51
|
Nucleic acid actions on abnormal protein aggregation, phase transitions and phase separation. Curr Opin Struct Biol 2022; 73:102346. [PMID: 35247749 DOI: 10.1016/j.sbi.2022.102346] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/06/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
Abstract
Liquid-liquid phase separation (LLPS) and phase transitions (PT) of proteins, which include the formation of gel- and solid-like species, have been characterized as physical processes related to the pathology of conformational diseases. Nucleic acid (NA)-binding proteins related to neurodegenerative disorders and cancer were shown by us and others to experience PT modulated by different NAs. Herein, we discuss recent work on phase separation and phase transitions of two amyloidogenic proteins, i.e. the prion protein (PrP) and p53, which undergo conformational changes and aggregate upon NA interaction. The role of different NAs in these processes is discussed to shed light on the relevance of PSs and PTs for both the functional and pathological roles of these mammalian proteins.
Collapse
|
52
|
Zhang Y, Li J, Feng D, Peng X, Wang B, Han T, Zhang Y. Systematic Analysis of Molecular Characterization and Clinical Relevance of Liquid–Liquid Phase Separation Regulators in Digestive System Neoplasms. Front Cell Dev Biol 2022; 9:820174. [PMID: 35252219 PMCID: PMC8891544 DOI: 10.3389/fcell.2021.820174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 01/02/2023] Open
Abstract
Background: The role of liquid–liquid phase separation (LLPS) in cancer has also attracted more and more attention, which is found to affect transcriptional regulation, maintaining genomic stability and signal transduction, and contribute to the occurrence and progression of tumors. However, the role of LLPS in digestive system tumors is still largely unknown. Results: Here, we characterized the expression profiles of LLPS regulators in 3 digestive tract tumor types such as COAD, STAD, and ESCA with The Cancer Genome Atlas (TCGA) data. Our results for the first time showed that LLPS regulatory factors, such as Brd4, FBN1, and TP53, were frequently mutated in all types of digestive system tumors. Variant allele frequency (VAF) and APOBEC analysis demonstrated that genetic alterations of LLPS regulators were related to the progression of digestive system neoplasms (DSNs), such as TP53, NPHS1, TNRC6B, ITSN1, TNPO1, PML, AR, BRD4, DLG4, and PTPN1. KM plotter analysis showed that the mutation status of LLPS regulators was significantly related to the overall survival (OS) time of DSNs, indicating that they may contribute to the progression of DSN. The expression analysis of LLPS regulatory factors showed that a variety of LLPS regulatory factors were significantly dysregulated in digestive system tumors, such as SYN2 and MAPT. It is worth noting that we first found that LLPS regulatory factors were significantly correlated with tumor immune infiltration of B cells, CD4+ T cells, and CD8+ T cells in digestive system tumors. Bioinformatics analysis showed that the LLPS regulators’ expression was closely related to multiple signaling, including the ErbB signaling pathway and T-cell receptor signaling pathway. Finally, several LLPS signatures were constructed and had a strong prognostic stratification ability in different digestive gland tumors. Finally, the results demonstrated the LLPS regulators’ signature score was significantly positively related to the infiltration levels of CD4+ T cells, neutrophil cells, macrophage cells, and CD8+ T cells. Conclusion: Our study for the first time showed the potential roles of LLPS regulators in carcinogenesis and provide novel insights to identify novel biomarkers for the prediction of immune therapy and prognosis of DSNs.
Collapse
Affiliation(s)
- Yaxin Zhang
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Li
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dan Feng
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaobo Peng
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bin Wang
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bin Wang, ; Ting Han, ; Yingyi Zhang,
| | - Ting Han
- Departments of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bin Wang, ; Ting Han, ; Yingyi Zhang,
| | - Yingyi Zhang
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bin Wang, ; Ting Han, ; Yingyi Zhang,
| |
Collapse
|
53
|
Hibino E, Hiroaki H. Potential of rescue and reactivation of tumor suppressor p53 for cancer therapy. Biophys Rev 2022; 14:267-275. [PMID: 35340607 PMCID: PMC8921420 DOI: 10.1007/s12551-021-00915-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/14/2021] [Indexed: 01/13/2023] Open
Abstract
The tumor suppressor protein p53, a transcription product of the anti-oncogene TP53, is a critical factor in preventing cellular cancerization and killing cancer cells by inducing apoptosis. As a result, p53 is often referred to as the "guardian of the genome." Almost half of cancers possess genetic mutations in the TP53 gene, and most of these mutations result in the malfunction of p53, which promotes aggregation. In some cases, the product of the TP53 mutant allele shows higher aggregation propensity; the mutant co-aggregates with the normal (functional) p53 protein, thus losing cellular activity of the p53 guardian. Cancer might also progress because of the proteolytic degradation of p53 by activated E3 ubiquitination enzymes, MDM2 and MDM4. The inhibition of the specific interaction between MDM2 (MDM4) and p53 also results in increased p53 activity in cancer cells. Although the molecular targets of the drugs are different, two drug discovery strategies with a common goal, "rescuing p53 protein," have recently emerged. To conduct this approach, various biophysical methods of protein characterization were employed. In this review, we focus on these two independent strategies based on the unique biophysical features of the p53 protein.
Collapse
Affiliation(s)
- Emi Hibino
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
- Business Incubation Building, BeCellBar LLC, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| |
Collapse
|
54
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|
55
|
Lei J, Cai M, Shen Y, Lin D, Deng X. Molecular dynamics study on the inhibition mechanisms of ReACp53 peptide for p53-R175H mutant aggregation. Phys Chem Chem Phys 2021; 23:23032-23041. [PMID: 34612239 DOI: 10.1039/d1cp03094a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
p53 mutant aggregation can lead to loss-of-function (LoF), dominant-negative (DN) and gain-of-function (GoF) effects, involving in tumor growth. Finding inhibition methods of p53 mutant aggregation is a key step for developing new therapeutics against aggregation-associated cancers. Recent studies have shown that a cell-permeable peptide, ReACp53, can inhibit aggregation of the p53 mutant and restore p53 nuclear function as a transcriptional factor, showing extraordinary therapeutic potential. However, the molecular mechanism underlying the inhibition of p53 mutant aggregation by the ReAp53 peptide is unclear. In this work, we used all-atom molecular dynamics (MD) simulations to investigate the effect of ReACp53 peptide on the structural and dynamic properties of the p53 core domain (p53C) of the aggregation-prone R175H mutant. Our simulations revealed that the ReACp53 peptide can stabilize the ordered secondary structure and decrease the flexibility of disordered loops of the R175H mutant through increasing the intra-interactions of p53C. Moreover, we found that ReACp53 peptide specifically binds to the fragment (residues 180-233) of the R175H mutant through strong hydrophobic interactions with residues L188 and L201 and a salt bridge or hydrogen bond formation with residues D186, E198, D204, E221 and E224. The specific binding pattern protects the aggregation-prone fragment (residues 182-213) from exposure to water. Hence, we suggested that the ReACp53 peptide inhibits aggregation of the R175H mutant by restoring the wild-type conformation from an aggregation-prone state and reducing the exposure of the aggregation-prone segment. These results provide molecular mechanistic insight into inhibition of the ReACp53 peptide on amyloid aggregation of the R175H mutant.
Collapse
Affiliation(s)
- Jiangtao Lei
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| | - Mengqiang Cai
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| | - Yun Shen
- Department of Physics, School of Sciences, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China
| | - Dongdong Lin
- Department of Physics and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang City 315211, China
| | - Xiaohua Deng
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| |
Collapse
|
56
|
Sulatskaya AI, Kosolapova AO, Bobylev AG, Belousov MV, Antonets KS, Sulatsky MI, Kuznetsova IM, Turoverov KK, Stepanenko OV, Nizhnikov AA. β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis. Int J Mol Sci 2021; 22:11316. [PMID: 34768745 PMCID: PMC8582884 DOI: 10.3390/ijms222111316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023] Open
Abstract
Insoluble protein aggregates with fibrillar morphology called amyloids and β-barrel proteins both share a β-sheet-rich structure. Correctly folded β-barrel proteins can not only function in monomeric (dimeric) form, but also tend to interact with one another-followed, in several cases, by formation of higher order oligomers or even aggregates. In recent years, findings proving that β-barrel proteins can adopt cross-β amyloid folds have emerged. Different β-barrel proteins were shown to form amyloid fibrils in vitro. The formation of functional amyloids in vivo by β-barrel proteins for which the amyloid state is native was also discovered. In particular, several prokaryotic and eukaryotic proteins with β-barrel domains were demonstrated to form amyloids in vivo, where they participate in interspecies interactions and nutrient storage, respectively. According to recent observations, despite the variety of primary structures of amyloid-forming proteins, most of them can adopt a conformational state with the β-barrel topology. This state can be intermediate on the pathway of fibrillogenesis ("on-pathway state"), or can be formed as a result of an alternative assembly of partially unfolded monomers ("off-pathway state"). The β-barrel oligomers formed by amyloid proteins possess toxicity, and are likely to be involved in the development of amyloidoses, thus representing promising targets for potential therapy of these incurable diseases. Considering rapidly growing discoveries of the amyloid-forming β-barrels, we may suggest that their real number and diversity of functions are significantly higher than identified to date, and represent only "the tip of the iceberg". Here, we summarize the data on the amyloid-forming β-barrel proteins, their physicochemical properties, and their biological functions, and discuss probable means and consequences of the amyloidogenesis of these proteins, along with structural relationships between these two widespread types of β-folds.
Collapse
Affiliation(s)
- Anna I. Sulatskaya
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anastasiia O. Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia;
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia;
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| |
Collapse
|
57
|
Guo Y, Rall-Scharpf M, Bourdon JC, Wiesmüller L, Biber S. p53 isoforms differentially impact on the POLι dependent DNA damage tolerance pathway. Cell Death Dis 2021; 12:941. [PMID: 34645785 PMCID: PMC8514551 DOI: 10.1038/s41419-021-04224-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022]
Abstract
The recently discovered p53-dependent DNA damage tolerance (DDT) pathway relies on its biochemical activities in DNA-binding, oligomerization, as well as complex formation with the translesion synthesis (TLS) polymerase iota (POLι). These p53-POLι complexes slow down nascent DNA synthesis for safe, homology-directed bypass of DNA replication barriers. In this study, we demonstrate that the alternative p53-isoforms p53β, p53γ, Δ40p53α, Δ133p53α, and Δ160p53α differentially affect this p53-POLι-dependent DDT pathway originally described for canonical p53α. We show that the C-terminal isoforms p53β and p53γ, comprising a truncated oligomerization domain (OD), bind PCNA. Conversely, N-terminally truncated isoforms have a reduced capacity to engage in this interaction. Regardless of the specific loss of biochemical activities required for this DDT pathway, all alternative isoforms were impaired in promoting POLι recruitment to PCNA in the chromatin and in decelerating DNA replication under conditions of enforced replication stress after Mitomycin C (MMC) treatment. Consistent with this, all alternative p53-isoforms no longer stimulated recombination, i.e., bypass of endogenous replication barriers. Different from the other isoforms, Δ133p53α and Δ160p53α caused a severe DNA replication problem, namely fork stalling even in untreated cells. Co-expression of each alternative p53-isoform together with p53α exacerbated the DDT pathway defects, unveiling impaired POLι recruitment and replication deceleration already under unperturbed conditions. Such an inhibitory effect on p53α was particularly pronounced in cells co-expressing Δ133p53α or Δ160p53α. Notably, this effect became evident after the expression of the isoforms in tumor cells, as well as after the knockdown of endogenous isoforms in human hematopoietic stem and progenitor cells. In summary, mimicking the situation found to be associated with many cancer types and stem cells, i.e., co-expression of alternative p53-isoforms with p53α, carved out interference with p53α functions in the p53-POLι-dependent DDT pathway.
Collapse
Affiliation(s)
- Yitian Guo
- grid.6582.90000 0004 1936 9748Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075 Germany
| | - Melanie Rall-Scharpf
- grid.6582.90000 0004 1936 9748Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075 Germany
| | - Jean-Christophe Bourdon
- grid.8241.f0000 0004 0397 2876Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Lisa Wiesmüller
- grid.6582.90000 0004 1936 9748Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075 Germany
| | - Stephanie Biber
- grid.6582.90000 0004 1936 9748Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075 Germany
| |
Collapse
|
58
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
59
|
Santos J, Pallarès I, Iglesias V, Ventura S. Cryptic amyloidogenic regions in intrinsically disordered proteins: Function and disease association. Comput Struct Biotechnol J 2021; 19:4192-4206. [PMID: 34527192 PMCID: PMC8349759 DOI: 10.1016/j.csbj.2021.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
The amyloid conformation is considered a fundamental state of proteins and the propensity to populate it a generic property of polypeptides. Multiple proteome-wide analyses addressed the presence of amyloidogenic regions in proteins, nurturing our understanding of their nature and biological implications. However, these analyses focused on highly aggregation-prone and hydrophobic stretches that are only marginally found in intrinsically disordered regions (IDRs). Here, we explore the prevalence of cryptic amyloidogenic regions (CARs) of polar nature in IDRs. CARs are widespread in IDRs and associated with IDPs function, with particular involvement in protein–protein interactions, but their presence is also connected to a risk of malfunction. By exploring this function/malfunction dichotomy, we speculate that ancestral CARs might have evolved into functional interacting regions playing a significant role in protein evolution at the origins of life.
Collapse
Key Words
- APR, Aggregation-prone region
- Aggregation
- Amyloid
- CARs, Cryptic amyloidogenic regions
- CD, Circular dichroism
- CR, Congo red
- Evolution
- FTIR, Fourier transform infrared
- IDPs, Intrinsically disordered proteins
- IDRs, Intrinsically disordered regions
- Intrinsically disordered proteins
- PBS, Phosphate buffer saline
- PPI, Protein-protein interactions
- Protein disorder
- Protein–protein interactions
- Rb, Retinoblastoma associated proteins
- RbC, Core region of Rb
- TEM, Transmission electron microscopy
- Th-T, Thioflavin-T
Collapse
Affiliation(s)
- Jaime Santos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Valentín Iglesias
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
60
|
Lo Piccolo L, Jantrapirom S, Moonmuang S, Teeyakasem P, Pasena A, Suksakit P, Charoenkwan P, Pruksakorn D, Koonrungsesomboon N. In search of TP53 mutational hot spots for Li-Fraumeni syndrome in Asian populations. Trop Med Int Health 2021; 26:1401-1410. [PMID: 34478609 DOI: 10.1111/tmi.13673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Germline mutations of the TP53 tumour suppressor gene are the only known cause of the hereditary autosomal disorder called Li-Fraumeni syndrome (LFS). However, little information is available about TP53 pathogenic variants in Asian LFS patients, making it difficult to provide precise genetic counselling with regard to long-term cancer risk. We conducted a systematic review to gather relevant case-control studies exploring the association between TP53 polymorphisms and the incidence of cancer belonging to the LFS spectrum in Asian populations. METHOD Systematic review and meta-analysis. The odds ratio was used as a summary effect measure to quantify the strength of the association between TP53 polymorphisms and cancer risk by means of random-effects meta-analysis. RESULTS In total, 16 studies were included in this systematic review, with 13 studies (involving 10,645 cases and 28,288 controls) that enabled meta-analysis. The majority of the studies focused on a single-nucleotide variation at codon 72 in exon 4 (c.215C>G, p.Arg72Pro, rs1042522). Therefore, we tested either dominant, co-dominant, recessive, or heterozygous models and found that the p.Arg72Pro was not significantly associated with increased cancer risk in any of the models. CONCLUSION We found the number of studies on cancers belonging to the LFS spectrum in Asia is very small. Thus, at the present time a meta-analysis approach is somewhat useful to identify germline TP53 mutations as potential markers of hereditary cancer associated with LFS in Asian populations.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand.,Musculoskeletal Science and Translational Research Center, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Drosophila Center for Human Diseases and Drug Discovery, Chiang Mai University, Chiang Mai, Thailand
| | - Sutpirat Moonmuang
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Pimpisa Teeyakasem
- Department of Orthopedics, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Arnat Pasena
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Pathacha Suksakit
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | | | - Dumnoensun Pruksakorn
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand.,Musculoskeletal Science and Translational Research Center, Chiang Mai University, Muang, Chiang Mai, Thailand.,Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research Center, Chiang Mai University, Muang, Chiang Mai, Thailand.,Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
61
|
Akter R, Rahman MH, Kaushik D, Mittal V, Uivarosan D, Nechifor AC, Behl T, Karthika C, Stoicescu M, Munteanu MA, Bustea C, Bungau S. Chemo-Preventive Action of Resveratrol: Suppression of p53-A Molecular Targeting Approach. Molecules 2021; 26:molecules26175325. [PMID: 34500758 PMCID: PMC8433711 DOI: 10.3390/molecules26175325] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Extensive experimental, clinical, and epidemiological evidence has explained and proven that products of natural origin are significantly important in preventing and/or ameliorating various disorders, including different types of cancer that researchers are extremely focused on. Among these studies on natural active substances, one can distinguish the emphasis on resveratrol and its properties, especially the potential anticancer role. Resveratrol is a natural product proven for its therapeutic activity, with remarkable anti-inflammatory properties. Various other benefits/actions have also been reported, such as cardioprotective, anti-ageing, antioxidant, etc. and its rapid digestion/absorption as well. This review aims to collect and present the latest published studies on resveratrol and its impact on cancer prevention, molecular signals (especially p53 protein participation), and its therapeutic prospects. The most recent information regarding the healing action of resveratrol is presented and concentrated to create an updated database focused on this topic presented above.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Correspondence: (M.H.R.); (S.B.)
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.S.); (M.A.M.); (C.B.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.S.); (M.A.M.); (C.B.)
| | - Cristiana Bustea
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.S.); (M.A.M.); (C.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (M.H.R.); (S.B.)
| |
Collapse
|
62
|
Huang L, Agrawal T, Zhu G, Yu S, Tao L, Lin J, Marmorstein R, Shorter J, Yang X. DAXX represents a new type of protein-folding enabler. Nature 2021; 597:132-137. [PMID: 34408321 PMCID: PMC8485697 DOI: 10.1038/s41586-021-03824-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/15/2021] [Indexed: 12/31/2022]
Abstract
Protein quality control systems are crucial for cellular function and organismal health. At present, most known protein quality control systems are multicomponent machineries that operate via ATP-regulated interactions with non-native proteins to prevent aggregation and promote folding1, and few systems that can broadly enable protein folding by a different mechanism have been identified. Moreover, proteins that contain the extensively charged poly-Asp/Glu (polyD/E) region are common in eukaryotic proteomes2, but their biochemical activities remain undefined. Here we show that DAXX, a polyD/E protein that has been implicated in diverse cellular processes3-10, possesses several protein-folding activities. DAXX prevents aggregation, solubilizes pre-existing aggregates and unfolds misfolded species of model substrates and neurodegeneration-associated proteins. Notably, DAXX effectively prevents and reverses aggregation of its in vivo-validated client proteins, the tumour suppressor p53 and its principal antagonist MDM2. DAXX can also restore native conformation and function to tumour-associated, aggregation-prone p53 mutants, reducing their oncogenic properties. These DAXX activities are ATP-independent and instead rely on the polyD/E region. Other polyD/E proteins, including ANP32A and SET, can also function as stand-alone, ATP-independent molecular chaperones, disaggregases and unfoldases. Thus, polyD/E proteins probably constitute a multifunctional protein quality control system that operates via a distinctive mechanism.
Collapse
Affiliation(s)
- Liangqian Huang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Trisha Agrawal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Wilson Sonsini Goodrich & Rosati LP, New York, NY, USA
| | - Guixin Zhu
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sixiang Yu
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liming Tao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaolu Yang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
63
|
Intrinsic disorder and phase transitions: Pieces in the puzzling role of the prion protein in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:1-43. [PMID: 34656326 DOI: 10.1016/bs.pmbts.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After four decades of prion protein research, the pressing questions in the literature remain similar to the common existential dilemmas. Who am I? Some structural characteristics of the cellular prion protein (PrPC) and scrapie PrP (PrPSc) remain unknown: there are no high-resolution atomic structures for either full-length endogenous human PrPC or isolated infectious PrPSc particles. Why am I here? It is not known why PrPC and PrPSc are found in specific cellular compartments such as the nucleus; while the physiological functions of PrPC are still being uncovered, the misfolding site remains obscure. Where am I going? The subcellular distribution of PrPC and PrPSc is wide (reported in 10 different locations in the cell). This complexity is further exacerbated by the eight different PrP fragments yielded from conserved proteolytic cleavages and by reversible post-translational modifications, such as glycosylation, phosphorylation, and ubiquitination. Moreover, about 55 pathological mutations and 16 polymorphisms on the PrP gene (PRNP) have been described. Prion diseases also share unique, challenging features: strain phenomenon (associated with the heterogeneity of PrPSc conformations) and the possible transmissibility between species, factors which contribute to PrP undruggability. However, two recent concepts in biochemistry-intrinsically disordered proteins and phase transitions-may shed light on the molecular basis of PrP's role in physiology and disease.
Collapse
|
64
|
Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Structural and Drug Targeting Insights on Mutant p53. Cancers (Basel) 2021; 13:3344. [PMID: 34283062 PMCID: PMC8268744 DOI: 10.3390/cancers13133344] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| |
Collapse
|
65
|
Lu J, Qian J, Xu Z, Yin S, Zhou L, Zheng S, Zhang W. Emerging Roles of Liquid-Liquid Phase Separation in Cancer: From Protein Aggregation to Immune-Associated Signaling. Front Cell Dev Biol 2021; 9:631486. [PMID: 34235141 PMCID: PMC8255971 DOI: 10.3389/fcell.2021.631486] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid Phase Separation (LLPS) of proteins and nucleic acids has emerged as a new paradigm in the study of cellular activities. It drives the formation of liquid-like condensates containing biomolecules in the absence of membrane structures in living cells. In addition, typical membrane-less condensates such as nuclear speckles, stress granules and cell signaling clusters play important roles in various cellular activities, including regulation of transcription, cellular stress response and signal transduction. Previous studies highlighted the biophysical and biochemical principles underlying the formation of these liquid condensates. The studies also showed how these principles determine the molecular properties, LLPS behavior, and composition of liquid condensates. While the basic rules driving LLPS are continuously being uncovered, their function in cellular activities is still unclear, especially within a pathological context. Therefore, the present review summarizes the recent progress made on the existing roles of LLPS in cancer, including cancer-related signaling pathways, transcription regulation and maintenance of genome stability. Additionally, the review briefly introduces the basic rules of LLPS, and cellular signaling that potentially plays a role in cancer, including pathways relevant to immune responses and autophagy.
Collapse
Affiliation(s)
- Jiahua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Junjie Qian
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China.,Organ Transplantation Institute, Zhejiang University, Hangzhou, China
| | - Zhentian Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Shengyong Yin
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China.,Organ Transplantation Institute, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China.,Organ Transplantation Institute, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China.,Organ Transplantation Institute, Zhejiang University, Hangzhou, China.,Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wu Zhang
- Organ Transplantation Institute, Zhejiang University, Hangzhou, China.,Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
66
|
Navalkar A, Pandey S, Singh N, Patel K, Datta D, Mohanty B, Jadhav S, Chaudhari P, Maji SK. Direct evidence of cellular transformation by prion-like p53 amyloid infection. J Cell Sci 2021; 134:269011. [PMID: 34085695 DOI: 10.1242/jcs.258316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/21/2021] [Indexed: 11/20/2022] Open
Abstract
Tumor suppressor p53 mutations are associated with more than 50% of cancers. Aggregation and amyloid formation of p53 is also implicated in cancer pathogenesis, but direct evidence for aggregated p53 amyloids acting as an oncogene is lacking. Here, we conclusively demonstrate that wild-type p53 amyloid formation imparts oncogenic properties to non-cancerous cells. p53 amyloid aggregates were transferred through cell generations, contributing to enhanced survival, apoptotic resistance with increased proliferation and migration. The tumorigenic potential of p53 amyloid-transformed cells was further confirmed in mouse xenografts, wherein the tumors showed p53 amyloids. p53 disaggregation rescued the cellular transformation and inhibited tumor development in mice. We propose that wild-type p53 amyloid formation contributes to tumorigenesis and can be a potential target for therapeutic intervention. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Komal Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Debalina Datta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Bhabani Mohanty
- Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, India410210
| | | | - Pradip Chaudhari
- Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, India410210.,Department of Life Sciences, Homi Bhabha National Institute, Anushaktinagar, Mumbai, India400094
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| |
Collapse
|
67
|
Garfagnini T, Levi-Kalisman Y, Harries D, Friedler A. Osmolytes and crowders regulate aggregation of the cancer-related L106R mutant of the Axin protein. Biophys J 2021; 120:3455-3469. [PMID: 34087214 DOI: 10.1016/j.bpj.2021.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Protein aggregation is involved in a variety of diseases, including neurodegenerative diseases and cancer. The cellular environment is crowded by a plethora of cosolutes comprising small molecules and biomacromolecules at high concentrations, which may influence the aggregation of proteins in vivo. To account for the effect of cosolutes on cancer-related protein aggregation, we studied their effect on the aggregation of the cancer-related L106R mutant of the Axin protein. Axin is a key player in the Wnt signaling pathway, and the L106R mutation in its RGS domain results in a native molten globule that tends to form native-like aggregates. This results in uncontrolled activation of the Wnt signaling pathway, leading to cancer. We monitored the aggregation process of Axin RGS L106R in vitro in the presence of a wide ensemble of cosolutes including polyols, amino acids, betaine, and polyethylene glycol crowders. Except myo-inositol, all polyols decreased RGS L106R aggregation, with carbohydrates exerting the strongest inhibition. Conversely, betaine and polyethylene glycols enhanced aggregation. These results are consistent with the reported effects of osmolytes and crowders on the stability of molten globular proteins and with both amorphous and amyloid aggregation mechanisms. We suggest a model of Axin L106R aggregation in vivo, whereby molecularly small osmolytes keep the protein as a free soluble molecule but the increased crowding of the bound state by macromolecules induces its aggregation at the nanoscale. To our knowledge, this is the first systematic study on the effect of osmolytes and crowders on a process of native-like aggregation involved in pathology, as it sheds light on the contribution of cosolutes to the onset of cancer as a protein misfolding disease and on the relevance of aggregation in the molecular etiology of cancer.
Collapse
Affiliation(s)
- Tommaso Garfagnini
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Levi-Kalisman
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology and The Alexander Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Harries
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel; The Fritz Haber Center, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
68
|
The Effect of the Hydroalcoholic Extract of Watercress on the Levels of Protein Carbonyl, Inflammatory Markers, and Vitamin E in Chronic Hemodialysis Patients. Biochem Res Int 2021; 2021:5588464. [PMID: 34136285 PMCID: PMC8175173 DOI: 10.1155/2021/5588464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Chronic kidney disorder is a main public health concern. Inflammatory processes and oxidative stress are common in end-stage renal disease patients. We aimed to evaluate the effect of the hydroalcoholic extract of watercress (WC) on the inflammatory cytokines and protein carbonyl (PCO) contents in chronic hemodialysis patients. Methods This was a double-blind randomized clinical trial performed on 46 hemodialysis patients. The participants were randomly divided into two groups: intervention group (500 mg hydroalcoholic extract of WC every day for 4 weeks) and control group (500 mg of white flour every night for 4 weeks). The blood samples were taken to determine the levels of vitamin E, PCO, and inflammatory cytokines at baseline and the end of treatment. Results Forty-five patients completed the study (22 patients in the intervention group and 23 patients in the control group). There was a significant reduction in the PCO level (20.33 ± 4.40 vs. 15.06 ± 6.41, P=0.001) in the intervention group; also, this change was statistically significant relative to the control group. Furthermore, there were significant reductions in hs-CRP (8953.30 ± 5588.06 vs. 7249.86 ± 5091.62, P=0.007) and IL-6 (60.10 (55.99, 73.10) vs. 55.21 (53.39, 60.48), P=0.050) in the intervention group, but these changes were not significant in comparison with the control group. Conclusion We conclude that the hydroalcoholic extract of WC reduced the PCO content in hemodialysis patients via inhibition of protein oxidation. Although WC administration had caused a significant reduction in IL-6 and CRP levels, these differences were not statistically significant relative to the control group. Further research is needed to identify the antioxidant and anti-inflammatory effects of WC in hemodialysis patients.
Collapse
|
69
|
Bourgeat L, Pacini L, Serghei A, Lesieur C. Experimental diagnostic of sequence-variant dynamic perturbations revealed by broadband dielectric spectroscopy. Structure 2021; 29:1419-1429.e3. [PMID: 34051139 DOI: 10.1016/j.str.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
Genetic diversity leads to protein robustness, adaptability, and failure. Some sequence variants are structurally robust but functionally disturbed because mutations bring the protein onto unfolding/refolding routes resulting in misfolding diseases (e.g., Parkinson). We assume dynamic perturbations introduced by mutations foster the alternative unfolding routes and test this possibility by comparing the unfolding dynamics of the heat-labile enterotoxin B pentamers and the cholera toxin B pentamers, two pentamers structurally and functionally related and robust to 17 sequence variations. The B-subunit thermal unfolding dynamics are monitored by broadband dielectric spectroscopy in nanoconfined and weakly hydrated conditions. Distinct dielectric signals reveal the different B-subunits unfolding dynamics. Combined with network analyses, the experiments pinpoint the role of three mutations A1T, E7D, and E102A, in diverting LTB5 to alternative unfolding routes that protect LTB5 from dissociation. Altogether, the methodology diagnoses dynamics faults that may underlie functional disorder, drug resistance, or higher virulence of sequence variants.
Collapse
Affiliation(s)
- Laëtitia Bourgeat
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69622 Villeurbanne, France; Univ Lyon, CNRS, IMP, 69622, Villeurbanne, France
| | - Lorenza Pacini
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69622 Villeurbanne, France; Institut Rhônalpin des systèmes complexes, IXXI-ENS-Lyon, 69007, Lyon, France
| | | | - Claire Lesieur
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69622 Villeurbanne, France; Institut Rhônalpin des systèmes complexes, IXXI-ENS-Lyon, 69007, Lyon, France.
| |
Collapse
|
70
|
Petronilho EC, Pedrote MM, Marques MA, Passos YM, Mota MF, Jakobus B, de Sousa GDS, Pereira da Costa F, Felix AL, Ferretti GDS, Almeida FP, Cordeiro Y, Vieira TCRG, de Oliveira GAP, Silva JL. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chem Sci 2021; 12:7334-7349. [PMID: 34163823 PMCID: PMC8171334 DOI: 10.1039/d1sc01739j] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF). The mechanism of the formation of the aggregates in the nucleus remains uncertain. The present study demonstrated that the DNA-binding domain of p53 (p53C) underwent phase separation (PS) on the pathway to aggregation under various conditions. p53C phase separated in the presence of the crowding agent polyethylene glycol (PEG). Similarly, mutant p53C (M237I and R249S) underwent PS; however, the process evolved to a solid-like phase transition faster than that in the case of wild-type p53C. The data obtained by microscopy of live cells indicated that transfection of mutant full-length p53 into the cells tended to result in PS and phase transition (PT) in the nuclear compartments, which are likely the cause of the GoF effects. Fluorescence recovery after photobleaching (FRAP) experiments revealed liquid characteristics of the condensates in the nucleus. Mutant p53 tended to undergo gel- and solid-like phase transitions in the nucleus and in nuclear bodies demonstrated by slow and incomplete recovery of fluorescence after photobleaching. Polyanions, such as heparin and RNA, were able to modulate PS and PT in vitro. Heparin apparently stabilized the condensates in a gel-like state, and RNA apparently induced a solid-like state of the protein even in the absence of PEG. Conditions that destabilize p53C into a molten globule conformation also produced liquid droplets in the absence of crowding. The disordered transactivation domain (TAD) modulated both phase separation and amyloid aggregation. In summary, our data provide mechanistic insight into the formation of p53 condensates and conditions that may result in the formation of aggregated structures, such as mutant amyloid oligomers, in cancer. The pathway of mutant p53 from liquid droplets to gel-like and solid-like (amyloid) species may be a suitable target for anticancer therapy. Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF).![]()
Collapse
Affiliation(s)
- Elaine C Petronilho
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Murilo M Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Yulli M Passos
- Faculty of Pharmacy, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Benjamin Jakobus
- Modal Informática Ltda Almeida Godinho, 19, 304 Rio de Janeiro RJ 22741-140 Brazil
| | - Gileno Dos Santos de Sousa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Filipe Pereira da Costa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Adriani L Felix
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Fernando P Almeida
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| |
Collapse
|
71
|
Tang Q, Efe G, Chiarella AM, Leung J, Chen M, Yamazoe T, Su Z, Pitarresi JR, Li J, Islam M, Karakasheva T, Klein-Szanto AJ, Pan S, Hu J, Natsugoe S, Gu W, Stanger BZ, Wong KK, Diehl JA, Bass AJ, Nakagawa H, Murphy ME, Rustgi AK. Mutant p53 regulates Survivin to foster lung metastasis. Genes Dev 2021; 35:528-541. [PMID: 33737385 PMCID: PMC8015716 DOI: 10.1101/gad.340505.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/15/2021] [Indexed: 01/01/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers worldwide and evolves often to lung metastasis. P53R175H (homologous to Trp53R172H in mice) is a common hot spot mutation. How metastasis is regulated by p53R175H in ESCC remains to be investigated. To investigate p53R175H-mediated molecular mechanisms, we used a carcinogen-induced approach in Trp53R172H/- mice to model ESCC. In the primary Trp53R172H/- tumor cell lines, we depleted Trp53R172H (shTrp53) and observed a marked reduction in cell invasion in vitro and lung metastasis burden in a tail-vein injection model in comparing isogenic cells (shCtrl). Furthermore, we performed bulk RNA-seq to compare gene expression profiles of metastatic and primary shCtrl and shTrp53 cells. We identified the YAP-BIRC5 axis as a potential mediator of Trp53R172H -mediated metastasis. We demonstrate that expression of Survivin, an antiapoptotic protein encoded by BIRC5, increases in the presence of Trp53R172H Furthermore, depletion of Survivin specifically decreases Trp53R172H-driven lung metastasis. Mechanistically, Trp53R172H but not wild-type Trp53, binds with YAP in ESCC cells, suggesting their cooperation to induce Survivin expression. Furthermore, Survivin high expression level is associated with increased metastasis in several GI cancers. Taken together, this study unravels new insights into how mutant p53 mediates metastasis.
Collapse
Affiliation(s)
- Qiaosi Tang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Anna M Chiarella
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Jessica Leung
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Maoting Chen
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Taiji Yamazoe
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zhenyi Su
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Jason R Pitarresi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jinyang Li
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mirazul Islam
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Tatiana Karakasheva
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andres J Klein-Szanto
- Department of Pathology, Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19104, USA
| | - Samuel Pan
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Jianhua Hu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Shoji Natsugoe
- Department of Digestive Surgery, Kagoshima University, Sakuragaoka, Kagoshima 890-0065, Japan
| | - Wei Gu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Ben Z Stanger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kwok-K Wong
- New York University Langone Center, New York, New York 10016, USA
| | - J Alan Diehl
- Case Western University, Cleveland, Ohio 44106, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| |
Collapse
|
72
|
Tsai YL, Manley JL. Multiple ways to a dead end: diverse mechanisms by which ALS mutant genes induce cell death. Cell Cycle 2021; 20:631-646. [PMID: 33722167 DOI: 10.1080/15384101.2021.1886661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a deadly neuromuscular disorder caused by progressive motor neuron loss in the brain and spinal cord. Over the past decades, a number of genetic mutations have been identified that cause or are associated with ALS disease progression. Numerous genes harbor ALS mutations, and they encode proteins displaying a wide range of physiological functions, with limited overlap. Despite the divergent functions, mutations in these genes typically trigger protein aggregation, which can confer gain- and/or loss-of-function to a number of essential cellular processes. Nuclear processes such as mRNA splicing and the response to DNA damage are significantly affected in ALS patients. Cytoplasmic organelles such as mitochondria are damaged by ALS mutant proteins. Processes that maintain cellular homeostasis such as autophagy, nonsense-mediated mRNA decay and nucleocytoplasmic transport, are also impaired by ALS mutations. Here, we review the multiple mechanisms by which mutations in major ALS-associated genes, such as TARDBP, C9ORF72 and FUS, lead to impairment of essential cellular processes.
Collapse
Affiliation(s)
- Yueh-Lin Tsai
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, United States
| |
Collapse
|
73
|
Yang DS, Saeedi A, Davtyan A, Fathi M, Sherman MB, Safari MS, Klindziuk A, Barton MC, Varadarajan N, Kolomeisky AB, Vekilov PG. Mesoscopic protein-rich clusters host the nucleation of mutant p53 amyloid fibrils. Proc Natl Acad Sci U S A 2021; 118:e2015618118. [PMID: 33653952 PMCID: PMC7958401 DOI: 10.1073/pnas.2015618118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The protein p53 is a crucial tumor suppressor, often called "the guardian of the genome"; however, mutations transform p53 into a powerful cancer promoter. The oncogenic capacity of mutant p53 has been ascribed to enhanced propensity to fibrillize and recruit other cancer fighting proteins in the fibrils, yet the pathways of fibril nucleation and growth remain obscure. Here, we combine immunofluorescence three-dimensional confocal microscopy of human breast cancer cells with light scattering and transmission electron microscopy of solutions of the purified protein and molecular simulations to illuminate the mechanisms of phase transformations across multiple length scales, from cellular to molecular. We report that the p53 mutant R248Q (R, arginine; Q, glutamine) forms, both in cancer cells and in solutions, a condensate with unique properties, mesoscopic protein-rich clusters. The clusters dramatically diverge from other protein condensates. The cluster sizes are decoupled from the total cluster population volume and independent of the p53 concentration and the solution concentration at equilibrium with the clusters varies. We demonstrate that the clusters carry out a crucial biological function: they host and facilitate the nucleation of amyloid fibrils. We demonstrate that the p53 clusters are driven by structural destabilization of the core domain and not by interactions of its extensive unstructured region, in contradistinction to the dense liquids typical of disordered and partially disordered proteins. Two-step nucleation of mutant p53 amyloids suggests means to control fibrillization and the associated pathologies through modifying the cluster characteristics. Our findings exemplify interactions between distinct protein phases that activate complex physicochemical mechanisms operating in biological systems.
Collapse
Affiliation(s)
- David S Yang
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Arash Saeedi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Aram Davtyan
- Department of Chemistry, Rice University, Houston, TX 77251
| | - Mohsen Fathi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| | - Mohammad S Safari
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, TX 77251
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77251
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204;
- Department of Chemistry, University of Houston, Houston, TX 77204
| |
Collapse
|
74
|
Taniue K, Akimitsu N. Aberrant phase separation and cancer. FEBS J 2021; 289:17-39. [PMID: 33583140 DOI: 10.1111/febs.15765] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
Eukaryotic cells are intracellularly divided into numerous compartments or organelles, which coordinate specific molecules and biological reactions. Membrane-bound organelles are physically separated by lipid bilayers from the surrounding environment. Biomolecular condensates, also referred to membraneless organelles, are micron-scale cellular compartments that lack membranous enclosures but function to concentrate proteins and RNA molecules, and these are involved in diverse processes. Liquid-liquid phase separation (LLPS) driven by multivalent weak macromolecular interactions is a critical principle for the formation of biomolecular condensates, and a multitude of combinations among multivalent interactions may drive liquid-liquid phase transition (LLPT). Dysregulation of LLPS and LLPT leads to aberrant condensate and amyloid formation, which causes many human diseases, including neurodegeneration and cancer. Here, we describe recent findings regarding abnormal forms of biomolecular condensates and aggregation via aberrant LLPS and LLPT of cancer-related proteins in cancer development driven by mutation and fusion of genes. Moreover, we discuss the regulatory mechanisms by which aberrant LLPS and LLPT occur in cancer and the drug candidates targeting these mechanisms. Further understanding of the molecular events regulating how biomolecular condensates and aggregation form in cancer tissue is critical for the development of therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Japan.,Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | | |
Collapse
|
75
|
Billant O, Friocourt G, Roux P, Voisset C. p53, A Victim of the Prion Fashion. Cancers (Basel) 2021; 13:E269. [PMID: 33450819 PMCID: PMC7828285 DOI: 10.3390/cancers13020269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
Identified in the late 1970s as an oncogene, a driving force leading to tumor development, p53 turned out to be a key tumor suppressor gene. Now p53 is considered a master gene regulating the transcription of over 3000 target genes and controlling a remarkable number of cellular functions. The elevated prevalence of p53 mutations in human cancers has led to a recurring questioning about the roles of mutant p53 proteins and their functional consequences. Both mutants and isoforms of p53 have been attributed dominant-negative and gain of function properties among which is the ability to form amyloid aggregates and behave in a prion-like manner. This report challenges the ongoing "prion p53" hypothesis by reviewing evidence of p53 behavior in light of our current knowledge regarding amyloid proteins, prionoids and prions.
Collapse
Affiliation(s)
| | - Gaëlle Friocourt
- Inserm, Université de Bretagne Occidentale, EFS, UMR 1078, GGB, F-29200 Brest, France;
| | - Pierre Roux
- CRBM, CNRS, UMR5234, 34293 Montpellier, France;
| | - Cécile Voisset
- Inserm, Université de Bretagne Occidentale, EFS, UMR 1078, GGB, F-29200 Brest, France;
| |
Collapse
|
76
|
Bobyleva LG, Shumeyko SA, Yakupova EI, Surin AK, Galzitskaya OV, Kihara H, Timchenko AA, Timchenko MA, Penkov NV, Nikulin AD, Suvorina MY, Molochkov NV, Lobanov MY, Fadeev RS, Vikhlyantsev IM, Bobylev AG. Myosin Binding Protein-C Forms Amyloid-Like Aggregates In Vitro. Int J Mol Sci 2021; 22:ijms22020731. [PMID: 33450960 PMCID: PMC7828380 DOI: 10.3390/ijms22020731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 11/17/2022] Open
Abstract
This work investigated in vitro aggregation and amyloid properties of skeletal myosin binding protein-C (sMyBP-C) interacting in vivo with proteins of thick and thin filaments in the sarcomeric A-disc. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) found a rapid (5–10 min) formation of large (>2 μm) aggregates. sMyBP-C oligomers formed both at the initial 5–10 min and after 16 h of aggregation. Small angle X-ray scattering (SAXS) and DLS revealed sMyBP-C oligomers to consist of 7–10 monomers. TEM and atomic force microscopy (AFM) showed sMyBP-C to form amorphous aggregates (and, to a lesser degree, fibrillar structures) exhibiting no toxicity on cell culture. X-ray diffraction of sMyBP-C aggregates registered reflections attributed to a cross-β quaternary structure. Circular dichroism (CD) showed the formation of the amyloid-like structure to occur without changes in the sMyBP-C secondary structure. The obtained results indicating a high in vitro aggregability of sMyBP-C are, apparently, a consequence of structural features of the domain organization of proteins of this family. Formation of pathological amyloid or amyloid-like sMyBP-C aggregates in vivo is little probable due to amino-acid sequence low identity (<26%), alternating ordered/disordered regions in the protein molecule, and S–S bonds providing for general stability.
Collapse
Affiliation(s)
- Liya G. Bobyleva
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.B.); (S.A.S.); (E.I.Y.); (O.V.G.)
| | - Sergey A. Shumeyko
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.B.); (S.A.S.); (E.I.Y.); (O.V.G.)
| | - Elmira I. Yakupova
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.B.); (S.A.S.); (E.I.Y.); (O.V.G.)
| | - Alexey K. Surin
- Laboratory of Bioinformatics and Proteomics, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.K.S.); (M.Y.S.); (M.Y.L.)
- Biological Testing Laboratory, Branch of the Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- Laboratory of the Biochemistry of Pathogenic Microorganisms, State Research Centre for Applied Microbiology and Biotechnology, Obolensk, 142279 Serpukhov District, Russia
| | - Oxana V. Galzitskaya
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.B.); (S.A.S.); (E.I.Y.); (O.V.G.)
- Laboratory of Bioinformatics and Proteomics, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.K.S.); (M.Y.S.); (M.Y.L.)
| | - Hiroshi Kihara
- Department of Early Childhood Education, Himeji-Hinomoto College, 890 Koro, Kodera-cho, Himeji 679-2151, Japan;
| | - Alexander A. Timchenko
- Group of Experimental Research and Engineering of Oligomeric Structures, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Maria A. Timchenko
- Laboratory of Applied Enzymology, FRC PSCBR, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Nikita V. Penkov
- Laboratory of the Methods of Optical Spectral Analysis, Institute of Cell Biophysics, Russian Academy of Sciences, FRC PSCBR RAS, 142290 Pushchino, Russia;
| | - Alexey D. Nikulin
- Laboratory for Structural Studies of the Translational Apparatus, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Mariya Yu. Suvorina
- Laboratory of Bioinformatics and Proteomics, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.K.S.); (M.Y.S.); (M.Y.L.)
| | - Nikolay V. Molochkov
- Laboratory of NMR Investigations of Biosystems, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Mikhail Yu. Lobanov
- Laboratory of Bioinformatics and Proteomics, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.K.S.); (M.Y.S.); (M.Y.L.)
| | - Roman S. Fadeev
- Laboratory of Pharmacological Regulation of Cell Resistance, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Ivan M. Vikhlyantsev
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.B.); (S.A.S.); (E.I.Y.); (O.V.G.)
- Correspondence: (I.M.V.); (A.G.B.)
| | - Alexander G. Bobylev
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.B.); (S.A.S.); (E.I.Y.); (O.V.G.)
- Correspondence: (I.M.V.); (A.G.B.)
| |
Collapse
|
77
|
Park SK, Park S, Pentek C, Liebman SW. Tumor suppressor protein p53 expressed in yeast can remain diffuse, form a prion, or form unstable liquid-like droplets. iScience 2020; 24:102000. [PMID: 33490908 PMCID: PMC7811139 DOI: 10.1016/j.isci.2020.102000] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
Mutations in the p53 tumor suppressor are frequent causes of cancer. Because p53 aggregates appear in some tumor cells, it has been suggested that p53 could also cause cancer by forming self-replicating protein aggregates (prions). Here, using yeast, we show that transient p53 overexpression induced the formation of p53 prion aggregates that were transmitted for >100 generations, found in lysate pellets, stained with Thioflavin T, and transmitted by cytoplasmic transfer, or transfection with lysates of cells carrying the prion or with p53 amyloid peptide. As predicted for a prion, transient interruption of p53 expression caused permanent p53 prion loss. Importantly, p53 transcription factor activity was reduced by prion formation suggesting that prion aggregation could cause cancer. p53 has also been found in liquid-like nuclear droplets in animal cell culture. In yeast, we found that liquid-like p53 foci appear in response to stress and disappear with stress removal. A published yeast model of functional nuclear human p53 tumor suppressor was used Upon transient overexpression p53 loses its transcription function and aggregates These p53 aggregates are cytoplasmic and behave like stable heritable prions Stress induces p53 to form liquid-like droplets that are unstable and not prion-like
Collapse
Affiliation(s)
- Sei-Kyoung Park
- Department of Pharmacology, University of Nevada, Reno, NV 89557, USA
| | - Sangeun Park
- Department of Pharmacology, University of Nevada, Reno, NV 89557, USA
| | - Christine Pentek
- Department of Pharmacology, University of Nevada, Reno, NV 89557, USA
| | - Susan W Liebman
- Department of Pharmacology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
78
|
Sulfated glycosaminoglycans mediate prion-like behavior of p53 aggregates. Proc Natl Acad Sci U S A 2020; 117:33225-33234. [PMID: 33318190 DOI: 10.1073/pnas.2009931117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sulfated glycosaminoglycans (GAGs) such as heparan sulfate (HS) are heteropolysaccharides implicated in the pathology of protein aggregation diseases including localized and systemic forms of amyloidosis. Among subdomains of sulfated GAGs, highly sulfated domains of HS, called HS S-domains, have been highlighted as being critical for HS function in amyloidoses. Recent studies suggest that the tumor suppressor p53 aggregates to form amyloid fibrils and propagates in a prion-like manner; however, molecules and mechanisms that are involved in the prion-like behavior of p53 aggregates have not been addressed. Here, we identified sulfated GAGs as molecules that mediate prion-like behavior of p53 aggregates. Sulfated GAGs at the cell surface were required for cellular uptake of recombinant and cancer cell-derived p53 aggregates and extracellular release of p53 from cancer cells. We further showed that HS S-domains accumulated within p53 deposits in human ovarian cancer tissues, and enzymatic remodeling of HS S-domains by Sulf-2 extracellular sulfatase down-regulated cellular uptake of p53 aggregates. Finally, sulfated GAG-dependent cellular uptake of p53 aggregates was critical for subsequent extracellular release of the aggregates and gain of oncogenic function in recipient cells. Our work provides a mechanism of prion-like behavior of p53 aggregates and will shed light on sulfated GAGs as a common mediator of prions.
Collapse
|
79
|
Ostermeier L, de Oliveira GAP, Dzwolak W, Silva JL, Winter R. Exploring the polymorphism, conformational dynamics and function of amyloidogenic peptides and proteins by temperature and pressure modulation. Biophys Chem 2020; 268:106506. [PMID: 33221697 DOI: 10.1016/j.bpc.2020.106506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 11/15/2022]
Abstract
Our understanding of amyloid structures and the mechanisms by which disease-associated peptides and proteins self-assemble into these fibrillar aggregates, has advanced considerably in recent years. It is also established that amyloid fibrils are generally polymorphic. The molecular structures of the aggregation intermediates and the causes of molecular and structural polymorphism are less understood, however. Such information is mandatory to explain the pathological diversity of amyloid diseases. What is also clear is that not only protein mutations, but also the physiological milieu, i.e. pH, cosolutes, crowding and surface interactions, have an impact on fibril formation. In this minireview, we focus on the effect of the less explored physical parameters temperature and pressure on the fibrillization propensity of proteins and how these variables can be used to reveal additional mechanistic information about intermediate states of fibril formation and molecular and structural polymorphism. Generally, amyloids are very stable and can resist harsh environmental conditions, such as extreme pH, high temperature and high pressure, and can hence serve as valuable functional amyloid. As an example, we discuss the effect of temperature and pressure on the catalytic activity of peptide amyloid fibrils that exhibit enzymatic activity.
Collapse
Affiliation(s)
- Lena Ostermeier
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur 1 Str., 02-093 Warsaw, Poland.
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil.
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.
| |
Collapse
|
80
|
Andreychuk YV, Zadorsky SP, Zhuk AS, Stepchenkova EI, Inge-Vechtomov SG. Relationship between Type I and Type II Template Processes: Amyloids and Genome Stability. Mol Biol 2020. [DOI: 10.1134/s0026893320050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
81
|
Bromley D, Daggett V. Tumorigenic p53 mutants undergo common structural disruptions including conversion to α-sheet structure. Protein Sci 2020; 29:1983-1999. [PMID: 32715544 DOI: 10.1002/pro.3921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022]
Abstract
The p53 protein is a commonly studied cancer target because of its role in tumor suppression. Unfortunately, it is susceptible to mutation-associated loss of function; approximately 50% of cancers are associated with mutations to p53, the majority of which are located in the central DNA-binding domain. Here, we report molecular dynamics simulations of wild-type (WT) p53 and 20 different mutants, including a stabilized pseudo-WT mutant. Our findings indicate that p53 mutants tend to exacerbate latent structural-disruption tendencies, or vulnerabilities, already present in the WT protein, suggesting that it may be possible to develop cancer therapies by targeting a relatively small set of structural-disruption motifs rather than a multitude of effects specific to each mutant. In addition, α-sheet secondary structure formed in almost all of the proteins. α-Sheet has been hypothesized and recently demonstrated to play a role in amyloidogenesis, and its presence in the reported p53 simulations coincides with the recent re-consideration of cancer as an amyloid disease.
Collapse
Affiliation(s)
- Dennis Bromley
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA
| | - Valerie Daggett
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
82
|
Farmer KM, Ghag G, Puangmalai N, Montalbano M, Bhatt N, Kayed R. P53 aggregation, interactions with tau, and impaired DNA damage response in Alzheimer's disease. Acta Neuropathol Commun 2020; 8:132. [PMID: 32778161 PMCID: PMC7418370 DOI: 10.1186/s40478-020-01012-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
The transcription factor, p53, is critical for many important cellular functions involved in genome integrity, including cell cycle control, DNA damage response, and apoptosis. Disruption of p53 results in a wide range of disorders including cancer, metabolic diseases, and neurodegenerative diseases. Alzheimer's disease (AD) is a neurodegenerative disorder characterized by protein aggregates that contribute to disease pathology. Although p53 is known to aggregate, its propensity to aggregate in AD has never been assessed. Moreover, AD neuropathology includes lethal cell cycle re-entry, excessive DNA damage, and abnormal cell death which are all controlled by p53. Here, we show p53 forms oligomers and fibrils in human AD brain, but not control brain. p53 oligomers can also be detected in htau and P301L mouse models. Additionally, we demonstrate that p53 interacts with tau, specifically tau oligomers, in AD brain and can be recapitulated by in vitro exogenous tau oligomer treatment in C57BL/6 primary neurons. p53 oligomers also colocalize, potentially seeding, endogenous p53 in primary neurons. Lastly, we demonstrate that in the presence of DNA damage, phosphorylated p53 is mislocalized outside the nucleus and p53-mediated DNA damage responders are significantly decreased in AD brain. Control brain shows a healthy DNA damage response, indicating a loss of nuclear p53 function in AD may be due to p53 aggregation and/or interactions with tau oligomers. Given the critical role of p53 in cellular physiology, the disruption of this crucial transcription factor may set an irreversible course towards neurodegeneration in AD and potentially other tauopathies, warranting further investigation.
Collapse
Affiliation(s)
- Kathleen M. Farmer
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
| | - Gaurav Ghag
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
- Protein Sciences, Merck & Co Incorporated, South San Francisco, CA USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
| |
Collapse
|
83
|
Duffy MJ, Synnott NC, O'Grady S, Crown J. Targeting p53 for the treatment of cancer. Semin Cancer Biol 2020; 79:58-67. [PMID: 32741700 DOI: 10.1016/j.semcancer.2020.07.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/26/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
Dysfunction of the TP53 (p53) gene occurs in most if not all human malignancies. Two principal mechanisms are responsible for this dysfunction; mutation and downregulation of wild-type p53 mediated by MDM2/MDM4. Because of its almost universal inactivation in malignancy, p53 is a highly attractive target for the development of new anticancer drugs. Although multiple strategies have been investigated for targeting dysfunctional p53 for cancer treatment, only 2 of these have so far yielded compounds for testing in clinical trials. These strategies include the identification of compounds for reactivating the mutant form of p53 back to its wild-type form and compounds for inhibiting the interaction between wild-type p53 and MDM2/MDM4. Currently, multiple p53-MDM2/MDM4 antagonists are undergoing clinical trials, the most advanced being idasanutlin which is currently undergoing testing in a phase III clinical trial in patients with relapsed or refractory acute myeloid leukemia. Two mutant p53-reactivating compounds have progressed to clinical trials, i.e., APR-246 and COTI-2. Although promising data has emerged from the testing of both MDM2/MDM4 inhibitors and mutant p53 reactivating compounds in preclinical models, it is still unclear if these agents have clinical efficacy. However, should any of the compounds currently being evaluated in clinical trials be shown to have efficacy, it is likely to usher in a new era in cancer treatment, especially as p53 dysfunction is so prevalent in human cancers.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland.
| | - Naoise C Synnott
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; Division of Cancer Epidemiology and Genetics, and Division of Cancer Prevention, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - Shane O'Grady
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
84
|
Mitochondrial dysfunction generates aggregates that resist lysosomal degradation in human breast cancer cells. Cell Death Dis 2020; 11:460. [PMID: 32541677 PMCID: PMC7296005 DOI: 10.1038/s41419-020-2658-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Disrupting functional protein homeostasis is an established therapeutic strategy for certain tumors. Ongoing studies are evaluating autophagy inhibition for overcoming chemotherapeutic resistance to such therapies by neutralizing lysosomal pH. New and sensitive methods to monitor autophagy in patients are needed to improve trial design and interpretation. We report that mitochondrial-damaged breast cancer cells and rat breast tumors accumulate p53-positive protein aggregates that resist lysosomal degradation. These aggregates were localized to enzymatically-active autolysosomes that were degrading autophagosomes and the autophagic receptor proteins TAX1BP1 and NDP52. NDP52 was identified to associate with aggregated proteins and knocking down NDP52 led to the accumulation of protein aggregates. TAX1BP1 was identified to partly localize with aggregates, and knocking down TAX1BP1 enhanced aggregate formation, suppressed autophagy, impaired NDP52 autophagic degradation and induced cell death. We propose that quantifying aggregates and autophagic receptors are two potential methods to evaluate autophagy and lysosomal degradation, as confirmed using primary human tumor samples. Collectively, this report establishes protein aggregates and autophagy receptors, TAX1BP1 and NDP52, as potential endpoints for monitoring autophagy during drug development and clinical studies.
Collapse
|
85
|
Malmberg M, Malm T, Gustafsson O, Sturchio A, Graff C, Espay AJ, Wright AP, El Andaloussi S, Lindén A, Ezzat K. Disentangling the Amyloid Pathways: A Mechanistic Approach to Etiology. Front Neurosci 2020; 14:256. [PMID: 32372895 PMCID: PMC7186396 DOI: 10.3389/fnins.2020.00256] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/06/2020] [Indexed: 12/23/2022] Open
Abstract
Amyloids are fibrillar protein aggregates associated with diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes and Creutzfeldt-Jakob disease. The process of amyloid polymerization involves three pathological protein transformations; from natively folded conformation to the cross-β conformation, from biophysically soluble to insoluble, and from biologically functional to non-functional. While amyloids share a similar cross-β conformation, the biophysical transformation can either take place spontaneously via a homogeneous nucleation mechanism (HON) or catalytically on an exogenous surface via a heterogeneous nucleation mechanism (HEN). Here, we postulate that the different nucleation pathways can serve as a mechanistic basis for an etiological classification of amyloidopathies, where hereditary forms generally follow the HON pathway, while sporadic forms follow seed-induced (prions) or surface-induced (including microbially induced) HEN pathways. Critically, the conformational and biophysical amyloid transformation results in loss-of-function (LOF) of the original natively folded and soluble protein. This LOF can, at least initially, be the mechanism of amyloid toxicity even before amyloid accumulation reaches toxic levels. By highlighting the important role of non-protein species in amyloid formation and LOF mechanisms of toxicity, we propose a generalized mechanistic framework that could help better understand the diverse etiology of amyloid diseases and offer new opportunities for therapeutic interventions, including replacement therapies.
Collapse
Affiliation(s)
- Maja Malmberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Oskar Gustafsson
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Sturchio
- Department of Neurology and Rehabilitation Medicine, James J and Joan A Gardner Center for Parkinson Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, United States
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Alberto J. Espay
- Department of Neurology and Rehabilitation Medicine, James J and Joan A Gardner Center for Parkinson Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, United States
| | - Anthony P. Wright
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Kariem Ezzat
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
86
|
Rankin EB. Genomics and molecular mechanisms of high grade serous ovarian cancer: the 12th Biennial Rivkin Center Ovarian Cancer Research Symposium. Int J Gynecol Cancer 2020; 29:s7-s11. [PMID: 31462542 DOI: 10.1136/ijgc-2019-000490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The aim of this study was to review current research efforts in genomics and molecular mechanisms of high grade serous ovarian cancer, presented at the 12th Biennial Rivkin Center Ovarian Cancer Research Symposium, held at the University of Washington. METHODS The 12th Biennial Rivkin Center Ovarian Cancer Research Symposium brought together leaders in the field to discuss recent advances in ovarian cancer research and therapy. RESULTS The genomics and molecular mechanisms of ovarian cancer session featured invited speaker presentations by Dr Alan D' Andrea on 'Deoxyribonucleic acid (DNA) repair in ovarian cancer' and Dr Kathleen Cho on 'Modeling the genomics of high grade serous carcinoma in the mouse'. Eight additional oral presentations and 46 poster presentations were selected from the submitted abstracts that highlighted current research efforts in p53, DNA repair, genomic instability and modeling disease in mice, and organoids in high grade serous ovarian cancer. CONCLUSIONS New technologies utilizing clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (CAS9) approaches in mice, organoids, and cell based screens continue to advance our knowledge of key molecular drivers of ovarian cancer initiation, progression, and drug resistance. Improved understanding of the mechanisms of poly ADP ribose polymerase inhibitor resistance may lead to new therapeutic strategies to enhance outcomes in women with high grade serous ovarian cancer.
Collapse
Affiliation(s)
- Erinn B Rankin
- Radiation Oncology and Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| |
Collapse
|
87
|
Recent Synthetic Approaches towards Small Molecule Reactivators of p53. Biomolecules 2020; 10:biom10040635. [PMID: 32326087 PMCID: PMC7226499 DOI: 10.3390/biom10040635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor protein p53 is often called "the genome guardian" and controls the cell cycle and the integrity of DNA, as well as other important cellular functions. Its main function is to trigger the process of apoptosis in tumor cells, and approximately 50% of all cancers are related to the inactivation of the p53 protein through mutations in the TP53 gene. Due to the association of mutant p53 with cancer therapy resistance, different forms of restoration of p53 have been subject of intense research in recent years. In this sense, this review focus on the main currently adopted approaches for activation and reactivation of p53 tumor suppressor function, focusing on the synthetic approaches that are involved in the development and preparation of such small molecules.
Collapse
|
88
|
Haque E, Kamil M, Hasan A, Irfan S, Sheikh S, Khatoon A, Nazir A, Mir SS. Advanced glycation end products (AGEs), protein aggregation and their cross talk: new insight in tumorigenesis. Glycobiology 2020; 30:49-57. [PMID: 31508802 DOI: 10.1093/glycob/cwz073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Protein glycation and protein aggregation are two distinct phenomena being observed in cancer cells as factors promoting cancer cell viability. Protein aggregation is an abnormal interaction between proteins caused as a result of structural changes in them after any mutation or environmental assault. Protein aggregation is usually associated with neurodegenerative diseases like Alzheimer's and Parkinson's, but of late, research findings have shown its association with the development of different cancers like lung, breast and ovarian cancer. On the contrary, protein glycation is a cascade of irreversible nonenzymatic reaction of reducing sugar with the amino group of the protein resulting in the modification of protein structure and formation of advanced glycation end products (AGEs). These AGEs are reported to obstruct the normal function of proteins. Lately, it has been reported that protein aggregation occurs as a result of AGEs. This aggregation of protein promotes the transformation of healthy cells to neoplasia leading to tumorigenesis. In this review, we underline the current knowledge of protein aggregation and glycation along with the cross talk between the two, which may eventually lead to the development of cancer.
Collapse
Affiliation(s)
- Ejazul Haque
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia
| | - Mohd Kamil
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia.,Department of Microbiology, Beykoz Life Sciences and Biotechnology Institute (BILSAB), Bezmialem Vakif University, Istanbul, Turkey
| | - Adria Hasan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Safia Irfan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Saba Sheikh
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Aisha Khatoon
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow, 226031, India
| | - Snober S Mir
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| |
Collapse
|
89
|
de Oliveira GAP, Petronilho EC, Pedrote MM, Marques MA, Vieira TCRG, Cino EA, Silva JL. The Status of p53 Oligomeric and Aggregation States in Cancer. Biomolecules 2020; 10:biom10040548. [PMID: 32260447 PMCID: PMC7226498 DOI: 10.3390/biom10040548] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Despite being referred to as the guardian of the genome, when impacted by mutations, p53 can lose its protective functions and become a renegade. The malignant transformation of p53 occurs on multiple levels, such as altered DNA binding properties, acquisition of novel cellular partners, or associating into different oligomeric states. The consequences of these transformations can be catastrophic. Ongoing studies have implicated different oligomeric p53 species as having a central role in cancer biology; however, the correlation between p53 oligomerization status and oncogenic activities in cancer progression remains an open conundrum. In this review, we summarize the roles of different p53 oligomeric states in cancer and discuss potential research directions for overcoming aberrant p53 function associated with them. We address how misfolding and prion-like amyloid aggregation of p53 seem to play a crucial role in cancer development. The misfolded and aggregated states of mutant p53 are prospective targets for the development of novel therapeutic strategies against tumoral diseases.
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Elaine C. Petronilho
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Murilo M. Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Mayra A. Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Elio A. Cino
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte MG 31270-901, Brazil
- Correspondence: (J.L.S.); (E.A.C.); Tel.: +55-21-3938-6756 (J.L.S.); +55-31-3409-2613 (E.A.C.)
| | - Jerson L. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
- Correspondence: (J.L.S.); (E.A.C.); Tel.: +55-21-3938-6756 (J.L.S.); +55-31-3409-2613 (E.A.C.)
| |
Collapse
|
90
|
Therapeutic potential of ReACp53 targeting mutant p53 protein in CRPC. Prostate Cancer Prostatic Dis 2020; 23:160-171. [PMID: 31471556 PMCID: PMC7031025 DOI: 10.1038/s41391-019-0172-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUNDS p53 is a tumor suppressor that prevents cancer onset and progression, and mutations in the p53 gene cause loss of the tumor suppressor function of the protein. The mutant p53 protein in tumor cells can form aggregates which contribute to the dominant-negative effect over the wild-type p53 protein, causing loss of p53 tumor suppression or gain of novel oncogenic functions. Mutations in p53 have been implicated in the pathogenesis of primary prostate cancer (PCa), and are often detected in recurrent and metastatic disease. Thus, targeting mutant p53 may constitute an alternative therapeutic strategy for advanced PCa for which there are no other viable options. METHODS In this study, we used immunoprecipitation, immunofluorescence, clonogenic survival, and cell proliferation assays, flow cytometric analysis and in vivo xenograft to investigate the biological effects of ReACp53, a cell-permeable peptide inhibitor of p53 aggregation, on mutant p53-carrying PCa cells. RESULTS Our results show that ReACp53 targets amyloid aggregates of mutant p53 protein and restores the p53 nuclear function as transcriptional factor, induces mitochondrial cell death and reduces DNA synthesis of mutant p53-carrying PCa cells; ReACp53 also inhibits xenograft tumor growth in vivo. CONCLUSIONS The data presented here suggest a therapeutic potential of targeting mutant p53 protein in advanced PCa setting, which has a clinical impact for aggressive PCa with transforming how such tumors are managed.
Collapse
|
91
|
Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues. Molecules 2020; 25:molecules25040893. [PMID: 32085381 PMCID: PMC7070981 DOI: 10.3390/molecules25040893] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 01/19/2023] Open
Abstract
This review aims to explore the potential of resveratrol, a polyphenol stilbene, and beta-lapachone, a naphthoquinone, as well as their derivatives, in the development of new drug candidates for cancer. A brief history of these compounds is reviewed along with their potential effects and mechanisms of action and the most recent attempts to improve their bioavailability and potency against different types of cancer.
Collapse
|
92
|
Loh SN. Follow the Mutations: Toward Class-Specific, Small-Molecule Reactivation of p53. Biomolecules 2020; 10:biom10020303. [PMID: 32075132 PMCID: PMC7072143 DOI: 10.3390/biom10020303] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The mutational landscape of p53 in cancer is unusual among tumor suppressors because most of the alterations are of the missense type and localize to a single domain: the ~220 amino acid DNA-binding domain. Nearly all of these mutations produce the common effect of reducing p53’s ability to interact with DNA and activate transcription. Despite this seemingly simple phenotype, no mutant p53-targeted drugs are available to treat cancer patients. One of the main reasons for this is that the mutations exert their effects via multiple mechanisms—loss of DNA contacts, reduction in zinc-binding affinity, and lowering of thermodynamic stability—each of which involves a distinct type of physical impairment. This review discusses how this knowledge is informing current efforts to develop small molecules that repair these defects and restore function to mutant p53. Categorizing the spectrum of p53 mutations into discrete classes based on their inactivation mechanisms is the initial step toward personalized cancer therapy based on p53 allele status.
Collapse
Affiliation(s)
- Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
93
|
Kakraba S, Ayyadevara S, Penthala NR, Balasubramaniam M, Ganne A, Liu L, Alla R, Bommagani SB, Barger SW, Griffin WST, Crooks PA, Shmookler Reis RJ. A Novel Microtubule-Binding Drug Attenuates and Reverses Protein Aggregation in Animal Models of Alzheimer's Disease. Front Mol Neurosci 2020; 12:310. [PMID: 31920540 PMCID: PMC6920216 DOI: 10.3389/fnmol.2019.00310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/29/2019] [Indexed: 11/14/2022] Open
Abstract
Age-progressive neurodegenerative pathologies, including Alzheimer’s disease (AD), are distinguished and diagnosed by disease-specific components of intra- or extra-cellular aggregates. Increasing evidence suggests that neuroinflammation promotes protein aggregation, and is involved in the etiology of neurological diseases. We synthesized and tested analogs of the naturally occurring tubulin-binding compound, combretastatin A-4. One such analog, PNR502, markedly reduced the quantity of Alzheimer-associated amyloid aggregates in the BRI-Aβ1–42 mouse model of AD, while blunting the ability of the pro-inflammatory cytokine IL-1β to raise levels of amyloid plaque and its protein precursors in a neuronal cell-culture model. In transgenic Caenorhabditis elegans (C. elegans) strains that express human Aβ1–42 in muscle or neurons, PNR502 rescued Aβ-induced disruption of motility (3.8-fold, P < 0.0001) or chemotaxis (1.8-fold, P < 0.05), respectively. Moreover, in C. elegans with neuronal expression of Aβ1–42, a single day of PNR502 exposure reverses the chemotaxis deficit by 54% (P < 0.01), actually exceeding the protection from longer exposure. Moreover, continuous PNR502 treatment extends nematode lifespan 23% (P ≤ 0.001). Given that PNR502 can slow, prevent, or reverse Alzheimer-like protein aggregation in human-cell-culture and animal models, and that its principal predicted and observed binding targets are proteins previously implicated in Alzheimer’s, we propose that PNR502 has therapeutic potential to inhibit cerebral Aβ1–42 aggregation and prevent or reverse neurodegeneration.
Collapse
Affiliation(s)
- Samuel Kakraba
- BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, United States
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Akshatha Ganne
- BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, United States
| | - Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ramani Alla
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shoban Babu Bommagani
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Steven W Barger
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - W Sue T Griffin
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Robert J Shmookler Reis
- BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, United States.,Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
94
|
Pedrote MM, Motta MF, Ferretti GDS, Norberto DR, Spohr TCLS, Lima FRS, Gratton E, Silva JL, de Oliveira GAP. Oncogenic Gain of Function in Glioblastoma Is Linked to Mutant p53 Amyloid Oligomers. iScience 2020; 23:100820. [PMID: 31981923 PMCID: PMC6976948 DOI: 10.1016/j.isci.2020.100820] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/20/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated p53 mutations endow cells with malignant phenotypes, including chemoresistance. Amyloid-like oligomers of mutant p53 transform this tumor suppressor into an oncogene. However, the composition and distribution of mutant p53 oligomers are unknown and the mechanism involved in the conversion is sparse. Here, we report accumulation of a p53 mutant within amyloid-like p53 oligomers in glioblastoma-derived cells presenting a chemoresistant gain-of-function phenotype. Statistical analysis from fluorescence fluctuation spectroscopy, pressure-induced measurements, and thioflavin T kinetics demonstrates the distribution of oligomers larger than the active tetrameric form of p53 in the nuclei of living cells and the destabilization of native-drifted p53 species that become amyloid. Collectively, these results provide insights into the role of amyloid-like mutant p53 oligomers in the chemoresistance phenotype of malignant and invasive brain tumors and shed light on therapeutic options to avert cancer. Amyloid oligomers transform p53 tumor suppressor into an oncogene Amyloid-like mutant p53 oligomers occur in chemoresistant glioblastoma cells p53 oligomer larger than tetramers is detected in the nuclei of living cells Gain-of-function p53 phenotypes is attributed to p53 amyloid oligomers
Collapse
Affiliation(s)
- Murilo M Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Michelle F Motta
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Douglas R Norberto
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas. Av. dos Estados, 5001 Sta. Terezinha, Santo André, São Paulo 21941-590, Brazil
| | - Tania C L S Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Flavia R S Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, CA 92697-2717, USA
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA.
| |
Collapse
|
95
|
Salomon MS, Malapati SH, O' Dwyer J, Silva CL, Williams CC, Barbeau MC, Yip D, Punzalan P, Nagle VL, Hinton SD, Roggero VR, Allison LA. Mislocalization of Cancer-associated Thyroid Hormone Receptor Mutants. NUCLEAR RECEPTOR RESEARCH 2020; 2020:https://web.archive.org/web/20210227193123/https://www.kenzpub.com/journals/nurr/inpress/2020/101453/. [PMID: 35280700 PMCID: PMC8909557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
The thyroid hormone receptor (TR) is essential for the proper regulation of metabolism and development, as it regulates gene expression in response to thyroid hormone. Nuclear localization signals (NLSs) and nuclear export signals (NESs) allow for TR transport into and out of the nucleus, respectively. Previous research suggests that nuclear import, nuclear retention, and nuclear export of TR are associated with modulation of gene expression, the alteration of which can contribute to various diseases. Here, we examined the impact of cancer-associated mutations on TR localization patterns as a way of analyzing key structural components of TR and to further explore the correlation between TR trafficking, misfolding, and disease. Through mammalian cell transfection of expression plasmids for green fluorescent protein (GFP) and mCherry-tagged TRα1 and quantitative fluorescence microscopy, we examined particular groups of TRα1 mutations that were observed in patients with hepatocellular carcinoma, renal cell carcinoma, and thyroid cancer, and are associated with NLSs and NESs of TRα1. We also investigated structural alterations of the mutants by in silico modeling. Our results show striking shifts towards a more cytoplasmic localization for many of the mutants and an increased tendency to form cytosolic and nuclear aggregates.
Collapse
Affiliation(s)
- Michael S Salomon
- Department of Biology, William & Mary, 540 Landrum Drive, ISC 3035, Williamsburg, VA, 23185, USA
| | - S Harshini Malapati
- Department of Biology, William & Mary, 540 Landrum Drive, ISC 3035, Williamsburg, VA, 23185, USA
| | - Jerry O' Dwyer
- Department of Biology, William & Mary, 540 Landrum Drive, ISC 3035, Williamsburg, VA, 23185, USA
| | - Carolina Lopez Silva
- Department of Biology, William & Mary, 540 Landrum Drive, ISC 3035, Williamsburg, VA, 23185, USA
| | - Cheyenne C Williams
- Department of Biology, William & Mary, 540 Landrum Drive, ISC 3035, Williamsburg, VA, 23185, USA
| | - Michelle C Barbeau
- Department of Biology, William & Mary, 540 Landrum Drive, ISC 3035, Williamsburg, VA, 23185, USA
| | - Delbert Yip
- Department of Biology, William & Mary, 540 Landrum Drive, ISC 3035, Williamsburg, VA, 23185, USA
| | - Paige Punzalan
- Department of Biology, William & Mary, 540 Landrum Drive, ISC 3035, Williamsburg, VA, 23185, USA
| | - Veronica L Nagle
- Department of Biology, William & Mary, 540 Landrum Drive, ISC 3035, Williamsburg, VA, 23185, USA
| | - Shantá D Hinton
- Department of Biology, William & Mary, 540 Landrum Drive, ISC 3035, Williamsburg, VA, 23185, USA
| | - Vincent R Roggero
- Department of Biology, William & Mary, 540 Landrum Drive, ISC 3035, Williamsburg, VA, 23185, USA
| | - Lizabeth A Allison
- Department of Biology, William & Mary, 540 Landrum Drive, ISC 3035, Williamsburg, VA, 23185, USA
| |
Collapse
|
96
|
Miller JJ, Gaiddon C, Storr T. A balancing act: using small molecules for therapeutic intervention of the p53 pathway in cancer. Chem Soc Rev 2020; 49:6995-7014. [DOI: 10.1039/d0cs00163e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small molecules targeting various aspects of the p53 protein pathway have shown significant promise in the treatment of a number of cancer types.
Collapse
Affiliation(s)
| | - Christian Gaiddon
- Inserm UMR_S 1113
- Université de Strasbourg
- Molecular Mechanisms of Stress Response and Pathologies
- ITI InnoVec
- Strasbourg
| | - Tim Storr
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| |
Collapse
|
97
|
Garg A, Hazra JP, Sannigrahi MK, Rakshit S, Sinha S. Variable Mutations at the p53-R273 Oncogenic Hotspot Position Leads to Altered Properties. Biophys J 2019; 118:720-728. [PMID: 31952808 DOI: 10.1016/j.bpj.2019.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Mutations in p53 protein, especially in the DNA-binding domain, is one of the major hallmarks of cancer. The R273 position is a DNA-contact position and has several oncogenic variants. Surprisingly, cancer patients carrying different mutant variants of R273 in p53 have different survival rates, indicating that the DNA-contact inhibition may not be the sole reason for reduced survival with R273 variants. Here, we probed the properties of three major oncogenic variants of the wild-type (WT) p53: [R273H]p53, [R273C]p53, and [R273L]p53. Using a series of biophysical, biochemical, and theoretical simulation studies, we observe that these oncogenic variants of the p53 not only suffer a loss in DNA binding, but they also show distinct structural stability, aggregation, and toxicity profiles. The WTp53 and the [R273H]p53 show the least destabilization and aggregation propensity. [R273C]p53 aggregation is disulfide mediated, leading to cross-β, thioflavin-T-positive aggregates, whereas hydrophobic interactions dominate self-assembly in [R273L]p53, leading to a mixture of amyloid and amorphous aggregates. Molecular dynamics simulations indicate different contact maps and secondary structures for the different variants along the course of the simulations. Our study indicates that each of the R273 variants has its own distinct property of stability and self-assembly, the molecular basis of which may lead to different types of cancer pathogenesis in vivo. These studies will aid the design of therapeutic strategies for cancer using residue-specific or process-specific protein aggregation as a target.
Collapse
Affiliation(s)
- Ankush Garg
- Institute of Nano Science and Technology, Habitat Centre, Punjab, India
| | - Jagadish Prasad Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Malay Kumar Sannigrahi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India.
| | - Sharmistha Sinha
- Institute of Nano Science and Technology, Habitat Centre, Punjab, India.
| |
Collapse
|
98
|
Miller JJ, Blanchet A, Orvain C, Nouchikian L, Reviriot Y, Clarke RM, Martelino D, Wilson D, Gaiddon C, Storr T. Bifunctional ligand design for modulating mutant p53 aggregation in cancer. Chem Sci 2019; 10:10802-10814. [PMID: 32055386 PMCID: PMC7006507 DOI: 10.1039/c9sc04151f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/06/2019] [Indexed: 12/19/2022] Open
Abstract
Protein misfolding and aggregation contributes to the development of a wide range of diseases. In cancer, over 50% of diagnoses are attributed to p53 malfunction due to missense mutations, many of which result in protein misfolding and accelerated aggregation. p53 mutations also frequently result in alteration or loss of zinc at the DNA-binding site, which increases aggregation via nucleation with zinc-bound p53. Herein, we designed two novel bifunctional ligands, LI and LH , to modulate mutant p53 aggregation and restore zinc binding using a metallochaperone approach. Interestingly, only the incorporation of iodine function in LI resulted in modulation of mutant p53 aggregation, both in recombinant and cellular environments. Native mass spectrometry shows a protein-ligand interaction for LI , as opposed to LH , which is hypothesized to lead to the distinct difference in the p53 aggregation profile for the two ligands. Incorporation of a di-2-picolylamine binding unit into the ligand design provided efficient intracellular zinc uptake, resulting in metallochaperone capability for both LI and LH . The ability of LI to reduce mutant p53 aggregation results in increased restoration of p53 transcriptional function and mediates both caspase-dependent and -independent cell death pathways. We further demonstrate that LI exhibits minimal toxicity in non-cancerous organoids, and that it is well tolerated in mice. These results demonstrate that iodination of our ligand framework restores p53 function by interacting with and inhibiting mutant p53 aggregation and highlights LI as a suitable candidate for comprehensive in vivo anticancer preclinical evaluations.
Collapse
Affiliation(s)
- Jessica J Miller
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Anaïs Blanchet
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Christophe Orvain
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Lucienne Nouchikian
- Chemistry Department , York University , 6 Thompson Road , Toronto , Ontario M3J 1L3 , Canada
| | - Yasmin Reviriot
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Ryan M Clarke
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Diego Martelino
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Derek Wilson
- Chemistry Department , York University , 6 Thompson Road , Toronto , Ontario M3J 1L3 , Canada
| | - Christian Gaiddon
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| |
Collapse
|
99
|
Krüger A, Stier A, Fischbach A, Bürkle A, Hauser K, Mangerich A. Interactions of p53 with poly(ADP-ribose) and DNA induce distinct changes in protein structure as revealed by ATR-FTIR spectroscopy. Nucleic Acids Res 2019; 47:4843-4858. [PMID: 30892621 PMCID: PMC6511852 DOI: 10.1093/nar/gkz175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Due to multiple domains and in part intrinsically disordered regions, structural analyses of p53 remain a challenging task, particularly in complex with DNA and other macromolecules. Here, we applied a novel attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic approach to investigate changes in secondary structure of full-length p53 induced by non-covalent interactions with DNA and poly(ADP-ribose) (PAR). To validate our approach, we confirmed a positive regulatory function of p53’s C-terminal domain (CTD) with regard to sequence-specific DNA binding and verified that the CTD mediates p53–PAR interaction. Further, we demonstrate that DNA and PAR interactions result in distinct structural changes of p53, indicating specific binding mechanisms via different domains. A time-dependent analysis of the interplay of DNA and PAR binding to p53 revealed that PAR represents p53’s preferred binding partner, which efficiently controls p53–DNA interaction. Moreover, we provide infrared spectroscopic data on PAR pointing to the absence of regular secondary structural elements. Finally, temperature-induced melting experiments via CD spectroscopy show that DNA binding stabilizes the structure of p53, while PAR binding can shift the irreversible formation of insoluble p53 aggregates to higher temperatures. In conclusion, this study provides detailed insights into the dynamic interplay of p53 binding to DNA and PAR at a formerly inaccessible molecular level.
Collapse
Affiliation(s)
- Annika Krüger
- Department of Biology, University of Konstanz, Konstanz 78464, Germany.,Department of Chemistry, University of Konstanz, Konstanz 78464, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78464, Germany.,Zukunftskolleg, University of Konstanz, Konstanz 78464, Germany
| | - Anna Stier
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Arthur Fischbach
- Department of Biology, University of Konstanz, Konstanz 78464, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78464, Germany.,Zukunftskolleg, University of Konstanz, Konstanz 78464, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Konstanz 78464, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| |
Collapse
|
100
|
Navalkar A, Ghosh S, Pandey S, Paul A, Datta D, Maji SK. Prion-like p53 Amyloids in Cancer. Biochemistry 2019; 59:146-155. [DOI: 10.1021/acs.biochem.9b00796] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Saikat Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Debalina Datta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| |
Collapse
|