some recent developments that provide new means of studying complex biological systems either by combining smFRET with force-based techniques or by using data obtained from smFRET experiments as constrains for computer-aided modelling.
Collapse
Affiliation(s)
- Shazia Farooq
- Laboratory of Biophysics, Wageningen UR, Wageningen, The Netherlands
| | | | | |
Collapse
|
75
|
Moon AF, Pryor JM, Ramsden DA, Kunkel TA, Bebenek K, Pedersen LC. Sustained active site rigidity during synthesis by human DNA polymerase μ. Nat Struct Mol Biol 2014; 21:253-60. [PMID: 24487959 PMCID: PMC4164209 DOI: 10.1038/nsmb.2766] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/26/2013] [Indexed: 01/09/2023]
Abstract
DNA polymerase μ (Pol μ) is the only template-dependent human DNA polymerase capable of repairing double-strand DNA breaks (DSBs) with unpaired 3' ends in nonhomologous end joining (NHEJ). To probe this function, we structurally characterized Pol μ's catalytic cycle for single-nucleotide incorporation. These structures indicate that, unlike other template-dependent DNA polymerases, Pol μ shows no large-scale conformational changes in protein subdomains, amino acid side chains or DNA upon dNTP binding or catalysis. Instead, the only major conformational change is seen earlier in the catalytic cycle, when the flexible loop 1 region repositions upon DNA binding. Pol μ variants with changes in loop 1 have altered catalytic properties and are partially defective in NHEJ. The results indicate that specific loop 1 residues contribute to Pol μ's unique ability to catalyze template-dependent NHEJ of DSBs with unpaired 3' ends.
Collapse
Affiliation(s)
- Andrea F Moon
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - John M Pryor
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dale A Ramsden
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas A Kunkel
- 1] Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA. [2] Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Katarzyna Bebenek
- 1] Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA. [2] Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Lars C Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
76
|
Hohlbein J, Aigrain L, Craggs TD, Bermek O, Potapova O, Shoolizadeh P, Grindley NDF, Joyce CM, Kapanidis AN. Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion. Nat Commun 2014; 4:2131. [PMID: 23831915 PMCID: PMC3715850 DOI: 10.1038/ncomms3131] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 06/11/2013] [Indexed: 01/04/2023] Open
Abstract
The fidelity of DNA polymerases depends on conformational changes that promote the rejection of incorrect nucleotides before phosphoryl transfer. Here, we combine single-molecule FRET with the use of DNA polymerase I and various fidelity mutants to highlight mechanisms by which active-site side chains influence the conformational transitions and free-energy landscape that underlie fidelity decisions in DNA synthesis. Ternary complexes of high fidelity derivatives with complementary dNTPs adopt mainly a fully closed conformation, whereas a conformation with a FRET value between those of open and closed is sparsely populated. This intermediate-FRET state, which we attribute to a partially closed conformation, is also predominant in ternary complexes with incorrect nucleotides and, strikingly, in most ternary complexes of low-fidelity derivatives for both correct and incorrect nucleotides. The mutator phenotype of the low-fidelity derivatives correlates well with reduced affinity for complementary dNTPs and highlights the partially closed conformation as a primary checkpoint for nucleotide selection. The fidelity of DNA polymerases depends on conformational changes that promote the rejection of incorrect nucleotides. Here, by using an intramolecular single-molecule FRET assay, the authors establish and characterize the partially closed conformation as a crucial fidelity checkpoint.
Collapse
Affiliation(s)
- Johannes Hohlbein
- Biological Physics Research Group, Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Betz K, Malyshev DA, Lavergne T, Welte W, Diederichs K, Romesberg FE, Marx A. Structural insights into DNA replication without hydrogen bonds. J Am Chem Soc 2013; 135:18637-43. [PMID: 24283923 PMCID: PMC3982147 DOI: 10.1021/ja409609j] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genetic alphabet is composed of two base pairs, and the development of a third, unnatural base pair would increase the genetic and chemical potential of DNA. d5SICS-dNaM is one of the most efficiently replicated unnatural base pairs identified to date, but its pairing is mediated by only hydrophobic and packing forces, and in free duplex DNA it forms a cross-strand intercalated structure that makes its efficient replication difficult to understand. Recent studies of the KlenTaq DNA polymerase revealed that the insertion of d5SICSTP opposite dNaM proceeds via a mutually induced-fit mechanism, where the presence of the triphosphate induces the polymerase to form the catalytically competent closed structure, which in turn induces the pairing nucleotides of the developing unnatural base pair to adopt a planar Watson-Crick-like structure. To understand the remaining steps of replication, we now report the characterization of the prechemistry complexes corresponding to the insertion of dNaMTP opposite d5SICS, as well as multiple postchemistry complexes in which the already formed unnatural base pair is positioned at the postinsertion site. Unlike with the insertion of d5SICSTP opposite dNaM, addition of dNaMTP does not fully induce the formation of the catalytically competent closed state. The data also reveal that once synthesized and translocated to the postinsertion position, the unnatural nucleobases again intercalate. Two modes of intercalation are observed, depending on the nature of the flanking nucleotides, and are each stabilized by different interactions with the polymerase, and each appear to reduce the affinity with which the next correct triphosphate binds. Thus, continued primer extension is limited by deintercalation and rearrangements with the polymerase active site that are required to populate the catalytically active, triphosphate bound conformation.
Collapse
Affiliation(s)
- Karin Betz
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany
| | - Denis A. Malyshev
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| | - Thomas Lavergne
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| | - Wolfram Welte
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany
| | - Kay Diederichs
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California, 92037
| | - Andreas Marx
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany
| |
Collapse
|
78
|
Eckenroth BE, Towle-Weicksel JB, Sweasy JB, Doublié S. The E295K cancer variant of human polymerase β favors the mismatch conformational pathway during nucleotide selection. J Biol Chem 2013; 288:34850-60. [PMID: 24133209 DOI: 10.1074/jbc.m113.510891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DNA polymerase β (pol β) is responsible for gap filling synthesis during repair of damaged DNA as part of the base excision repair pathway. Human pol β mutations were recently identified in a high percentage (∼30%) of tumors. Characterization of specific cancer variants is particularly useful to further the understanding of the general mechanism of pol β while providing context to disease contribution. We showed that expression of the carcinoma variant E295K induces cellular transformation. The poor polymerase activity exhibited by the variant was hypothesized to be caused by the destabilization of proper active site assembly by the glutamate to lysine mutation. Here, we show that this variant exhibits an unusual preference for binding dCTP opposite a templating adenine over the cognate dTTP. Biochemical studies indicate that the noncognate competes with the cognate nucleotide for binding to the polymerase active site with the noncognate incorporation a function of higher affinity and not increased activity. In the crystal structure of the variant bound to dA:dCTP, the fingers domain closes around the mismatched base pair. Nucleotide incorporation is hindered because key residues in the polymerase active site are not properly positioned for nucleotidyl transfer. In contrast to the noncognate dCTP, neither the cognate dTTP nor its nonhydrolyzable analog induced fingers closure, as isomorphous difference Fourier maps show that the cognate nucleotides are bound to the open state of the polymerase. Comparison with published structures provides insight into the structural rearrangements within pol β that occur during the process of nucleotide discrimination.
Collapse
Affiliation(s)
- Brian E Eckenroth
- From the Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405 and
| | | | | | | |
Collapse
|
79
|
Liu X, Yang X, Lee CA, Moustafa IM, Smidansky ED, Lum D, Arnold JJ, Cameron CE, Boehr DD. Vaccine-derived mutation in motif D of poliovirus RNA-dependent RNA polymerase lowers nucleotide incorporation fidelity. J Biol Chem 2013; 288:32753-32765. [PMID: 24085299 DOI: 10.1074/jbc.m113.484428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
All viral RNA-dependent RNA polymerases (RdRps) have a conserved structural element termed motif D. Studies of the RdRp from poliovirus (PV) have shown that a conformational change of motif D leads to efficient and faithful nucleotide addition by bringing Lys-359 into the active site where it serves as a general acid. The RdRp of the Sabin I vaccine strain has Thr-362 changed to Ile. Such a drastic change so close to Lys-359 might alter RdRp function and contribute in some way to the attenuated phenotype of Sabin type I. Here we present our characterization of the T362I RdRp. We find that the T362I RdRp exhibits a mutator phenotype in biochemical experiments in vitro. Using NMR, we show that this change in nucleotide incorporation fidelity correlates with a change in the structural dynamics of motif D. A recombinant PV expressing the T362I RdRp exhibits normal growth properties in cell culture but expresses a mutator phenotype in cells. For example, the T362I-containing PV is more sensitive to the mutagenic activity of ribavirin than wild-type PV. Interestingly, the T362I change was sufficient to cause a statistically significant reduction in viral virulence. Collectively, these studies suggest that residues of motif D can be targeted when changes in nucleotide incorporation fidelity are desired. Given the observation that fidelity mutants can serve as vaccine candidates, it may be possible to use engineering of motif D for this purpose.
Collapse
Affiliation(s)
| | | | - Cheri A Lee
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ibrahim M Moustafa
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Eric D Smidansky
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | | - Jamie J Arnold
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Craig E Cameron
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
80
|
Bermek O, Grindley NDF, Joyce CM. Prechemistry nucleotide selection checkpoints in the reaction pathway of DNA polymerase I and roles of glu710 and tyr766. Biochemistry 2013; 52:6258-74. [PMID: 23937394 PMCID: PMC3770053 DOI: 10.1021/bi400837k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The accuracy of high-fidelity DNA
polymerases such as DNA polymerase
I (Klenow fragment) is governed by conformational changes early in
the reaction pathway that serve as fidelity checkpoints, identifying
inappropriate template–nucleotide pairings. The fingers-closing
transition (detected by a fluorescence resonance energy transfer-based
assay) is the unique outcome of binding a correct incoming nucleotide,
both complementary to the templating base and with a deoxyribose (rather
than ribose) sugar structure. Complexes with mispaired dNTPs or complementary
rNTPs are arrested at an earlier stage, corresponding to a partially
closed fingers conformation, in which weak binding of DNA and nucleotide
promote dissociation and resampling of the substrate pool. A 2-aminopurine
fluorescence probe on the DNA template provides further information
about the steps preceding fingers closing. A characteristic 2-aminopurine
signal is observed on binding a complementary nucleotide, regardless
of whether the sugar is deoxyribose or ribose. However, mispaired
dNTPs show entirely different behavior. Thus, a fidelity checkpoint
ahead of fingers closing is responsible for distinguishing complementary
from noncomplementary nucleotides and routing them toward different
outcomes. The E710A mutator polymerase has a defect in the early fidelity
checkpoint such that some complementary dNTPs are treated as if they
were mispaired. In the Y766A mutant, the early checkpoint functions
normally, but some correctly paired dNTPs do not efficiently undergo
fingers closing. Thus, both mutator alleles cause a blurring of the
distinction between correct and incorrect base pairs and result in
a larger fraction of errors passing through the prechemistry fidelity
checkpoints.
Collapse
Affiliation(s)
- Oya Bermek
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
81
|
Rothwell PJ, Allen WJ, Sisamakis E, Kalinin S, Felekyan S, Widengren J, Waksman G, Seidel CAM. dNTP-dependent conformational transitions in the fingers subdomain of Klentaq1 DNA polymerase: insights into the role of the "nucleotide-binding" state. J Biol Chem 2013; 288:13575-91. [PMID: 23525110 DOI: 10.1074/jbc.m112.432690] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Conformational selection plays a key role in the polymerase cycle. RESULTS Klentaq1 exists in conformational equilibrium between three states (open, closed, and “nucleotide-binding”) whose level of occupancy is determined by the bound substrate. CONCLUSION The “nucleotide-binding” state plays a pivotal role in the reaction pathway. SIGNIFICANCE Direct evidence is provided for the role of a conformationally distinct “nucleotide-binding” state during dNTP incorporation. DNA polymerases are responsible for the accurate replication of DNA. Kinetic, single-molecule, and x-ray studies show that multiple conformational states are important for DNA polymerase fidelity. Using high precision FRET measurements, we show that Klentaq1 (the Klenow fragment of Thermus aquaticus DNA polymerase 1) is in equilibrium between three structurally distinct states. In the absence of nucleotide, the enzyme is mostly open, whereas in the presence of DNA and a correctly base-pairing dNTP, it re-equilibrates to a closed state. In the presence of a dNTP alone, with DNA and an incorrect dNTP, or in elevated MgCl2 concentrations, an intermediate state termed the "nucleotide-binding" state predominates. Photon distribution and hidden Markov modeling revealed fast dynamic and slow conformational processes occurring between all three states in a complex energy landscape suggesting a mechanism in which dNTP delivery is mediated by the nucleotide-binding state. After nucleotide binding, correct dNTPs are transported to the closed state, whereas incorrect dNTPs are delivered to the open state.
Collapse
Affiliation(s)
- Paul J Rothwell
- Chair for Molecular Physical Chemistry, Heinrich-Heine University, Universitätsstraβe 1, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Freudenthal BD, Beard WA, Wilson SH. DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. Nucleic Acids Res 2012; 41:1848-58. [PMID: 23267011 PMCID: PMC3561998 DOI: 10.1093/nar/gks1276] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A major base lesion resulting from oxidative stress is 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxoG) that has ambiguous coding potential. Error-free DNA synthesis involves 8-oxoG adopting an anti-conformation to base pair with cytosine whereas mutagenic bypass involves 8-oxoG adopting a syn-conformation to base pair with adenine. Left unrepaired the syn-8-oxoG/dAMP base pair results in a G–C to T–A transversion. During base excision repair of this mispair, DNA polymerase (pol) β is confronted with gap filling opposite 8-oxoG. To determine how pol β discriminates between anti- and syn-8-oxoG, we introduced a point mutation (R283K) to alter insertion specificity. Kinetic studies demonstrate that this substitution results in an increased fidelity opposite 8-oxoG. Structural studies with R283K pol β show that the binary DNA complex has 8-oxoG in equilibrium between anti- and syn-forms. Ternary complexes with incoming dCTP resemble the wild-type enzyme, with templating anti-8-oxoG base pairing with incoming cytosine. In contrast to wild-type pol β, the ternary complex of the R283K mutant with an incoming dATP-analogue and templating 8-oxoG resembles a G–A mismatched structure with 8-oxoG adopting an anti-conformation. These results demonstrate that the incoming nucleotide is unable to induce a syn-8-oxoG conformation without minor groove DNA polymerase interactions that influence templating (anti-/syn-equilibrium) of 8-oxoG while modulating fidelity.
Collapse
Affiliation(s)
- Bret D Freudenthal
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, PO Box 12233, Research Triangle Park, NC 27709-2233, USA
| | | | | |
Collapse
|
83
|
Duzdevich D, Greene EC. Towards physiological complexity with in vitro single-molecule biophysics. Philos Trans R Soc Lond B Biol Sci 2012; 368:20120271. [PMID: 23267187 DOI: 10.1098/rstb.2012.0271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Single-molecule biology has matured in recent years, driven to greater sophistication by the development of increasingly advanced experimental techniques. A progressive appreciation for its unique strengths is attracting research that spans an exceptionally broad swath of physiological phenomena--from the function of nucleosomes to protein diffusion in the cell membrane. Newfound enthusiasm notwithstanding, the single-molecule approach is limited to an intrinsically defined set of biological questions; such limitation applies to all experimental approaches, and an explicit statement of the boundaries delineating each set offers a guide to most fruitfully orienting in vitro single-molecule research in the future. Here, we briefly describe a simple conceptual framework to categorize how submolecular, molecular and intracellular processes are studied. We highlight the domain of single-molecule biology in this scheme, with an emphasis on its ability to probe various forms of heterogeneity inherent to populations of discrete biological macromolecules. We then give a general overview of our high-throughput DNA curtain methodology for studying protein-nucleic acid interactions, and by contextualizing it within this framework, we explore what might be the most enticing avenues of future research. We anticipate that a focus on single-molecule biology's unique strengths will suggest a new generation of experiments with greater complexity and more immediately translatable physiological relevance.
Collapse
Affiliation(s)
- Daniel Duzdevich
- Department of Biological Sciences, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
84
|
Freudenthal BD, Beard WA, Wilson SH. Structures of dNTP intermediate states during DNA polymerase active site assembly. Structure 2012; 20:1829-37. [PMID: 22959623 PMCID: PMC3496073 DOI: 10.1016/j.str.2012.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/23/2022]
Abstract
DNA polymerase and substrate conformational changes are essential for high-fidelity DNA synthesis. Structures of DNA polymerase (pol) β in complex with DNA show the enzyme in an "open" conformation. Subsequent to binding the nucleotide, the polymerase "closes" around the nascent base pair with two metals positioned for chemistry. However, structures of substrate/active site intermediates prior to closure are lacking. By destabilizing the closed complex, we determined unique ternary complex structures of pol β with correct and incorrect incoming nucleotides bound to the open conformation. These structures reveal that Watson-Crick hydrogen bonding is assessed upon initial complex formation. Importantly, nucleotide-bound states representing intermediate metal coordination states occur with active site assembly. The correct, but not incorrect, nucleotide maintains Watson-Crick hydrogen bonds during interconversion of these states. These structures indicate that the triphosphate of the incoming nucleotide undergoes rearrangement prior to closure, providing an opportunity to deter misinsertion and increase fidelity.
Collapse
Affiliation(s)
- Bret D. Freudenthal
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, North Carolina 27709-2233, USA
| | - William A. Beard
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, North Carolina 27709-2233, USA
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, North Carolina 27709-2233, USA
| |
Collapse
|
85
|
Lieberman KR, Dahl JM, Mai AH, Akeson M, Wang H. Dynamics of the translocation step measured in individual DNA polymerase complexes. J Am Chem Soc 2012; 134:18816-23. [PMID: 23101437 DOI: 10.1021/ja3090302] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Complexes formed between the bacteriophage phi29 DNA polymerase (DNAP) and DNA fluctuate between the pre-translocation and post-translocation states on the millisecond time scale. These fluctuations can be directly observed with single-nucleotide precision in real-time ionic current traces when individual complexes are captured atop the α-hemolysin nanopore in an applied electric field. We recently quantified the equilibrium across the translocation step as a function of applied force (voltage), active-site proximal DNA sequences, and the binding of complementary dNTP. To gain insight into the mechanism of this step in the DNAP catalytic cycle, in this study, we have examined the stochastic dynamics of the translocation step. The survival probability of complexes in each of the two states decayed at a single exponential rate, indicating that the observed fluctuations are between two discrete states. We used a robust mathematical formulation based on the autocorrelation function to extract the forward and reverse rates of the transitions between the pre-translocation state and the post-translocation state from ionic current traces of captured phi29 DNAP-DNA binary complexes. We evaluated each transition rate as a function of applied voltage to examine the energy landscape of the phi29 DNAP translocation step. The analysis reveals that active-site proximal DNA sequences influence the depth of the pre-translocation and post-translocation state energy wells and affect the location of the transition state along the direction of the translocation.
Collapse
Affiliation(s)
- Kate R Lieberman
- Biomolecular Engineering, University of California, Santa Cruz, 95064, United States.
| | | | | | | | | |
Collapse
|
86
|
Xie ZH. [The fidelity mechanism of DNA synthesis]. YI CHUAN = HEREDITAS 2012; 34:679-86. [PMID: 22698738 DOI: 10.3724/sp.j.1005.2012.00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Accurate DNA synthesis is vital to maintain genome stability and ensure propagation of species. Synthetic errors have far reaching consequences. Therefore, DNA synthesis is remarkably accurate. The high fidelity is mainly achieved through three steps: ① nucleotide selection, which is based on hydrogen, base pair shape, or some other elements; ② 3'→5' exonuclease proofreading, which removes mis-incorporated nucleotides in cis or trans; ③ repair process, which could correct mismatched nucleotides escaping from proofreading, such as mismatch repair, excission repair, homologous recombination repair, and translesion DNA synthesis. Because all polymerases are suitable targets for anticancer or antiviral drugs, their fidelity is involved in drug resistance and side effects. Understanding the molecular basis of synthesis fidelity is of vital importance. In this review, the fidelity mechanisms of DNA synthesis will be discussed in detail. Furthermore, their application perspective was discussed.
Collapse
Affiliation(s)
- Zhao-Hui Xie
- Key University Laboratory of Biotechnology and Utilization of Bio-resource of Shandong, Department of Biology, Dezhou University, Dezhou 253023, China.
| |
Collapse
|
87
|
Wang W, Wu EY, Hellinga HW, Beese LS. Structural factors that determine selectivity of a high fidelity DNA polymerase for deoxy-, dideoxy-, and ribonucleotides. J Biol Chem 2012; 287:28215-26. [PMID: 22648417 PMCID: PMC3436578 DOI: 10.1074/jbc.m112.366609] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/15/2012] [Indexed: 12/20/2022] Open
Abstract
In addition to discriminating against base pair mismatches, DNA polymerases exhibit a high degree of selectivity for deoxyribonucleotides over ribo- or dideoxynucleotides. It has been proposed that a single active site residue (steric gate) blocks productive binding of nucleotides containing 2'-hydroxyls. Although this steric gate plays a role in sugar moiety discrimination, its interactions do not account fully for the observed behavior of mutants. Here we present 10 high resolution crystal structures and enzyme kinetic analyses of Bacillus DNA polymerase I large fragment variants complexed with deoxy-, ribo-, and dideoxynucleotides and a DNA substrate. Taken together, these data present a more nuanced and general mechanism for nucleotide discrimination in which ensembles of intermediate conformations in the active site trap non-cognate substrates. It is known that the active site O-helix transitions from an open state in the absence of nucleotide substrates to a ternary complex closed state in which the reactive groups are aligned for catalysis. Substrate misalignment in the closed state plays a fundamental part in preventing non-cognate nucleotide misincorpation. The structures presented here show that additional O-helix conformations intermediate between the open and closed state extremes create an ensemble of binding sites that trap and misalign non-cognate nucleotides. Water-mediated interactions, absent in the fully closed state, play an important role in formation of these binding sites and can be remodeled to accommodate different non-cognate substrates. This mechanism may extend also to base pair discrimination.
Collapse
Affiliation(s)
- Weina Wang
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Eugene Y. Wu
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Homme W. Hellinga
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Lorena S. Beese
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
88
|
Yang X, Smidansky ED, Maksimchuk KR, Lum D, Welch JL, Arnold JJ, Cameron CE, Boehr DD. Motif D of viral RNA-dependent RNA polymerases determines efficiency and fidelity of nucleotide addition. Structure 2012; 20:1519-27. [PMID: 22819218 DOI: 10.1016/j.str.2012.06.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/23/2012] [Accepted: 06/18/2012] [Indexed: 01/13/2023]
Abstract
Fast, accurate nucleotide incorporation by polymerases facilitates expression and maintenance of genomes. Many polymerases use conformational dynamics of a conserved α helix to permit efficient nucleotide addition only when the correct nucleotide substrate is bound. This α helix is missing in structures of RNA-dependent RNA polymerases (RdRps) and RTs. Here, we use solution-state nuclear magnetic resonance to demonstrate that the conformation of conserved structural motif D of an RdRp is linked to the nature (correct versus incorrect) of the bound nucleotide and the protonation state of a conserved, motif-D lysine. Structural data also reveal the inability of motif D to achieve its optimal conformation after incorporation of an incorrect nucleotide. Functional data are consistent with the conformational change of motif D becoming rate limiting during and after nucleotide misincorporation. We conclude that motif D of RdRps and, by inference, RTs is the functional equivalent to the fidelity helix of other polymerases.
Collapse
Affiliation(s)
- Xiaorong Yang
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Berezhna SY, Gill JP, Lamichhane R, Millar DP. Single-molecule Förster resonance energy transfer reveals an innate fidelity checkpoint in DNA polymerase I. J Am Chem Soc 2012; 134:11261-8. [PMID: 22650319 DOI: 10.1021/ja3038273] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymatic reactions typically involve complex dynamics during substrate binding, conformational rearrangement, chemistry, and product release. The noncovalent steps provide kinetic checkpoints that contribute to the overall specificity of enzymatic reactions. DNA polymerases perform DNA replication with outstanding fidelity by actively rejecting noncognate nucleotide substrates early in the reaction pathway. Substrates are delivered to the active site by a flexible fingers subdomain of the enzyme, as it converts from an open to a closed conformation. The conformational dynamics of the fingers subdomain might also play a role in nucleotide selection, although the precise role is currently unknown. Using single-molecule Förster resonance energy transfer, we observed individual Escherichia coli DNA polymerase I (Klenow fragment) molecules performing substrate selection. We discovered that the fingers subdomain actually samples through three distinct conformations--open, closed, and a previously unrecognized intermediate conformation. We measured the overall dissociation rate of the polymerase-DNA complex and the distribution among the various conformational states in the absence and presence of nucleotide substrates, which were either correct or incorrect. Correct substrates promote rapid progression of the polymerase to the catalytically competent closed conformation, whereas incorrect nucleotides block the enzyme in the intermediate conformation and induce rapid dissociation from DNA. Remarkably, incorrect nucleotide substrates also promote partitioning of DNA to the spatially separated 3'-5' exonuclease domain, providing an additional mechanism to prevent misincorporation at the polymerase active site. These results reveal the existence of an early innate fidelity checkpoint, rejecting incorrect nucleotide substrates before the enzyme encloses the nascent base pair.
Collapse
Affiliation(s)
- Svitlana Y Berezhna
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
90
|
Betz K, Malyshev DA, Lavergne T, Welte W, Diederichs K, Dwyer TJ, Ordoukhanian P, Romesberg FE, Marx A. KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry. Nat Chem Biol 2012; 8:612-4. [PMID: 22660438 PMCID: PMC3690913 DOI: 10.1038/nchembio.966] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 04/03/2012] [Indexed: 01/04/2023]
Abstract
Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.
Collapse
Affiliation(s)
- Karin Betz
- Department of Chemistry, Universität Konstanz, Konstanz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Holzberger B, Pszolla MG, Marx A, Möller HM. KlenTaq DNA polymerase adopts unique recognition states when encountering matched, mismatched, and abasic template sites: an NMR study. Chembiochem 2012; 13:635-9. [PMID: 22315195 DOI: 10.1002/cbic.201100802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Indexed: 01/10/2023]
Affiliation(s)
- Bastian Holzberger
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
92
|
Obeid S, Welte W, Diederichs K, Marx A. Amino acid templating mechanisms in selection of nucleotides opposite abasic sites by a family a DNA polymerase. J Biol Chem 2012; 287:14099-108. [PMID: 22318723 DOI: 10.1074/jbc.m111.334904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cleavage of the N-glycosidic bond that connects the nucleobase to the backbone in DNA leads to abasic sites, the most frequent lesion under physiological conditions. Several DNA polymerases preferentially incorporate an A opposite this lesion, a phenomenon termed "A-rule." Accordingly, KlenTaq, the large fragment of Thermus aquaticus DNA polymerase I, incorporates a nucleotide opposite an abasic site with efficiencies of A > G > T > C. Here we provide structural insights into constraints of the active site during nucleotide selection opposite an abasic site. It appears that these confines govern the nucleotide selection mainly by interaction of the incoming nucleotide with Tyr-671. Depending on the nucleobase, the nucleotides are differently positioned opposite Tyr-671 resulting in different alignments of the functional groups that are required for bond formation. The distances between the α-phosphate and the 3'-primer terminus increases in the order A < G < T, which follows the order of incorporation efficiency. Additionally, a binary KlenTaq structure bound to DNA containing an abasic site indicates that binding of the nucleotide triggers a remarkable rearrangement of enzyme and DNA template. The ability to resolve the stacking arrangement might be dependent on the intrinsic properties of the respective nucleotide contributing to nucleotide selection. Furthermore, we studied the incorporation of a non-natural nucleotide opposite an abasic site. The nucleotide was often used in studying stacking effects in DNA polymerization. Here, no interaction with Tyr-761 as found for the natural nucleotides is observed, indicating a different reaction path for this non-natural nucleotide.
Collapse
Affiliation(s)
- Samra Obeid
- Department of Chemistry, University of Konstanz, Universita¨tsstrasse 10, D 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
93
|
Xia S, Eom SH, Konigsberg WH, Wang J. Bidentate and tridentate metal-ion coordination states within ternary complexes of RB69 DNA polymerase. Protein Sci 2012; 21:447-51. [PMID: 22238207 DOI: 10.1002/pro.2026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/30/2011] [Accepted: 01/05/2012] [Indexed: 01/20/2023]
Abstract
Two divalent metal ions are required for primer-extension catalyzed by DNA polymerases. One metal ion brings the 3'-hydroxyl of the primer terminus and the α-phosphorus atom of incoming dNTP together for bond formation so that the catalytically relevant conformation of the triphosphate tail of the dNTP is in an α,β,γ-tridentate coordination complex with the second metal ion required for proper substrate alignment. A probable base selectivity mechanism derived from structural studies on Dpo4 suggests that the inability of mispaired dNTPs to form a substrate-aligned, tridentate coordination complex could effectively cause the mispaired dNTPs to be rejected before catalysis. Nevertheless, we found that mispaired dNTPs can actually form a properly aligned tridentate coordination complex. However, complementary dNTPs occasionally form misaligned complexes with mutant RB69 DNA polymerases (RB69pols) that are not in a tridentate coordination state. Here, we report finding a β,γ-bidentate coordination complex that contained the complementary dUpNpp opposite dA in the structure of a ternary complex formed by the wild type RB69pol at 1.88 Å resolution. Our observations suggest that several distinct metal-ion coordination states can exist at the ground state in the polymerase active site and that base selectivity is unlikely to be based on metal-ion coordination alone.
Collapse
Affiliation(s)
- Shuangluo Xia
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
94
|
Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proc Natl Acad Sci U S A 2011; 108:17644-8. [PMID: 22006298 DOI: 10.1073/pnas.1114496108] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Even though high-fidelity polymerases copy DNA with remarkable accuracy, some base-pair mismatches are incorporated at low frequency, leading to spontaneous mutagenesis. Using high-resolution X-ray crystallographic analysis of a DNA polymerase that catalyzes replication in crystals, we observe that a C • A mismatch can mimic the shape of cognate base pairs at the site of incorporation. This shape mimicry enables the mismatch to evade the error detection mechanisms of the polymerase, which would normally either prevent mismatch incorporation or promote its nucleolytic excision. Movement of a single proton on one of the mismatched bases alters the hydrogen-bonding pattern such that a base pair forms with an overall shape that is virtually indistinguishable from a canonical, Watson-Crick base pair in double-stranded DNA. These observations provide structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis, a long-standing concept that has been difficult to demonstrate directly.
Collapse
|