51
|
Lin JS, Wu HH, Hsu PH, Ma LS, Pang YY, Tsai MD, Lai EM. Fha interaction with phosphothreonine of TssL activates type VI secretion in Agrobacterium tumefaciens. PLoS Pathog 2014; 10:e1003991. [PMID: 24626341 PMCID: PMC3953482 DOI: 10.1371/journal.ppat.1003991] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/27/2014] [Indexed: 11/26/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread protein secretion system found in many Gram-negative bacteria. T6SSs are highly regulated by various regulatory systems at multiple levels, including post-translational regulation via threonine (Thr) phosphorylation. The Ser/Thr protein kinase PpkA is responsible for this Thr phosphorylation regulation, and the forkhead-associated (FHA) domain-containing Fha-family protein is the sole T6SS phosphorylation substrate identified to date. Here we discovered that TssL, the T6SS inner-membrane core component, is phosphorylated and the phosphorylated TssL (p-TssL) activates type VI subassembly and secretion in a plant pathogenic bacterium, Agrobacterium tumefaciens. Combining genetic and biochemical approaches, we demonstrate that TssL is phosphorylated at Thr 14 in a PpkA-dependent manner. Further analysis revealed that the PpkA kinase activity is responsible for the Thr 14 phosphorylation, which is critical for the secretion of the T6SS hallmark protein Hcp and the putative toxin effector Atu4347. TssL phosphorylation is not required for the formation of the TssM-TssL inner-membrane complex but is critical for TssM conformational change and binding to Hcp and Atu4347. Importantly, Fha specifically interacts with phosphothreonine of TssL via its pThr-binding motif in vivo and in vitro and this interaction is crucial for TssL interaction with Hcp and Atu4347 and activation of type VI secretion. In contrast, pThr-binding ability of Fha is dispensable for TssM structural transition. In conclusion, we discover a novel Thr phosphorylation event, in which PpkA phosphorylates TssL to activate type VI secretion via its direct binding to Fha in A. tumefaciens. A model depicting an ordered TssL phosphorylation-induced T6SS assembly pathway is proposed. The bacterial type VI secretion system (T6SS) resembles a contractile phage tail structure and functions to deliver effectors to eukaryotic or prokaryotic target cells for the survival of many pathogenic bacteria. T6SS is highly regulated by various regulatory systems at multiple levels in response to environmental cues. Post-translational regulation via threonine (Thr) phosphorylation is an emerging theme in regulating prokaryotic signaling, including T6SS; the knowledge is mainly contributed by studies of Hcp secretion island 1-encoded T6SS (H1-T6SS) of Pseudomonas aeruginosa. Here, we discover a new phosphorylated target, a T6SS core-component TssL, and demonstrate that this Thr phosphorylation event post-translationally regulates type VI secretion in a plant pathogenic bacterium, Agrobacterium tumefaciens. We provide the first demonstration that the specific binding of Fha, a forkhead-associated domain-containing protein, to the phosphorylated target is required to stimulate type VI secretion. Genetic and biochemical data strongly suggest an ordered TssL-phosphorylation–dependent assembly and secretion pathway.
Collapse
Affiliation(s)
- Jer-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Hui Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Structural Biology Program, National Tsing Hua University, Hsinchu, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Pang-Hung Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Life Science, Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yin-Yuin Pang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Structural Biology Program, National Tsing Hua University, Hsinchu, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
52
|
Abstract
The bacterial type VI secretion system (T6SS) is an organelle that is structurally and mechanistically analogous to an intracellular membrane-attached contractile phage tail. Recent studies determined that a rapid conformational change in the structure of a sheath protein complex propels T6SS spike and tube components along with antibacterial and antieukaryotic effectors out of predatory T6SS(+) cells and into prey cells. The contracted organelle is then recycled in an ATP-dependent process. T6SS is regulated at transcriptional and posttranslational levels, the latter involving detection of membrane perturbation in some species. In addition to directly targeting eukaryotic cells, the T6SS can also target other bacteria coinfecting a mammalian host, highlighting the importance of the T6SS not only for bacterial survival in environmental ecosystems, but also in the context of infection and disease. This review highlights these and other advances in our understanding of the structure, mechanical function, assembly, and regulation of the T6SS.
Collapse
Affiliation(s)
- Brian T Ho
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Tao G Dong
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
53
|
Gao D, Bian X, Guo M, Wang J, Zhang X. Identification and characterization of the biochemical function of Agrobacterium T-complex-recruiting protein Atu5117. FEBS J 2013; 280:4865-75. [PMID: 23902381 DOI: 10.1111/febs.12460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 01/19/2023]
Abstract
Atu5117 from Agrobacterium tumefaciens is a highly conserved protein with a putative nucleotidyltransferase domain in its N-terminal region and a putative higher eukaryotes and prokaryotes nucleotide-binding domain in its C-terminal region. This protein has been shown to be a T-complex-recruiting protein that can recruit T-complex from the cytosol to the polar VirB/D4 type IV secretion system (T4SS). However, the biochemical function of Atu5117 is still unknown. Here, we show that Atu5117 is a (d)NTPase. Although no proteins with nucleotidyltransferase and higher eukaryotes and prokaryotes nucleotide-binding domains were identified as (d)NTPases, Atu5117 was able to convert all eight canonical NTPs and dNTPs to NDP, dNDP and inorganic phosphate in vitro, and required Mg(2+) for its (d)NTPase activity. The kinetic parameters of Atu5117 (d)NTPase for eight substrates were characterized. Kinetic data showed that Atu5117 (d)NTPase preferred ATP as its substrate. The optimal conditions for (d)NTPase activity of Atu5117 were very similar to those required for Agrobacterium tumorigenesis. The kinetic parameters of (d)NTPase of Atu5117 for all four canonical NTPs were in the same orders of magnitude as the kinetic parameters of the ATPases identified in some components of the VirB/D4 T4SS. These results suggest that Atu5117 might function as an energizer to recruit T-complex to the T4SS transport site.
Collapse
Affiliation(s)
- Diankun Gao
- College of Bioscience and Biotechnology, Yangzhou University, China
| | | | | | | | | |
Collapse
|
54
|
Lin JS, Ma LS, Lai EM. Systematic dissection of the agrobacterium type VI secretion system reveals machinery and secreted components for subcomplex formation. PLoS One 2013; 8:e67647. [PMID: 23861778 PMCID: PMC3702570 DOI: 10.1371/journal.pone.0067647] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/22/2013] [Indexed: 11/18/2022] Open
Abstract
The type VI secretion system (T6SS) is widely distributed in pathogenic Proteobacteria. Sequence and structural analysis of T6SS reveals a resemblance to the T4 bacteriophage tail, in which an outer sheath structure contracts an internal tube for injecting nucleic acid into bacterial cells. However, the molecular details of how this phage tail-like T6SS structure is assembled in vivo and executed for exoprotein or effector secretion remain largely unknown. Here, we used a systematic approach to identify T6SS machinery and secreted components and investigate the interaction among the putative sheath and tube components of Agrobacterium tumefaciens. We showed that 14 T6SS components play essential roles in the secretion of the T6SS hallmark exoprotein Hcp. In addition, we discovered a novel T6SS exoprotein, Atu4347, that is dispensable for Hcp secretion. Interestingly, Atu4347 and the putative tube components, Hcp and VgrG, are mainly localized in the cytoplasm but also detected on the bacterial surface. Atu4342 (TssB) and Atu4341 (TssC41) interact with and stabilize each other, which suggests that they are functional orthologs of the sheath components TssB (VipA) and TssC (VipB), respectively. Importantly, TssB interacts directly with the three exoproteins (Hcp, VgrG, and Atu4347), in which Hcp also interacts directly with VgrG-1 on co-purification from Escherichia coli. Further co-immunoprecipitation and pulldown assays revealed these subcomplex(es) in A. tumefaciens and thereby support T6SS functioning as a contractile phage tail-like structure.
Collapse
Affiliation(s)
- Jer-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
55
|
Shimada A, Kawasoe Y, Hata Y, Takahashi TS, Masui R, Kuramitsu S, Fukui K. MutS stimulates the endonuclease activity of MutL in an ATP-hydrolysis-dependent manner. FEBS J 2013; 280:3467-79. [PMID: 23679952 DOI: 10.1111/febs.12344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022]
Abstract
In the initial steps of DNA mismatch repair, MutS recognizes a mismatched base and recruits the latent endonuclease MutL onto the mismatch-containing DNA in concert with other proteins. MutL then cleaves the error-containing strand to introduce an entry point for the downstream excision reaction. Because MutL has no intrinsic ability to recognize a mismatch and discriminate between newly synthesized and template strands, the endonuclease activity of MutL is strictly regulated by ATP-binding in order to avoid nonspecific degradation of the genomic DNA. However, the activation mechanism for its endonuclease activity remains unclear. In this study, we found that the coexistence of a mismatch, ATP and MutS unlocks the ATP-binding-dependent suppression of MutL endonuclease activity. Interestingly, ATPase-deficient mutants of MutS were unable to activate MutL. Furthermore, wild-type MutS activated ATPase-deficient mutants of MutL less efficiently than wild-type MutL. We concluded that ATP hydrolysis by MutS and MutL is involved in the mismatch-dependent activation of MutL endonuclease activity.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
56
|
Bleumink-Pluym NMC, van Alphen LB, Bouwman LI, Wösten MMSM, van Putten JPM. Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity. PLoS Pathog 2013; 9:e1003393. [PMID: 23737749 PMCID: PMC3667781 DOI: 10.1371/journal.ppat.1003393] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 04/10/2013] [Indexed: 11/27/2022] Open
Abstract
The pathogen Campylobacter jejuni is the principal cause of bacterial food-borne infections. The mechanism(s) that contribute to bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SS) are increasingly recognized to contribute to bacterial pathogenesis by toxic effects on host cells or competing bacterial species. Here we report the presence of a functional Type VI secretion system in C. jejuni. Proteome and genetic analyses revealed that C. jejuni strain 108 contains a 17-kb T6SS gene cluster consisting of 13 T6SS-conserved genes, including the T6SS hallmark genes hcp and vgrG. The cluster lacks an ortholog of the ClpV ATPase considered important for T6SS function. The sequence and organization of the C. jejuni T6SS genes resemble those of the T6SS located on the HHGI1 pathogenicity island of Helicobacter hepaticus. The C. jejuni T6SS is integrated into the earlier acquired Campylobacter integrated element CJIE3 and is present in about 10% of C. jejuni isolates including several isolates derived from patients with the rare clinical feature of C. jejuni bacteremia. Targeted mutagenesis of C. jejuni T6SS genes revealed T6SS-dependent secretion of the Hcp needle protein into the culture supernatant. Infection assays provided evidence that the C. jejuni T6SS confers contact-dependent cytotoxicity towards red blood cells but not macrophages. This trait was observed only in a capsule-deficient bacterial phenotype. The unique C. jejuni T6SS phenotype of capsule-sensitive contact-mediated hemolysis represents a novel evolutionary pathway of T6SS in bacteria and expands the repertoire of virulence properties associated with T6SS. Bacteria contain a number of secretion systems to export macromolecules to the environment. The bacterial type VI secretion system (T6SS) forms a needle-like structure that delivers toxic effector molecules to neighboring eukaryotic and/or prokaryotic cells. Here we report that the important human pathogen Campylobacter jejuni contains a functional T6SS gene cluster. The cluster comprises 13 conserved T6SS genes including genes encoding the typical T6SS Hcp and VgrG proteins. The gene cluster is part of a larger DNA element and is present in about 10% of C. jejuni strains including several blood isolates. The identified C. jejuni T6SS has unique properties compared to similar systems in other bacterial species. C. jejuni T6SS lacks the ClpV ATPase that supposedly energizes part of T6SS function in other species, causes contact-dependent lysis of red blood cells, and requires downregulation of the C. jejuni capsule polysaccharide to be effective. The unique cytotoxic properties of C. jejuni T6SS, the effect of the capsule on T6SS function, and the possible association with systemic C. jejuni infection broaden the scope of the existing bacterial T6SS phenotypes and point to a different evolution of C. jejuni T6SS compared to other bacterial species.
Collapse
Affiliation(s)
| | - Lieke B. van Alphen
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, the Netherlands
| | - Lieneke I. Bouwman
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, the Netherlands
| | - Marc M. S. M. Wösten
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, the Netherlands
| | - Jos P. M. van Putten
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
57
|
Coulthurst SJ. The Type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol 2013; 164:640-54. [PMID: 23542428 DOI: 10.1016/j.resmic.2013.03.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/05/2013] [Indexed: 12/31/2022]
Abstract
The Type VI secretion system (T6SS) is the most recently described of the Gram-negative bacterial secretion systems and is widely distributed amongst diverse species. T6SSs are currently believed to be complex molecular machines which inject effector proteins into target cells and which incorporate a bacteriophage-like cell-puncturing device. T6SSs have been implicated in eukaryotic cell targeting and virulence in a range of important pathogens. More recently, 'antibacterial' T6SSs have been reported, which are used to efficiently target competitor bacterial cells by the injection of antibacterial toxins. Although it is clear that T6SSs can be deployed as versatile weapons to compete with other bacteria or attack simple or higher eukaryotes, much remains to be determined about this intriguing system.
Collapse
Affiliation(s)
- Sarah J Coulthurst
- Department of Molecular Microbiology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
58
|
Kapitein N, Bönemann G, Pietrosiuk A, Seyffer F, Hausser I, Locker JK, Mogk A. ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol 2013; 87:1013-28. [PMID: 23289512 DOI: 10.1111/mmi.12147] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2012] [Indexed: 11/28/2022]
Abstract
The multicomponent type VI secretion system (T6SS) mediates the transport of effector proteins by puncturing target membranes. T6SSs are suggested to form a contractile nanomachine, functioning similar to the cell-puncturing device of tailed bacteriophages. The T6SS members VipA/VipB form tubular complexes and are predicted to function in analogy to viral tail sheath proteins by providing the energy for secretion via contraction. The ATPase ClpV disassembles VipA/VipB tubules in vitro, but the physiological relevance of tubule disintegration remained unclear. Here, we show that VipA/VipB tubules localize near-perpendicular to the inner membrane of Vibrio cholerae cells and exhibit repetitive cycles of elongation, contraction and disassembly. VipA/VipB tubules are decorated by ClpV in vivo and become static in ΔclpV cells, indicating that ClpV is required for tubule removal. VipA/VipB tubules mislocalize in ΔclpV cells and exhibit a reduced frequency of tubule elongation, indicating that ClpV also suppresses the spontaneous formation of contracted, non-productive VipA/VipB tubules. ClpV activity is restricted to the contracted state of VipA/VipB, allowing formation of functional elongated tubules at a T6SS assembly. Targeting of an unrelated ATPase to VipA/VipB is sufficient to replace ClpV function in vivo, suggesting that ClpV activity is autonomously regulated by VipA/VipB conformation.
Collapse
Affiliation(s)
- Nicole Kapitein
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
59
|
Kapitein N, Mogk A. Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol 2013; 16:52-8. [DOI: 10.1016/j.mib.2012.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/12/2012] [Accepted: 11/26/2012] [Indexed: 11/26/2022]
|
60
|
Lossi NS, Manoli E, Förster A, Dajani R, Pape T, Freemont P, Filloux A. The HsiB1C1 (TssB-TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheathlike structure. J Biol Chem 2013; 288:7536-7548. [PMID: 23341461 PMCID: PMC3597794 DOI: 10.1074/jbc.m112.439273] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein secretion systems in Gram-negative bacteria evolved into a variety of molecular nanomachines. They are related to cell envelope complexes, which are involved in assembly of surface appendages or transport of solutes. They are classified as types, the most recent addition being the type VI secretion system (T6SS). The T6SS displays similarities to bacteriophage tail, which drives DNA injection into bacteria. The Hcp protein is related to the T4 bacteriophage tail tube protein gp19, whereas VgrG proteins structurally resemble the gp27/gp5 puncturing device of the phage. The tube and spike of the phage are pushed through the bacterial envelope upon contraction of a tail sheath composed of gp18. In Vibrio cholerae it was proposed that VipA and VipB assemble into a tail sheathlike structure. Here we confirm these previous data by showing that HsiB1 and HsiC1 of the Pseudomonas aeruginosa H1-T6SS assemble into tubules resulting from stacking of cogwheel-like structures showing predominantly 12-fold symmetry. The internal diameter of the cogwheels is ∼100 Å, which is large enough to accommodate an Hcp tube whose external diameter has been reported to be 85 Å. The N-terminal 212 residues of HsiC1 are sufficient to form a stable complex with HsiB1, but the C terminus of HsiC1 is essential for the formation of the tubelike structure. Bioinformatics analysis suggests that HsiC1 displays similarities to gp18-like proteins in its C-terminal region. In conclusion, we provide further structural and mechanistic insights into the T6SS and show that a phage sheathlike structure is likely to be a conserved element across all T6SSs.
Collapse
Affiliation(s)
- Nadine S Lossi
- Medical Research Council Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Eleni Manoli
- Medical Research Council Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andreas Förster
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rana Dajani
- Medical Research Council Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tillmann Pape
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul Freemont
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alain Filloux
- Medical Research Council Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
61
|
Unterweger D, Kitaoka M, Miyata ST, Bachmann V, Brooks TM, Moloney J, Sosa O, Silva D, Duran-Gonzalez J, Provenzano D, Pukatzki S. Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PLoS One 2012; 7:e48320. [PMID: 23110230 PMCID: PMC3482179 DOI: 10.1371/journal.pone.0048320] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
The type VI secretion system (T6SS) mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae – the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria) and a eukaryote (the social amoeba Dictyostelium discoideum). Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.
Collapse
Affiliation(s)
- Daniel Unterweger
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Maya Kitaoka
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah T. Miyata
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Verena Bachmann
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Teresa M. Brooks
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica Moloney
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Oscar Sosa
- Department of Biomedical Sciences, University of Texas Brownsville, Brownsville, Texas, United States of America
| | - David Silva
- Department of Biomedical Sciences, University of Texas Brownsville, Brownsville, Texas, United States of America
| | - Jorge Duran-Gonzalez
- Department of Biomedical Sciences, University of Texas Brownsville, Brownsville, Texas, United States of America
| | - Daniele Provenzano
- Department of Biomedical Sciences, University of Texas Brownsville, Brownsville, Texas, United States of America
| | - Stefan Pukatzki
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
62
|
Zhang W, Wang Y, Song Y, Wang T, Xu S, Peng Z, Lin X, Zhang L, Shen X. A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ Microbiol 2012; 15:557-69. [PMID: 23094603 DOI: 10.1111/1462-2920.12005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 09/23/2012] [Indexed: 12/22/2022]
Abstract
Type VI secretion systems (T6SSs) which widely distributed in Gram-negative bacteria have been primarily studied in the context of cell interactions with eukaryotic hosts or other bacteria. We have recently identified a thermoregulated T6SS4 in the enteric pathogen Yersinia pseudotuberculosis. Here we report that OmpR directly binds to the promoter of T6SS4 operon and regulates its expression. Further, we observed that the OmpR-regulated T6SS4 is essential for bacterial survival under acidic conditions and that its expression is induced by low pH. Moreover, we showed that T6SS4 plays a role in pumping H(+) out of the cell to maintain intracellular pH homeostasis. The acid tolerance phenotype of T6SS4 is dependent on the ATPase activity of ClpV4, one of the components of T6SS4. These results not only uncover a novel strategy utilized by Y. pseudotuberculosis for acid resistance, but also reveal that T6SS, a bacteria secretion system known to be functional in protein transportation has an unexpected function in H(+) extrusion under acid conditions.
Collapse
Affiliation(s)
- Weipeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Promoter swapping unveils the role of the Citrobacter rodentium CTS1 type VI secretion system in interbacterial competition. Appl Environ Microbiol 2012; 79:32-8. [PMID: 23064344 DOI: 10.1128/aem.02504-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The type VI secretion system (T6SS) is a versatile secretion machine dedicated to various functions in Gram-negative bacteria, including virulence toward eukaryotic cells and antibacterial activity. Activity of T6SS might be followed in vitro by the release of two proteins, Hcp and VgrG, in the culture supernatant. Citrobacter rodentium, a rodent pathogen, harbors two T6SS gene clusters, cts1 and cts2. Reporter fusion and Hcp release assays suggested that the CTS1 T6SS was not produced or not active. The cts1 locus is composed of two divergent operons. We therefore developed a new vector allowing us to swap the two divergent endogenous promoters by P(tac) and P(BAD) using the λ red recombination technology. Artificial induction of both promoters demonstrated that the CTS1 T6SS is functional as shown by the Hcp release assay and confers on C. rodentium a growth advantage in antibacterial competition experiments with Escherichia coli.
Collapse
|
64
|
Wu CF, Lin JS, Shaw GC, Lai EM. Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathog 2012; 8:e1002938. [PMID: 23028331 PMCID: PMC3460628 DOI: 10.1371/journal.ppat.1002938] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 08/16/2012] [Indexed: 01/23/2023] Open
Abstract
The type VI secretion system (T6SS) is a widespread, versatile protein secretion system in pathogenic Proteobacteria. Several T6SSs are tightly regulated by various regulatory systems at multiple levels. However, the signals and/or regulatory mechanisms of many T6SSs remain unexplored. Here, we report on an acid-induced regulatory mechanism activating T6SS in Agrobacterium tumefaciens, a plant pathogenic bacterium causing crown gall disease in a wide range of plants. We monitored the secretion of the T6SS hallmark protein hemolysin-coregulated protein (Hcp) from A. tumefaciens and found that acidity is a T6SS-inducible signal. Expression analysis of the T6SS gene cluster comprising the imp and hcp operons revealed that imp expression and Hcp secretion are barely detected in A. tumefaciens grown in neutral minimal medium but are highly induced with acidic medium. Loss- and gain-of-function analysis revealed that the A. tumefaciens T6SS is positively regulated by a chvG/chvI two-component system and negatively regulated by exoR. Further epistasis analysis revealed that exoR functions upstream of the chvG sensor kinase in regulating T6SS. ChvG protein levels are greatly increased in the exoR deletion mutant and the periplasmic form of overexpressed ExoR is rapidly degraded under acidic conditions. Importantly, ExoR represses ChvG by direct physical interaction, but disruption of the physical interaction allows ChvG to activate T6SS. The phospho-mimic but not wild-type ChvI response regulator can bind to the T6SS promoter region in vitro and activate T6SS with growth in neutral minimal medium. We present the first evidence of T6SS activation by an ExoR-ChvG/ChvI cascade and propose that acidity triggers ExoR degradation, thereby derepressing ChvG/ChvI to activate T6SS in A. tumefaciens. The bacterial type VI secretion system (T6SS) has diverse functions that contribute to the survival or fitness of many pathogenic bacteria in response to environmental cues. Numerous studies have shown that T6SS is highly regulated via multiple mechanisms, but the regulatory mechanisms of most T6SSs remain unknown. In this study, we discovered that T6SS is activated by acidity via an ExoR-ChvG/ChvI cascade in a plant pathogenic bacterium, Agrobacterium tumefaciens. Our data suggested that ExoR represses ChvG sensor kinase by physical interaction and the acid-induced degradation of periplasmic ExoR may derepress ChvG to activate T6SS by phosphorylation of the ChvI response regulator. The activation of T6SS by an acidic signal present in the wound site and intercellular space of plants implicates a role of T6SS during Agrobacterium–plant interactions. In view of the conservation of ExoR and ChvG/ChvI and wide distribution of T6SS in α-Proteobacteria, including many animal and plant pathogens and symbionts, the regulation of T6SS by the ExoR-ChvG/ChvI cascade may be a universal regulatory mechanism in these bacteria.
Collapse
Affiliation(s)
- Chih-Feng Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Jer-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Gwo-Chyuan Shaw
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (GCS); (EML)
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (GCS); (EML)
| |
Collapse
|
65
|
Silverman JM, Brunet YR, Cascales E, Mougous JD. Structure and regulation of the type VI secretion system. Annu Rev Microbiol 2012; 66:453-72. [PMID: 22746332 DOI: 10.1146/annurev-micro-121809-151619] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The type VI secretion system (T6SS) is a complex and widespread gram-negative bacterial export pathway with the capacity to translocate protein effectors into a diversity of target cell types. Current structural models of the T6SS indicate that the apparatus is composed of at least two complexes, a dynamic bacteriophage-like structure and a cell-envelope-spanning membrane-associated assembly. How these complexes interact to promote effector secretion and cell targeting remains a major question in the field. As a contact-dependent pathway with specific cellular targets, the T6SS is subject to tight regulation. Thus, the identification of regulatory elements that control T6S expression continues to shape our understanding of the environmental circumstances relevant to its function. This review discusses recent progress toward characterizing T6S structure and regulation.
Collapse
Affiliation(s)
- Julie M Silverman
- Department of Microbiology, University of Washington, Seattle, 98195, USA
| | | | | | | |
Collapse
|