51
|
Madejczyk MS, Baer CE, Dennis WE, Minarchick VC, Leonard SS, Jackson DA, Stallings JD, Lewis JA. Temporal changes in rat liver gene expression after acute cadmium and chromium exposure. PLoS One 2015; 10:e0127327. [PMID: 25993096 PMCID: PMC4437902 DOI: 10.1371/journal.pone.0127327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/13/2015] [Indexed: 11/18/2022] Open
Abstract
U.S. Service Members and civilians are at risk of exposure to a variety of environmental health hazards throughout their normal duty activities and in industrial occupations. Metals are widely used in large quantities in a number of industrial processes and are a common environmental toxicant, which increases the possibility of being exposed at toxic levels. While metal toxicity has been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify candidate biomarkers, rats were exposed via a single intraperitoneal injection to three concentrations of CdCl2 and Na2Cr2O7, with livers harvested at 1, 3, or 7 days after exposure. Cd and Cr accumulated in the liver at 1 day post exposure. Cd levels remained elevated over the length of the experiment, while Cr levels declined. Metal exposures induced ROS, including hydroxyl radical (•OH), resulting in DNA strand breaks and lipid peroxidation. Interestingly, ROS and cellular damage appeared to increase with time post-exposure in both metals, despite declines in Cr levels. Differentially expressed genes were identified via microarray analysis. Both metals perturbed gene expression in pathways related to oxidative stress, metabolism, DNA damage, cell cycle, and inflammatory response. This work provides insight into the temporal effects and mechanistic pathways involved in acute metal intoxication, leading to the identification of candidate biomarkers.
Collapse
Affiliation(s)
- Michael S. Madejczyk
- ORISE Postdoctoral Fellow at the US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | | | - William E. Dennis
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Valerie C. Minarchick
- National Institute for Occupational Safety and Health, Morgantown, WV, United States of America
| | - Stephen S. Leonard
- National Institute for Occupational Safety and Health, Morgantown, WV, United States of America
| | - David A. Jackson
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Jonathan D. Stallings
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - John A. Lewis
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- * E-mail:
| |
Collapse
|
52
|
Jiang S, Minter LC, Stratton SA, Yang P, Abbas HA, Akdemir ZC, Pant V, Post S, Gagea M, Lee RG, Lozano G, Barton MC. TRIM24 suppresses development of spontaneous hepatic lipid accumulation and hepatocellular carcinoma in mice. J Hepatol 2015; 62:371-9. [PMID: 25281858 PMCID: PMC4772153 DOI: 10.1016/j.jhep.2014.09.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 08/25/2014] [Accepted: 09/22/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Aberrantly high expression of TRIM24 occurs in human cancers, including hepatocellular carcinoma. In contrast, TRIM24 in the mouse is reportedly a liver-specific tumour suppressor. To address this dichotomy and to uncover direct regulatory functions of TRIM24 in vivo, we developed a new mouse model that lacks expression of all Trim24 isoforms, as the previous model expressed normal levels of Trim24 lacking only exon 4. METHODS To produce germline-deleted Trim24(dlE1) mice, deletion of the promoter and exon 1 of Trim24 was induced in Trim24(LoxP) mice by crossing with a zona pellucida 3-Cre line for global deletion. Liver-specific deletion (Trim24(hep)) was achieved by crossing with an albumin-Cre line. Phenotypic analyses were complemented by protein, gene-specific and global RNA expression analyses and quantitative chromatin immunoprecipitation. RESULTS Global loss of Trim24 disrupted hepatic homeostasis in 100% of mice with highly significant, decreased expression of oxidation/reduction, steroid, fatty acid, and lipid metabolism genes, as well as increased expression of genes involved in unfolded protein response, endoplasmic reticulum stress and cell cycle pathways. Trim24(dlE1/dlE1) mice have markedly depleted visceral fat and, like Trim24(hep/hep) mice, spontaneously develop hepatic lipid-filled lesions, steatosis, hepatic injury, fibrosis and hepatocellular carcinoma. CONCLUSIONS TRIM24, an epigenetic co-regulator of transcription, directly and indirectly represses hepatic lipid accumulation, inflammation, fibrosis and damage in the murine liver. Complete loss of Trim24 offers a model of human non-alcoholic fatty liver disease, steatosis, fibrosis and development of hepatocellular carcinoma in the absence of high-fat diet or obesity.
Collapse
Affiliation(s)
- Shiming Jiang
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX,Center for Stem Cell and Developmental Biology, UT MD Anderson Cancer Center, Houston, TX,Center for Cancer Epigenetics, UT MD Anderson Cancer Center, Houston, TX
| | - Lindsey Cauthen Minter
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX,Center for Stem Cell and Developmental Biology, UT MD Anderson Cancer Center, Houston, TX,Center for Cancer Epigenetics, UT MD Anderson Cancer Center, Houston, TX,Graduate program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX
| | - Sabrina A. Stratton
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX,Center for Stem Cell and Developmental Biology, UT MD Anderson Cancer Center, Houston, TX,Center for Cancer Epigenetics, UT MD Anderson Cancer Center, Houston, TX
| | - Peirong Yang
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX
| | - Hussein A. Abbas
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX,Graduate program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX
| | - Zeynep Coban Akdemir
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX,Center for Stem Cell and Developmental Biology, UT MD Anderson Cancer Center, Houston, TX,Center for Cancer Epigenetics, UT MD Anderson Cancer Center, Houston, TX,Graduate program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX
| | - Vinod Pant
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX
| | - Sean Post
- Department of Leukemia, UT MD Anderson Cancer Center, Houston, TX
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, UT MD Anderson Cancer Center, Houston TX
| | | | - Guillermina Lozano
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX,Graduate program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX
| | - Michelle Craig Barton
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX, USA; Center for Stem Cell and Developmental Biology, UT MD Anderson Cancer Center, Houston, TX, USA; Center for Cancer Epigenetics, UT MD Anderson Cancer Center, Houston, TX, USA; Graduate Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.
| |
Collapse
|
53
|
TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway. Oncogene 2014; 34:600-10. [PMID: 24469053 DOI: 10.1038/onc.2013.593] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/14/2013] [Accepted: 12/18/2013] [Indexed: 12/14/2022]
Abstract
The tripartite motif protein TRIM24 (tripartite motif-containing 24) has been found to play distinct roles in tumor development and progression, according to different tumor contexts. However, it remains elusive whether TRIM24 plays a role in malignant gliomas that are the most common and deadly primary brain tumors in adults. We report here that TRIM24 expression is positively correlated with glioma malignancy and is negatively associated with prognosis of patients with newly diagnosed glioblastoma, which is the most malignant form of gliomas but displays highly heterogeneous clinical outcome. The multivariate Cox regression analysis demonstrates the independent predictive value of TRIM24 expression level for overall and progression-free survival. Knockdown of TRIM24 suppresses cell proliferation, cell cycle progression, clone formation and in vivo tumor development, whereas overexpression of TRIM24 promotes cell growth. Chromatin immunoprecipitation, real-time reverse transcription-PCR and mutation analyses demonstrate that TRIM24 binds to the PIK3CA promoter via its PHD-Bromo domain to activate the transcription of PIK3CA gene, thus enhancing phosphatidylinositide 3-kinase (PI3K)/Akt signaling. The pan-PI3K inhibitor LY294002 and small interfering RNA targeting PIK3CA both abrogate the growth-promoting effect of TRIM24. Moreover, TRIM24 regulates the expression of DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) through PI3K/Akt/nuclear factor-κB signaling transduction and enhances resistance to temozolomide, the standard chemotherapeutic agent for glioblastoma. Finally, glioblastoma patients with low TRIM24 expression benefit from chemotherapy, whereas those with high TRIM24 expression do not have such benefit. Our results suggest that TRIM24 might serve as a potential prognostic marker and therapeutic target for the management of malignant gliomas.
Collapse
|
54
|
Rajsbaum R, García-Sastre A, Versteeg GA. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol 2013; 426:1265-84. [PMID: 24333484 DOI: 10.1016/j.jmb.2013.12.005] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/24/2022]
Abstract
Tripartite motif (TRIM) proteins have been implicated in multiple cellular functions, including antiviral activity. Research efforts so far indicate that the antiviral activity of TRIMs relies, for the most part, on their function as E3-ubiquitin ligases. A substantial number of the TRIM family members have been demonstrated to mediate innate immune cell signal transduction and subsequent cytokine induction. In addition, a subset of TRIMs has been shown to restrict viral replication by directly targeting viral proteins. Although the body of work on the cellular roles of TRIM E3-ubiquitin ligases has rapidly grown over the last years, many aspects of their molecular workings and multi-functionality remain unclear. The antiviral function of many TRIMs seems to be conferred by specific isoforms, by sub-cellular localization and in cell-type-specific contexts. Here we review recent findings on TRIM antiviral functions, current limitations and an outlook for future research.
Collapse
Affiliation(s)
- Ricardo Rajsbaum
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Gijs A Versteeg
- Max F. Perutz Laboratories, University of Vienna, Doktor-Bohr-Gasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
55
|
|
56
|
Herquel B, Ouararhni K, Martianov I, Le Gras S, Ye T, Keime C, Lerouge T, Jost B, Cammas F, Losson R, Davidson I. Trim24-repressed VL30 retrotransposons regulate gene expression by producing noncoding RNA. Nat Struct Mol Biol 2013; 20:339-46. [PMID: 23377542 DOI: 10.1038/nsmb.2496] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 12/18/2012] [Indexed: 01/29/2023]
Abstract
Trim24 (Tif1α) and Trim33 (Tif1γ) interact to form a co-repressor complex that suppresses murine hepatocellular carcinoma. Here we show that Trim24 and Trim33 cooperatively repress retinoic acid receptor-dependent activity of VL30-class endogenous retroviruses (ERVs) in liver. In Trim24-knockout hepatocytes, VL30 derepression leads to accumulation of reverse-transcribed VL30 cDNA in the cytoplasm that correlates with activation of the viral-defense interferon responses mimicking the preneoplastic inflammatory state seen in human liver following exogenous viral infection. Furthermore, upon derepression, VL30 long terminal repeats (LTRs) act as promoter and enhancer elements deregulating expression of neighboring genes and generating enhancer RNAs that are required for LTR enhancer activity in hepatocytes in vivo. These data reinforce the role of the TRIM family of proteins in retroviral restriction and antiviral defense and provide an example of an ERV-derived oncogenic regulatory network.
Collapse
Affiliation(s)
- Benjamin Herquel
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Fletcher AJ, Towers GJ. Inhibition of retroviral replication by members of the TRIM protein family. Curr Top Microbiol Immunol 2013; 371:29-66. [PMID: 23686231 DOI: 10.1007/978-3-642-37765-5_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The TRIM protein family is emerging as a central component of mammalian antiviral innate immunity. Beginning with the identification of TRIM5α as a mammalian post-entry restriction factor against retroviruses, to the repeated observation that many TRIMs ubiquitinate and regulate signaling pathways, the past decade has witnessed an intense research effort to understand how TRIM proteins influence immunity. The list of viral families targeted directly or indirectly by TRIM proteins has grown to include adenoviruses, hepadnaviruses, picornaviruses, flaviviruses, orthomyxoviruses, paramyxoviruses, herpesviruses, rhabdoviruses and arenaviruses. We have come to appreciate how, through intense bouts of positive selection, some TRIM genes have been honed into species-specific restriction factors. Similarly, in the case of TRIMCyp, we are beginning to understand how viruses too have mutated to evade restriction, suggesting that TRIM and viruses have coevolved for millions of years of primate evolution. Recently, TRIM5α returned to the limelight when it was shown to trigger the expression of antiviral genes upon recognition of an incoming virus, a paradigm shift that demonstrated that restriction factors make excellent pathogen sensors. However, it remains unclear how many of ~100 human TRIM genes are antiviral, despite the expression of many of these genes being upregulated by interferon and upon viral infection. TRIM proteins do not conform to one type of antiviral mechanism, reflecting the diversity of viruses they target. Moreover, the cofactors of restriction remain largely enigmatic. The control of retroviral replication remains an important medical subject and provides a useful backdrop for reviewing how TRIM proteins act to repress viral replication.
Collapse
Affiliation(s)
- Adam J Fletcher
- MRC Centre for Medical Molecular Virology, University College, London, UK.
| | | |
Collapse
|
58
|
Josset L, Belser JA, Pantin-Jackwood MJ, Chang JH, Chang ST, Belisle SE, Tumpey TM, Katze MG. Implication of inflammatory macrophages, nuclear receptors, and interferon regulatory factors in increased virulence of pandemic 2009 H1N1 influenza A virus after host adaptation. J Virol 2012; 86:7192-206. [PMID: 22532695 PMCID: PMC3416346 DOI: 10.1128/jvi.00563-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/13/2012] [Indexed: 12/13/2022] Open
Abstract
While pandemic 2009 H1N1 influenza A viruses were responsible for numerous severe infections in humans, these viruses do not typically cause corresponding severe disease in mammalian models. However, the generation of a virulent 2009 H1N1 virus following serial lung passage in mice has allowed for the modeling of human lung pathology in this species. Genetic determinants of mouse-adapted 2009 H1N1 viral pathogenicity have been identified, but the molecular and signaling characteristics of the host response following infection with this adapted virus have not been described. Here we compared the gene expression response following infection of mice with A/CA/04/2009 (CA/04) or the virulent mouse-adapted strain (MA-CA/04). Microarray analysis revealed that increased pathogenicity of MA-CA/04 was associated with the following: (i) an early and sustained inflammatory and interferon response that could be driven in part by interferon regulatory factors (IRFs) and increased NF-κB activation, as well as inhibition of the negative regulator TRIM24, (ii) early and persistent infiltration of immune cells, including inflammatory macrophages, and (iii) the absence of activation of lipid metabolism later in infection, which may be mediated by inhibition of nuclear receptors, including PPARG and HNF1A and -4A, with proinflammatory consequences. Further investigation of these signatures in the host response to other H1N1 viruses of various pathogenicities confirmed their general relevance for virulence of influenza virus and suggested that lung response to MA-CA/04 virus was similar to that following infection with lethal H1N1 r1918 influenza virus. This study links differential activation of IRFs, nuclear receptors, and macrophage infiltration with influenza virulence in vivo.
Collapse
Affiliation(s)
- Laurence Josset
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Some members of the tripartite motif (TRIM/RBCC) protein family are thought to be important regulators of carcinogenesis. This is not surprising as the TRIM proteins are involved in several biological processes, such as cell growth, development and cellular differentiation and alteration of these proteins can affect transcriptional regulation, cell proliferation and apoptosis. In particular, four TRIM family genes are frequently translocated to other genes, generating fusion proteins implicated in cancer initiation and progression. Among these the most famous is the promyelocytic leukaemia gene PML, which encodes the protein TRIM19. PML is involved in the t(15;17) translocation that specifically occurs in Acute Promyelocytic Leukaemia (APL), resulting in a PML-retinoic acid receptor-alpha (PML-RARalpha) fusion protein. Other members of the TRIM family are linked to cancer development without being involved in chromosomal re-arrangements, possibly through ubiquitination or loss of tumour suppression functions. This chapter discusses the biological functions of TRIM proteins in cancer.
Collapse
|