51
|
Gustafsson AS, Abramenkovs A, Stenerlöw B. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair. Mutat Res 2014; 769:1-10. [PMID: 25771720 DOI: 10.1016/j.mrfmmm.2014.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/04/2014] [Accepted: 06/16/2014] [Indexed: 06/04/2023]
Abstract
Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80-95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure which is uncoupled from its essential function in DSB repair. This could have implications for the development of therapeutic strategies aiming to radiosensitize tumors by affecting the DNA-PKcs function.
Collapse
Affiliation(s)
- Ann-Sofie Gustafsson
- Section of Biomedical Radiation Sciences, Department of Radiology, Oncology and Radiation Science, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85 Uppsala, Sweden.
| | - Andris Abramenkovs
- Section of Biomedical Radiation Sciences, Department of Radiology, Oncology and Radiation Science, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85 Uppsala, Sweden
| | - Bo Stenerlöw
- Section of Biomedical Radiation Sciences, Department of Radiology, Oncology and Radiation Science, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85 Uppsala, Sweden
| |
Collapse
|
52
|
Abstract
UNLABELLED The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, further underscoring the importance of understanding its role in disease. Herein, the molecular and cellular consequences of DNA-PK are considered, with an eye toward discerning the rationale for therapeutic targeting of DNA-PK. SIGNIFICANCE Although DNA-PK is classically considered a component of damage response, recent findings illuminate damage-independent functions of DNA-PK that affect multiple tumor-associated pathways and provide a rationale for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan F Goodwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania. Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
53
|
|
54
|
Abstract
UNLABELLED The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, further underscoring the importance of understanding its role in disease. Herein, the molecular and cellular consequences of DNA-PK are considered, with an eye toward discerning the rationale for therapeutic targeting of DNA-PK. SIGNIFICANCE Although DNA-PK is classically considered a component of damage response, recent findings illuminate damage-independent functions of DNA-PK that affect multiple tumor-associated pathways and provide a rationale for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan F Goodwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania. Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
55
|
Douglas P, Ye R, Trinkle-Mulcahy L, Neal J, De Wever V, Morrice N, Meek K, Lees-Miller S. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis. Biosci Rep 2014; 34:e00113. [PMID: 24844881 PMCID: PMC4069685 DOI: 10.1042/bsr20140051] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/25/2014] [Accepted: 05/20/2014] [Indexed: 01/28/2023] Open
Abstract
The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs' role in mitosis may be mechanistically distinct from its well-established role in NHEJ.
Collapse
Key Words
- dna-dependent protein kinase
- midbody
- mitosis
- polo-like protein kinase 1
- protein phosphatase 6
- atm, ataxia telangiectasia mutated
- chk2, checkpoint kinase 2
- dmem, dulbecco’s modified eagle’s medium
- dna-pkcs, dna-dependent protein kinase catalytic subunit
- dapi, 4′,6-diamidino-2-phenylindole
- dsb, dna double-strand break
- fha, forkhead associated
- gfp, green fluorescent protein
- ir, ionizing radiation
- mem, minimum essential medium alpha
- nhej, non-homologous end-joining
- pipes, 1,4-piperazinediethanesulfonic acid
- plk1, polo-like kinase-1
- pp6, protein phosphatase 6
- sirna, small interfering rna
- tpx2, targeting protein for xklp2
Collapse
Affiliation(s)
- Pauline Douglas
- *Departments of Biochemistry & Molecular Biology and Oncology, Southern Alberta Cancer Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| | - Ruiqiong Ye
- *Departments of Biochemistry & Molecular Biology and Oncology, Southern Alberta Cancer Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| | - Laura Trinkle-Mulcahy
- †Department of Cellular & Molecular Medicine and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada, K1H 8M5
| | - Jessica A. Neal
- ‡Departments of Pathobiology & Diagnostic Investigation, and Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, U.S.A
| | - Veerle De Wever
- §Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 4N1
| | - Nick A. Morrice
- ∥Beatson Institute for Cancer Research, Glasgow G61 1BD Scotland, U.K
| | - Katheryn Meek
- ‡Departments of Pathobiology & Diagnostic Investigation, and Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, U.S.A
| | - Susan P. Lees-Miller
- *Departments of Biochemistry & Molecular Biology and Oncology, Southern Alberta Cancer Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
56
|
RNF144A, an E3 ubiquitin ligase for DNA-PKcs, promotes apoptosis during DNA damage. Proc Natl Acad Sci U S A 2014; 111:E2646-55. [PMID: 24979766 DOI: 10.1073/pnas.1323107111] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Several ring between ring fingers (RBR) -domain proteins, such as Parkin and Parc, have been shown to be E3 ligases involved in important biological processes. Here, we identify a poorly characterized RBR protein, Ring Finger protein 144A (RNF144A), as the first, to our knowledge, mammalian E3 ubiquitin ligase for DNA-PKcs. We show that DNA damage induces RNF144A expression in a p53-dependent manner. RNF144A is mainly localized in the cytoplasmic vesicles and plasma membrane and interacts with cytoplasmic DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). DNA-PKcs plays a critical role in the nonhomologous end-joining DNA repair pathway and provides prosurvival signaling during DNA damage. We show that RNF144A induces ubiquitination of DNA-PKcs in vitro and in vivo and promotes its degradation. Depletion of RNF144A leads to an increased level of DNA-PKcs and resistance to DNA damaging agents, which is reversed by a DNA-PK inhibitor. Taken together, our data suggest that RNF144A may be involved in p53-mediated apoptosis through down-regulation of DNA-PKcs when cells suffer from persistent or severe DNA damage insults.
Collapse
|
57
|
Huang B, Shang ZF, Li B, Wang Y, Liu XD, Zhang SM, Guan H, Rang WQ, Hu JA, Zhou PK. DNA-PKcs associates with PLK1 and is involved in proper chromosome segregation and cytokinesis. J Cell Biochem 2014; 115:1077-88. [PMID: 24166892 DOI: 10.1002/jcb.24703] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022]
Abstract
Accurate mitotic regulation is as important as intrinsic DNA repair for maintaining genomic stability. It is believed that these two cellular mechanisms are interconnected with DNA damage. DNA-PKcs is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair, and it was recently discovered to be involved in mitotic processing. However, the underlying mechanism of DNA-PKcs action in mitotic control is unknown. Here, we demonstrated that depletion of DNA-PKcs led to the dysregulation of mitotic progression in response to DNA damage, which eventually resulted in multiple failures, including failure to segregate sister chromatids and failure to complete cytokinesis, with daughter cells becoming fused again. The depletion of DNA-PKcs resulted in a notable failure of cytokinesis, with a high incidence of multinucleated cells. There were also cytoplasmic bridges containing DNA that continuously connected the daughter cells after DNA damage was induced. Phosphorylated DNA-PKcs (T2609) colocalizes with PLK1 throughout mitosis, including at the centrosomes from prophase to anaphase and at the kinetochores from prometaphase to metaphase, with accumulation at the midbody during cytokinesis. Importantly, DNA-PKcs was found to associate with PLK1 in the mitotic phase, and the depletion of DNA-PKcs resulted in the overexpression of PLK1 due to increased protein stability. However, deficiency in DNA-PKcs attenuated the recruitment of phosphorylated PLK1 to the midbody but not to the kinetochores and centrosomes. Our results demonstrate the functional association of DNA-PKcs with PLK1, especially in chromosomal segregation and cytokinesis control.
Collapse
Affiliation(s)
- Bo Huang
- School of Public Heath, Central South University, Changsha, Hunan Province, 410078, P.R. China; Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China; Institute for Environmental Medicine and Radiation Hygiene, The College of Public Health, University of South China, Hengyang, Hunan Province, 421000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Getting down to the core of histone modifications. Chromosoma 2014; 123:355-71. [PMID: 24789118 DOI: 10.1007/s00412-014-0465-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
The identification of an increasing number of posttranslationally modified residues within histone core domains is furthering our understanding of how nucleosome dynamics are regulated. In this review, we first discuss how the targeting of specific histone H3 core residues can directly influence the nucleosome structure and then apply this knowledge to provide functional reasoning for their localization to distinct genomic regions. While we focus mainly on transcriptional implications, the principles discussed in this review can also be applied to their roles in other cellular processes. Finally, we highlight some examples of how aberrant modifications of core histone residues can facilitate the pathogenesis of some diseases.
Collapse
|
59
|
Wang CY, Huang EYH, Huang SC, Chung BC. DNA-PK/Chk2 induces centrosome amplification during prolonged replication stress. Oncogene 2014; 34:1263-9. [PMID: 24662822 DOI: 10.1038/onc.2014.74] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/21/2013] [Accepted: 01/01/2014] [Indexed: 12/30/2022]
Abstract
The antineoplastic drug hydroxyurea (HU), when used at subtoxic doses, induces prolonged replication stress and centrosome amplification. This causes genomic instability and increases the malignancy of the recurring tumor. The mechanism of centrosome amplification induced by prolonged replication stress, however, is still unclear. Here, we examined the involvement of ataxia telangiectasia, mutated (ATM), ataxia telangiectasia, mutated and Rad3-related (ATR) and DNA-dependent protein kinase (DNA-PK) and found that HU-induced centrosome amplification was inhibited by the depletion of DNA-PKcs, but not ATM and ATR. Inactivation of ATM/ATR in U2OS cells instead caused aneuploidy and cell death. We found DNA-PKcs depletion also abrogated ATM phosphorylation, indicating that ATM activation during prolonged replication stress depends on DNA-PK. Depletion of DNA-PK abrogated checkpoint kinase (Chk)2 activation and partially reduced Chk1 activation. Chk2 depletion blocked HU-induced centrosome amplification, indicating a function of Chk2 in centrosome amplification. We further found that Chk2 was phosphorylated at Thr68 on the mother centriole at late G2 and mitosis when unstressed and on all amplified centrioles induced by HU. In summary, we have elucidated that DNA-PK/Chk2 signaling induces centrosome amplification upon long-term HU treatment, therefore increasing our insight into tumor recurrence after initial chemotherapy.
Collapse
Affiliation(s)
- C-Y Wang
- 1] Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan [2] Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - E Y-H Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - S-C Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - B-C Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
60
|
Krutikov K, Zheng Y, Chesney A, Huang X, Vaags AK, Evdokimova V, Hough MR, Chen E. Ectopic TLX1 expression accelerates malignancies in mice deficient in DNA-PK. PLoS One 2014; 9:e89649. [PMID: 24586935 PMCID: PMC3935916 DOI: 10.1371/journal.pone.0089649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 01/26/2014] [Indexed: 11/22/2022] Open
Abstract
The noncluster homeobox gene HOX11/TLX1 (TLX1) is detected at the breakpoint of the t(10;14)(q24;q11) chromosome translocation in patients with T cell acute lymphoblastic leukemia (T-ALL). This translocation results in the inappropriate expression of TLX1 in T cells. The oncogenic potential of TLX1 was demonstrated in IgHμ-TLX1Tg mice which develop mature B cell lymphoma after a long latency period, suggesting the requirement of additional mutations to initiate malignancy. To determine whether dysregulation of genes involved in the DNA damage response contributed to tumor progression, we crossed IgHμ-TLX1Tg mice with mice deficient in the DNA repair enzyme DNA-PK (PrkdcScid/Scid mice). IgHµ-TLX1TgPrkdcScid/Scid mice developed T-ALL and acute myeloid leukemia (AML) with reduced latency relative to control PrkdcScid/Scid mice. Further analysis of thymi from premalignant mice revealed greater thymic cellularity concomitant with increased thymocyte proliferation and decreased apoptotic index. Moreover, premalignant and malignant thymocytes exhibited impaired spindle checkpoint function, in association with aneuploid karyotypes. Gene expression profiling of premalignant IgHµ-TLX1TgPrkdcScid/Scid thymocytes revealed dysregulated expression of cell cycle, apoptotic and mitotic spindle checkpoint genes in double negative 2 (DN2) and DN3 stage thymocytes. Collectively, these findings reveal a novel synergy between TLX1 and impaired DNA repair pathway in leukemogenesis.
Collapse
Affiliation(s)
- Konstantin Krutikov
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Yanzhen Zheng
- Department of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Alden Chesney
- Department of Clinical Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Xiaoyong Huang
- Department of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Andrea K. Vaags
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Valentina Evdokimova
- Department of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Margaret R. Hough
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (EC); (MRH)
| | - Edwin Chen
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
- * E-mail: (EC); (MRH)
| |
Collapse
|
61
|
Eliezer Y, Argaman L, Kornowski M, Roniger M, Goldberg M. Interplay between the DNA damage proteins MDC1 and ATM in the regulation of the spindle assembly checkpoint. J Biol Chem 2014; 289:8182-93. [PMID: 24509855 DOI: 10.1074/jbc.m113.532739] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To avoid genomic instability, cells have developed surveillance mechanisms such as the spindle assembly checkpoint (SAC) and the DNA damage response. ATM and MDC1 are central players of the cellular response to DNA double-strand breaks. Here, we identify a new role for these proteins in the regulation of mitotic progression and in SAC activation. MDC1 localizes at mitotic kinetochores following SAC activation in an ATM-dependent manner. ATM phosphorylates histone H2AX at mitotic kinetochores, and this phosphorylation is required for MDC1 localization at kinetochores. ATM and MDC1 are needed for kinetochore localization of the inhibitory mitotic checkpoint complex components, Mad2 and Cdc20, and for the maintenance of the mitotic checkpoint complex integrity. This probably relies on the interaction of MDC1 with the MCC. In this work, we have established that ATM and MDC1 maintain genomic stability not only by controlling the DNA damage response, but also by regulating SAC activation, providing an important link between these two essential biological processes.
Collapse
Affiliation(s)
- Yifat Eliezer
- From the Department of Genetics, The Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
62
|
Shang Z, Yu L, Lin YF, Matsunaga S, Shen CY, Chen BPC. DNA-PKcs activates the Chk2-Brca1 pathway during mitosis to ensure chromosomal stability. Oncogenesis 2014; 3:e85. [PMID: 24492479 PMCID: PMC3940919 DOI: 10.1038/oncsis.2013.49] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 01/06/2023] Open
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is known to have a critical role in DNA double-strand break repair. We have previously reported that DNA-PKcs is activated when cells enter mitosis and functions in mitotic spindle assembly and chromosome segregation. Here we report that DNA-PKcs is the upstream regulator of the Chk2-Brca1 pathway, which impacts microtubule dynamics, kinetochore attachment and chromosomal segregation in mitosis. Downstream from Chk2, Brca1 promotes monoubiquitination of γ-tubulin to inhibit microtubule nucleation and growth. We found that DNA-PKcs is essential for mitotic Chk2 phosphorylation at Thr68. As in Chk2- and Brca1-deficient cells, loss of DNA-PKcs resulted in chromosome misalignment and lagging during anaphase owing to elevation in microtubule dynamics. Importantly, these mitotic aberrations in DNA-PKcs-defective cells were alleviated by the overexpression of phosphomimetic Chk2 or Brca1 mutant proteins but not their wild-type counterparts. Taken together, these results demonstrate that DNA-PKcs regulates mitotic spindle organization and chromosomal instability via the Chk2-Brca1 signaling pathway.
Collapse
Affiliation(s)
- Z Shang
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - L Yu
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Y-F Lin
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - S Matsunaga
- Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Tottori University, Yonago, Japan
| | - C-Y Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - B P C Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
63
|
Evert M, Frau M, Tomasi ML, Latte G, Simile MM, Seddaiu MA, Zimmermann A, Ladu S, Staniscia T, Brozzetti S, Solinas G, Dombrowski F, Feo F, Pascale RM, Calvisi DF. Deregulation of DNA-dependent protein kinase catalytic subunit contributes to human hepatocarcinogenesis development and has a putative prognostic value. Br J Cancer 2013; 109:2654-64. [PMID: 24136149 PMCID: PMC3833205 DOI: 10.1038/bjc.2013.606] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/24/2013] [Accepted: 09/12/2013] [Indexed: 02/07/2023] Open
Abstract
Background: The DNA-repair gene DNA-dependent kinase catalytic subunit (DNA-PKcs) favours or inhibits carcinogenesis, depending on the cancer type. Its role in human hepatocellular carcinoma (HCC) is unknown. Methods: DNA-dependent protein kinase catalytic subuni, H2A histone family member X (H2AFX) and heat shock transcription factor-1 (HSF1) levels were assessed by immunohistochemistry and/or immunoblotting and qRT–PCR in a collection of human HCC. Rates of proliferation, apoptosis, microvessel density and genomic instability were also determined. Heat shock factor-1 cDNA or DNA-PKcs-specific siRNA were used to explore the role of both genes in HCC. Activator protein 1 (AP-1) binding to DNA-PKcs promoter was evaluated by chromatin immunoprecipitation. Kaplan–Meier curves and multivariate Cox model were used to study the impact on clinical outcome. Results: Total and phosphorylated DNA-PKcs and H2AFX were upregulated in HCC. Activated DNA-PKcs positively correlated with HCC proliferation, genomic instability and microvessel density, and negatively with apoptosis and patient's survival. Proliferation decline and massive apoptosis followed DNA-PKcs silencing in HCC cell lines. Total and phosphorylated HSF1 protein, mRNA and activity were upregulated in HCC. Mechanistically, we demonstrated that HSF1 induces DNA-PKcs upregulation through the activation of the MAPK/JNK/AP-1 axis. Conclusion: DNA-dependent protein kinase catalytic subunit transduces HSF1 effects in HCC cells, and might represent a novel target and prognostic factor in human HCC.
Collapse
Affiliation(s)
- M Evert
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Cabrero J, Bakkali M, Navarro-Domínguez B, Ruíz-Ruano FJ, Martín-Blázquez R, López-León MD, Camacho JPM. The Ku70 DNA-repair protein is involved in centromere function in a grasshopper species. Chromosome Res 2013; 21:393-406. [PMID: 23797468 DOI: 10.1007/s10577-013-9367-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/07/2013] [Accepted: 06/09/2013] [Indexed: 01/05/2023]
Abstract
The Ku70 protein is involved in numerous cell functions, the nonhomologous end joining (NHEJ) DNA repair pathway being the best known. Here, we report a novel function for this protein in the grasshopper Eyprepocnemis plorans. We observed the presence of large Ku70 foci on the centromeres of meiotic and mitotic chromosomes during the cell cycle stages showing the highest centromeric activity (i.e., metaphase and anaphase). The fact that colchicine treatment prevented centromeric location of Ku70, suggests a microtubule-dependent centromeric function for Ku70. Likewise, the absence of Ku70 at metaphase-anaphase centromeres from three males whose Ku70 gene had been knocked down using interference RNA, and the dramatic increase in the frequency of polyploid spermatids observed in these males, suggest that the centromeric presence of Ku70 is required for normal cytokinesis in this species. The centromeric function of Ku70 was not observed in 14 other grasshopper and locust species, or in the mouse, thus suggesting that it is an autapomorphy in E. plorans.
Collapse
Affiliation(s)
- Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
65
|
Chouinard G, Clément I, Lafontaine J, Rodier F, Schmitt E. Cell cycle-dependent localization of CHK2 at centrosomes during mitosis. Cell Div 2013; 8:7. [PMID: 23680298 PMCID: PMC3668180 DOI: 10.1186/1747-1028-8-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/09/2013] [Indexed: 01/26/2023] Open
Abstract
Background Centrosomes function primarily as microtubule-organizing centres and play a crucial role during mitosis by organizing the bipolar spindle. In addition to this function, centrosomes act as reaction centers where numerous key regulators meet to control cell cycle progression. One of these factors involved in genome stability, the checkpoint kinase CHK2, was shown to localize at centrosomes throughout the cell cycle. Results Here, we show that CHK2 only localizes to centrosomes during mitosis. Using wild-type and CHK2−/− HCT116 human colon cancer cells and human osteosarcoma U2OS cells depleted for CHK2 with small hairpin RNAs we show that several CHK2 antibodies are non-specific and cross-react with an unknown centrosomal protein(s) by immunofluorescence. To characterize the localization of CHK2, we generated cells expressing inducible GFP-CHK2 and Flag-CHK2 fusion proteins. We show that CHK2 localizes to the nucleus in interphase cells but that a fraction of CHK2 associates with the centrosomes in a Polo-like kinase 1-dependent manner during mitosis, from early mitotic stages until cytokinesis. Conclusion Our findings demonstrate that a subpopulation of CHK2 localizes at the centrosomes in mitotic cells but not in interphase. These results are consistent with previous reports supporting a role for CHK2 in the bipolar spindle formation and the timely progression of mitosis.
Collapse
Affiliation(s)
- Guillaume Chouinard
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital Notre-Dame et Institut du cancer de Montréal, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
66
|
Detection and repair of ionizing radiation-induced DNA double strand breaks: new developments in nonhomologous end joining. Int J Radiat Oncol Biol Phys 2013; 86:440-9. [PMID: 23433795 DOI: 10.1016/j.ijrobp.2013.01.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/07/2013] [Indexed: 01/13/2023]
Abstract
DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation.
Collapse
|
67
|
Steroidogenic factor 1 (NR5A1) maintains centrosome homeostasis in steroidogenic cells by restricting centrosomal DNA-dependent protein kinase activation. Mol Cell Biol 2012; 33:476-84. [PMID: 23166296 DOI: 10.1128/mcb.01064-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Steroidogenic factor 1 (SF-1 or NR5A1) is a nuclear receptor that controls adrenogenital cell growth and differentiation. Adrenogenital primordial cells from SF-1 knockout mice die of apoptosis, but the mechanism by which SF-1 regulates cell survival is not entirely clear. Besides functioning in the nucleus, SF-1 also resides in the centrosome and controls centrosome homeostasis. Here, we show that SF-1 restricts centrosome overduplication by inhibiting aberrant activation of DNA-dependent protein kinase (DNA-PK) in the centrosome. SF-1 was found to be associated with Ku70/Ku80 only in the centrosome, sequestering them from the catalytic subunit of DNA-PK (DNA-PKcs). In the absence of SF-1, DNA-PKcs was recruited to the centrosome and activated, causing aberrant activation of centrosomal Akt and cyclin-dependent kinase 2 (CDK2)/cyclin A and leading to centrosome overduplication. Centrosome overduplication caused by SF-1 depletion was averted by the elimination of DNA-PKcs, Ku70/80, or cyclin A or by the inhibition of CDK2 or Akt. In the nucleus, SF-1 did not interact with Ku70/80, and SF-1 depletion did not activate a nuclear DNA damage response. Centriole biogenesis was also unaffected. Thus, centrosomal DNA-PK signaling triggers centrosome overduplication, and this centrosomal event, but not the nuclear DNA damage response, is controlled by SF-1.
Collapse
|
68
|
Hsu FM, Zhang S, Chen BPC. Role of DNA-dependent protein kinase catalytic subunit in cancer development and treatment. Transl Cancer Res 2012; 1:22-34. [PMID: 22943041 DOI: 10.3978/j.issn.2218-676x.2012.04.01] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key component of the non-homologous end-joining (NHEJ) pathway, is involved in DNA double-strand break repair, immunocompetence, genomic integrity, and epidermal growth factor receptor signaling. Clinical studies indicate that expression and activity of DNA-PKcs is correlated with cancer progression and response to treatment. Various anti-DNA-PKcs strategies have been developed and tested in preclinical studies to exploit the benefit of DNA-PKcs inhibition in sensitization of radiotherapy and in combined modality therapy with other antitumor agents. In this article, we review the association between DNA-PKcs and cancer development and discuss current approaches and mechanisms for inhibition of DNA-PKcs. The future challenges are to understand how DNA-PKcs activity is correlated with cancer susceptibility and to identify those patients who would most benefit from DNA-PKcs inhibition.
Collapse
Affiliation(s)
- Feng-Ming Hsu
- Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | |
Collapse
|
69
|
Zimmermann M, Arachchige-Don AS, Donaldson MS, Dallapiazza RF, Cowan CE, Horne MC. Elevated cyclin G2 expression intersects with DNA damage checkpoint signaling and is required for a potent G2/M checkpoint arrest response to doxorubicin. J Biol Chem 2012; 287:22838-53. [PMID: 22589537 DOI: 10.1074/jbc.m112.376855] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To maintain genomic integrity DNA damage response (DDR), signaling pathways have evolved that restrict cellular replication and allow time for DNA repair. CCNG2 encodes an unconventional cyclin homolog, cyclin G2 (CycG2), linked to growth inhibition. Its expression is repressed by mitogens but up-regulated during cell cycle arrest responses to anti-proliferative signals. Here we investigate the potential link between elevated CycG2 expression and DDR signaling pathways. Expanding our previous finding that CycG2 overexpression induces a p53-dependent G(1)/S phase cell cycle arrest in HCT116 cells, we now demonstrate that this arrest response also requires the DDR checkpoint protein kinase Chk2. In accord with this finding we establish that ectopic CycG2 expression increases phosphorylation of Chk2 on threonine 68. We show that DNA double strand break-inducing chemotherapeutics stimulate CycG2 expression and correlate its up-regulation with checkpoint-induced cell cycle arrest and phospho-modification of proteins in the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) signaling pathways. Using pharmacological inhibitors and ATM-deficient cell lines, we delineate the DDR kinase pathway promoting CycG2 up-regulation in response to doxorubicin. Importantly, RNAi-mediated blunting of CycG2 attenuates doxorubicin-induced cell cycle checkpoint responses in multiple cell lines. Employing stable clones, we test the effect that CycG2 depletion has on DDR proteins and signals that enforce cell cycle checkpoint arrest. Our results suggest that CycG2 contributes to DNA damage-induced G(2)/M checkpoint by enforcing checkpoint inhibition of CycB1-Cdc2 complexes.
Collapse
Affiliation(s)
- Maike Zimmermann
- Department of Pharmacology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
70
|
Wang L, Zou W, Zhong Y, An J, Zhang X, Wu M, Yu Z. The hormesis effect of BDE-47 in HepG2 cells and the potential molecular mechanism. Toxicol Lett 2012; 209:193-201. [PMID: 22233939 DOI: 10.1016/j.toxlet.2011.12.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 01/20/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) had been used extensively in electrical and electronic products as brominated flame retardants. PBDEs are widely distributed in environment media and wildlife since they are lipophilic and persistent, resulting in bioaccumulation and bioamplification through food chains. Accumulation of PBDEs in the environment and human tissues will consequently cause potential negative effects on the ecological environment and human health. To date, some in vitro and in vivo studies have reported that PBDEs possess neurotoxicity, hepatotoxicity, immunotoxicity, reproduction toxicity, endocrine disrupting activity and carcinogenicity. BDE-47 is one of the most predominant PBDE congeners detected in human tissues. The objective of this study is to investigate whether low concentration of BDE-47 could cause hormesis effect in the human hepatoma HepG(2) cells, and to explore the possible molecular mechanism. The results showed that low concentration of BDE-47 (10(-10), 10(-9) and 10(-8) M) could promote cell proliferation and cause no obvious change in DNA damage or cell apoptosis, while the high concentration significantly inhibit cell proliferation. Meanwhile, the reactive oxygen species (ROS) in low concentration BDE-47 (10(-10), 10(-9) and 10(-8) M) treated groups significantly elevated compared with the control group. After low concentration BDE-47 treatment, the expression of proliferating cell nuclear antigen (PCNA), Cyclin D1, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and phosphorylated protein kinase B (p-Akt) in the HepG(2) cells was markedly up-regulated. However, in DNA-PKcs inhibited cells, the promotion effect on cell proliferation was significantly suppressed. Cell cycle analysis showed a significant decrease in G1 phase after exposure to low concentration of BDE-47. Moreover, pre-exposure to low concentration BDE-47 seemed alleviate the negative effects of high concentration (50 μM) exposure to cause DNA damage and apoptosis. These results suggested that BDE-47 has a hormesis effect in HepG(2) cells and DNA-PKcs/Akt pathway may be involved in regulation of cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Liulin Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | | | | | | | | | | | | |
Collapse
|