51
|
CaMKK2 Suppresses Muscle Regeneration through the Inhibition of Myoblast Proliferation and Differentiation. Int J Mol Sci 2016; 17:ijms17101695. [PMID: 27783047 PMCID: PMC5085727 DOI: 10.3390/ijms17101695] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle has a major role in locomotion and muscle disorders are associated with poor regenerative efficiency. Therefore, a deeper understanding of muscle regeneration is needed to provide a new insight for new therapies. CaMKK2 plays a role in the calcium/calmodulin-dependent kinase cascade; however, its role in skeletal muscle remains unknown. Here, we found that CaMKK2 expression levels were altered under physiological and pathological conditions including postnatal myogensis, freeze or cardiotoxin-induced muscle regeneration, and Duchenne muscular dystrophy. Overexpression of CaMKK2 suppressed C2C12 myoblast proliferation and differentiation, while inhibition of CaMKK2 had opposite effect. We also found that CaMKK2 is able to activate AMPK in C2C12 myocytes. Inhibition of AMPK could attenuate the effect of CaMKK2 overexpression, while AMPK agonist could abrogate the effect of CaMKK2 knockdown on C2C12 cell differentiation and proliferation. These results suggest that CaMKK2 functions as an AMPK kinase in muscle cells and AMPK mediates the effect of CaMKK2 on myoblast proliferation and differentiation. Our data also indicate that CaMKK2 might inhibit myoblast proliferation through AMPK-mediated cell cycle arrest by inducing cdc2-Tyr15 phosphorylation and repress differentiation through affecting PGC1α transcription. Lastly, we show that overexpressing CaMKK2 in the muscle of mice via electroporation impaired the muscle regeneration during freeze-induced injury, indicating that CaMKK2 could serve as a potential target to treat patients with muscle injury or myopathies. Together, our study reveals a new role for CaMKK2 as a negative regulator of myoblast differentiation and proliferation and sheds new light on the molecular regulation of muscle regeneration.
Collapse
|
52
|
Sundararaman A, Amirtham U, Rangarajan A. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation. J Biol Chem 2016; 291:14410-29. [PMID: 27226623 PMCID: PMC4938166 DOI: 10.1074/jbc.m116.731257] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 01/08/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells.
Collapse
Affiliation(s)
- Ananthalakshmy Sundararaman
- From the Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore-560012 and
| | - Usha Amirtham
- the Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore-560030, India
| | - Annapoorni Rangarajan
- From the Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore-560012 and
| |
Collapse
|
53
|
Karacosta LG, Kuroski LA, Hofmann WA, Azabdaftari G, Mastri M, Gocher AM, Dai S, Hoste AJ, Edelman AM. Nucleoporin 62 and Ca(2+)/calmodulin dependent kinase kinase 2 regulate androgen receptor activity in castrate resistant prostate cancer cells. Prostate 2016; 76:294-306. [PMID: 26552607 DOI: 10.1002/pros.23121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Re-activation of the transcriptional activity of the androgen receptor (AR) is an important factor mediating progression from androgen-responsive to castrate-resistant prostate cancer (CRPC). However, the mechanisms regulating AR activity in CRPC remain incompletely understood. Ca(2+) /calmodulin-dependent kinase kinase (CaMKK) 2 was previously shown to regulate AR activity in androgen-responsive prostate cancer cells. Our objective was to further explore the basis of this regulation in CRPC cells. METHODS The abundance of CaMKK2 in nuclear fractions of androgen-responsive prostate cancer and CRPC, cells were determined by subcellular fractionation and Western blotting. CaMKK2 association with nuclear pore complexes (NPCs) and nucleoporins (Nups) including Nup62, were imaged by structured illumination and super-resolution fluorescence microscopy and co-immunoprecipitation, respectively. The abundance and subcellular localization of CaMKK2 and Nup62 in human clinical specimens of prostate cancer was visualized by immunohistochemistry. The role of Nups in the growth and viability of CRPC cells was assessed by RNA interference and cell counting. The involvement of CaMKK2 and Nup62 in regulating AR transcriptional activity was addressed by RNA interference, chromatin immunoprecipitation, androgen response element reporter assay, and Western blotting. RESULTS CaMKK2 was expressed at higher levels in the nuclear fraction of CPRC C4-2 cells, than in that of androgen-responsive LNCaP cells. In C4-2 cells, CaMKK2 associated with NPCs of the nuclear envelope and physically interacted with Nup62. CaMKK2 and Nup62 demonstrated pronounced, and similar increases in both expression and perinuclear/nuclear localization in human clinical specimens of advanced prostate cancer relative to normal prostate. Knockdown of Nup62, but not of Nups, 98 or 88, reduced growth and viability of C4-2 cells. Knockdown of Nup62 produced a greater reduction of the growth and viability of C4-2 cells than of non-neoplastic RWPE-1 prostatic cells. Nup62, CaMKK2, and the AR were recruited to androgen response elements of the AR target genes, prostate specific antigen, and transmembrane protease, serine 2. Knockdown of CaMKK2 and Nup62 reduced prostate specific antigen expression and AR transcriptional activity driven by androgen response elements from the prostate-specific probasin gene promoter. CONCLUSION Nup62 and CaMKK2 are required for optimal AR transcriptional activity and a potential mechanism for AR re-activation in CRPC.
Collapse
Affiliation(s)
- Loukia G Karacosta
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York
| | - Laura A Kuroski
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York
| | - Wilma A Hofmann
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York
| | - Gissou Azabdaftari
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Michalis Mastri
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York
| | - Angela M Gocher
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York
| | - Shuhang Dai
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York
| | - Allen J Hoste
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York
| | - Arthur M Edelman
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
54
|
Subbannayya Y, Syed N, Barbhuiya MA, Raja R, Marimuthu A, Sahasrabuddhe N, Pinto SM, Manda SS, Renuse S, Manju HC, Zameer MAL, Sharma J, Brait M, Srikumar K, Roa JC, Vijaya Kumar M, Kumar KVV, Prasad TSK, Ramaswamy G, Kumar RV, Pandey A, Gowda H, Chatterjee A. Calcium calmodulin dependent kinase kinase 2 - a novel therapeutic target for gastric adenocarcinoma. Cancer Biol Ther 2015; 16:336-45. [PMID: 25756516 DOI: 10.4161/15384047.2014.972264] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is one of the most common gastrointestinal malignancies and is associated with poor prognosis. Exploring alterations in the proteomic landscape of gastric cancer is likely to provide potential biomarkers for early detection and molecules for targeted therapeutic intervention. Using iTRAQ-based quantitative proteomic analysis, we identified 22 proteins that were overexpressed and 17 proteins that were downregulated in gastric tumor tissues as compared to the adjacent normal tissue. Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) was found to be 7-fold overexpressed in gastric tumor tissues. Immunohistochemical labeling of tumor tissue microarrays for validation of CAMKK2 overexpression revealed that it was indeed overexpressed in 94% (92 of 98) of gastric cancer cases. Silencing of CAMKK2 using siRNA significantly reduced cell proliferation, colony formation and invasion of gastric cancer cells. Our results demonstrate that CAMKK2 signals in gastric cancer through AMPK activation and suggest that CAMKK2 could be a novel therapeutic target in gastric cancer.
Collapse
|
55
|
Xie Y, Nakanishi T, Natarajan K, Safren L, Hamburger AW, Hussain A, Ross DD. Functional cyclic AMP response element in the breast cancer resistance protein (BCRP/ABCG2) promoter modulates epidermal growth factor receptor pathway- or androgen withdrawal-mediated BCRP/ABCG2 transcription in human cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:317-27. [PMID: 25615818 DOI: 10.1016/j.bbagrm.2015.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/19/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Phosphorylated cyclic-AMP (cAMP) response element binding protein (p-CREB) is a downstream effector of a variety of important signaling pathways. We investigated whether the human BCRP promoter contains a functional cAMP response element (CRE). 8Br-cAMP, a cAMP analogue, increased the activity of a BCRP promoter reporter construct and BCRP mRNA in human carcinoma cells. Epidermal growth factor receptor (EGFR) pathway activation also led to an increase in p-CREB and in BCRP promoter reporter activity via two major downstream EGFR signaling pathways: the phosphotidylinositol-3-kinase (PI3K)/AKT pathway and the mitogen-activated protein kinase (MAPK) pathway. EGF treatment increased the phosphorylation of EGFR, AKT, ERK and CREB, while simultaneously enhancing BCRP mRNA and functional protein expression. EGF-stimulated CREB phosphorylation and BCRP induction were diminished by inhibition of EGFR, PI3K/AKT or RAS/MAPK signaling. CREB silencing using RNA interference reduced basal levels of BCRP mRNA and diminished the induction of BCRP by EGF. Chromatin immunoprecipitation assays confirmed that a putative CRE site on the BCRP promoter bound p-CREB by a point mutation of the CRE site abolished EGF-induced stimulation of BCRP promoter reporter activity. Furthermore, the CREB co-activator, cAMP-regulated transcriptional co-activator (CRTC2), is involved in CREB-mediated BCRP transcription: androgen depletion of LNCaP human prostate cancer cells increased both CREB phosphorylation and CRTC2 nuclear translocation, and enhanced BCRP expression. Silencing CREB or CRTC2 reduced basal BCRP expression and BCRP induction under androgen-depletion conditions. This novel CRE site plays a central role in mediating BCRP gene expression in several human cancer cell lines following activation of multiple cancer-relevant signaling pathways.
Collapse
Affiliation(s)
- Yi Xie
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, School of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Karthika Natarajan
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lowell Safren
- Schnaper Summer Internship Program, University of Maryland Greenebaum Cancer Center, USA
| | - Anne W Hamburger
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Arif Hussain
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Douglas D Ross
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Baltimore VA Medical Center, Baltimore, MD 21201, USA; Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
56
|
Popovics P, Frigo DE, Schally AV, Rick FG. Targeting the 5'-AMP-activated protein kinase and related metabolic pathways for the treatment of prostate cancer. Expert Opin Ther Targets 2015; 19:617-32. [PMID: 25600663 DOI: 10.1517/14728222.2015.1005603] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Increasing evidence suggests that prostate cancer cells undergo unique metabolic reprogramming during transformation. A master regulator of cellular homeostasis, 5'-AMP-activated protein kinase (AMPK), directs metabolic adaptation that supports the growth demands of rapidly dividing cancer cells. The utilization of AMPK as a therapeutic target may therefore provide an effective strategy in the treatment of prostate cancer. AREAS COVERED Our review describes the regulation of AMPK by androgens and upstream kinases including the calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in prostate cancer. Oncogenic, AMPK-regulated pathways that direct various metabolic processes are also addressed. Furthermore, we discuss the role of AMPK in growth arrest and autophagy as a potential survival pathway for cancer cells. In addition, by regulating non-metabolic pathways, AMPK may stimulate migration and mitosis. Finally, this review summarizes efforts to treat prostate cancer with pharmacological agents capable of modulating AMPK signaling. EXPERT OPINION Current research is primarily focused on developing drugs that activate AMPK as a treatment for prostate cancer. However, oncogenic aspects of AMPK signaling calls for caution about employing such therapies. We think that inhibitors of CaMKK2 or AMPK, or perhaps the modulation of downstream targets of AMPK, will gain importance in the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Petra Popovics
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education , Research (151) 2A127, 1201 NW 16th St, Miami, FL 33125 , USA +1 305 5753477 ; +1 305 5753126 ;
| | | | | | | |
Collapse
|
57
|
MicroRNA-224 and its target CAMKK2 synergistically influence tumor progression and patient prognosis in prostate cancer. Tumour Biol 2014; 36:1983-91. [PMID: 25394900 DOI: 10.1007/s13277-014-2805-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022] Open
Abstract
We previously demonstrated that microRNA (miR)-224 expression was significantly reduced in human prostate cancer (PCa) tissues and predicted unfavorable prognosis in patients. However, the underlying mechanisms of miR-224 have not been fully elucidated. In this study, calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) was identified as a target gene of miR-224. Then, we found that enforced expression of miR-224 could suppress PCa cell proliferation and cell cycle by regulating the expression of CAMKK2 in vitro. In addition, the expression levels of miR-224 in PCa tissues were negatively correlated with those of CAMKK2 mRNA significantly (Spearman's correlation: r = -0.66, P = 0.004). Moreover, combined low miR-224 expression and high CAMKK2 expression (miR-224-low/CAMKK2-high) was closely correlated with advanced clinical stage (P = 0.028). Furthermore, PCa patients with miR-224-low/CAMKK2-high expression more frequently had shorter overall survival than those in groups with other expression patterns of two molecules. In conclusion, our data offer the convincing evidence that miR-224 and its target gene CAMKK2 may synergistically contribute to the malignant progression of PCa. Combined detection of miR-224 and CAMKK2 expressions represents an efficient predictor of patient prognosis and may be a novel marker which can provide additional prognostic information in PCa.
Collapse
|
58
|
Tennakoon JB, Shi Y, Han JJ, Tsouko E, White MA, Burns AR, Zhang A, Xia X, Ilkayeva OR, Xin L, Ittmann MM, Rick FG, Schally AV, Frigo DE. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch. Oncogene 2013; 33:5251-61. [PMID: 24186207 PMCID: PMC4009392 DOI: 10.1038/onc.2013.463] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/28/2013] [Accepted: 09/30/2013] [Indexed: 12/25/2022]
Abstract
Prostate cancer is the most commonly diagnosed malignancy among men in industrialized countries, accounting for the second leading cause of cancer-related deaths. Although we now know that the androgen receptor (AR) is important for progression to the deadly advanced stages of the disease, it is poorly understood what AR-regulated processes drive this pathology. Here we demonstrate that AR regulates prostate cancer cell growth via the metabolic sensor 5'-AMP-activated protein kinase (AMPK), a kinase that classically regulates cellular energy homeostasis. In patients, activation of AMPK correlated with prostate cancer progression. Using a combination of radiolabeled assays and emerging metabolomic approaches, we also show that prostate cancer cells respond to androgen treatment by increasing not only rates of glycolysis, as is commonly seen in many cancers, but also glucose and fatty acid oxidation. Importantly, this effect was dependent on androgen-mediated AMPK activity. Our results further indicate that the AMPK-mediated metabolic changes increased intracellular ATP levels and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)-mediated mitochondrial biogenesis, affording distinct growth advantages to the prostate cancer cells. Correspondingly, we used outlier analysis to determine that PGC-1α is overexpressed in a subpopulation of clinical cancer samples. This was in contrast to what was observed in immortalized benign human prostate cells and a testosterone-induced rat model of benign prostatic hyperplasia. Taken together, our findings converge to demonstrate that androgens can co-opt the AMPK-PGC-1α signaling cascade, a known homeostatic mechanism, to increase prostate cancer cell growth. The current study points to the potential utility of developing metabolic-targeted therapies directed toward the AMPK-PGC-1α signaling axis for the treatment of prostate cancer.
Collapse
Affiliation(s)
- J B Tennakoon
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Y Shi
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - J J Han
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - E Tsouko
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - M A White
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - A R Burns
- College of Optometry, University of Houston, Houston, TX, USA
| | - A Zhang
- Center for Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - X Xia
- Center for Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - O R Ilkayeva
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - L Xin
- 1] Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA [2] Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA [3] Dan L. Duncan Cancer Center, Houston, TX, USA
| | - M M Ittmann
- 1] Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA [2] Dan L. Duncan Cancer Center, Houston, TX, USA [3] Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - F G Rick
- 1] Veterans Affairs Medical Center and South Florida VA Foundation for Research and Education, Miami, FL, USA [2] Department of Urology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - A V Schally
- 1] Veterans Affairs Medical Center and South Florida VA Foundation for Research and Education, Miami, FL, USA [2] Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, USA [3] Divisions of Hematology/Oncology, University of Miami, Miller School of Medicine, Miami, FL, USA [4] Division of Endocrinology, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - D E Frigo
- 1] Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA [2] Center for Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
59
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
60
|
Rigau M, Olivan M, Garcia M, Sequeiros T, Montes M, Colás E, Llauradó M, Planas J, de Torres I, Morote J, Cooper C, Reventós J, Clark J, Doll A. The present and future of prostate cancer urine biomarkers. Int J Mol Sci 2013; 14:12620-49. [PMID: 23774836 PMCID: PMC3709804 DOI: 10.3390/ijms140612620] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/27/2013] [Accepted: 06/03/2013] [Indexed: 11/30/2022] Open
Abstract
In order to successfully cure patients with prostate cancer (PCa), it is important to detect the disease at an early stage. The existing clinical biomarkers for PCa are not ideal, since they cannot specifically differentiate between those patients who should be treated immediately and those who should avoid over-treatment. Current screening techniques lack specificity, and a decisive diagnosis of PCa is based on prostate biopsy. Although PCa screening is widely utilized nowadays, two thirds of the biopsies performed are still unnecessary. Thus the discovery of non-invasive PCa biomarkers remains urgent. In recent years, the utilization of urine has emerged as an attractive option for the non-invasive detection of PCa. Moreover, a great improvement in high-throughput “omic” techniques has presented considerable opportunities for the identification of new biomarkers. Herein, we will review the most significant urine biomarkers described in recent years, as well as some future prospects in that field.
Collapse
Affiliation(s)
- Marina Rigau
- Research Unit in Biomedicine and Translational Oncology, Vall d’Hebron Research Institute and Hospital and Autonomous University of Barcelona, 08035 Barcelona, Spain; E-Mails: (M.R.); (M.O.); (M.G.); (T.S.); (M.M.); (E.C.); (M.L.); (J.R.)
| | - Mireia Olivan
- Research Unit in Biomedicine and Translational Oncology, Vall d’Hebron Research Institute and Hospital and Autonomous University of Barcelona, 08035 Barcelona, Spain; E-Mails: (M.R.); (M.O.); (M.G.); (T.S.); (M.M.); (E.C.); (M.L.); (J.R.)
| | - Marta Garcia
- Research Unit in Biomedicine and Translational Oncology, Vall d’Hebron Research Institute and Hospital and Autonomous University of Barcelona, 08035 Barcelona, Spain; E-Mails: (M.R.); (M.O.); (M.G.); (T.S.); (M.M.); (E.C.); (M.L.); (J.R.)
| | - Tamara Sequeiros
- Research Unit in Biomedicine and Translational Oncology, Vall d’Hebron Research Institute and Hospital and Autonomous University of Barcelona, 08035 Barcelona, Spain; E-Mails: (M.R.); (M.O.); (M.G.); (T.S.); (M.M.); (E.C.); (M.L.); (J.R.)
| | - Melania Montes
- Research Unit in Biomedicine and Translational Oncology, Vall d’Hebron Research Institute and Hospital and Autonomous University of Barcelona, 08035 Barcelona, Spain; E-Mails: (M.R.); (M.O.); (M.G.); (T.S.); (M.M.); (E.C.); (M.L.); (J.R.)
| | - Eva Colás
- Research Unit in Biomedicine and Translational Oncology, Vall d’Hebron Research Institute and Hospital and Autonomous University of Barcelona, 08035 Barcelona, Spain; E-Mails: (M.R.); (M.O.); (M.G.); (T.S.); (M.M.); (E.C.); (M.L.); (J.R.)
| | - Marta Llauradó
- Research Unit in Biomedicine and Translational Oncology, Vall d’Hebron Research Institute and Hospital and Autonomous University of Barcelona, 08035 Barcelona, Spain; E-Mails: (M.R.); (M.O.); (M.G.); (T.S.); (M.M.); (E.C.); (M.L.); (J.R.)
| | - Jacques Planas
- Department of Urology, Vall d’Hebron University Hospital and Autonomous University of Barcelona, 08035 Barcelona, Spain; E-Mails: (J.P.); (J.M.)
| | - Inés de Torres
- Department of Pathology, Vall d’Hebron University Hospital Autonomous University of Barcelona, 08035 Barcelona, Spain; E-Mail:
| | - Juan Morote
- Department of Urology, Vall d’Hebron University Hospital and Autonomous University of Barcelona, 08035 Barcelona, Spain; E-Mails: (J.P.); (J.M.)
| | - Colin Cooper
- Cancer Genetics, University of East Anglia, Norwich Norfolk, NR4 7TJ, UK; E-Mails: (C.C.); (J.C.)
| | - Jaume Reventós
- Research Unit in Biomedicine and Translational Oncology, Vall d’Hebron Research Institute and Hospital and Autonomous University of Barcelona, 08035 Barcelona, Spain; E-Mails: (M.R.); (M.O.); (M.G.); (T.S.); (M.M.); (E.C.); (M.L.); (J.R.)
- Department of Basic Sciences, International University of Catalonia, 08017 Barcelona, Spain
| | - Jeremy Clark
- Cancer Genetics, University of East Anglia, Norwich Norfolk, NR4 7TJ, UK; E-Mails: (C.C.); (J.C.)
| | - Andreas Doll
- Research Unit in Biomedicine and Translational Oncology, Vall d’Hebron Research Institute and Hospital and Autonomous University of Barcelona, 08035 Barcelona, Spain; E-Mails: (M.R.); (M.O.); (M.G.); (T.S.); (M.M.); (E.C.); (M.L.); (J.R.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-93-489-4067; Fax: +34-93-274-6708
| |
Collapse
|
61
|
Itkonen HM, Mills IG. N-linked glycosylation supports cross-talk between receptor tyrosine kinases and androgen receptor. PLoS One 2013; 8:e65016. [PMID: 23724116 PMCID: PMC3665679 DOI: 10.1371/journal.pone.0065016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 04/21/2013] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is the second most common cause of cancer-associated deaths in men and signalling via a transcription factor called androgen receptor (AR) is an important driver of the disease. Androgen treatment is known to affect the expression and activity of other oncogenes including receptor tyrosine kinases (RTKs). In this study we report that AR-positive prostate cancer cell-lines express 50% higher levels of enzymes in the hexosamine biosynthesis pathway (HBP) than AR-negative prostate cell-lines. HBP produces hexosamines that are used by endoplasmic reticulum and golgi enzymes to glycosylate proteins targeted to plasma-membrane and secretion. Inhibition of O-linked glycosylation by ST045849 or N-linked glycosylation with tunicamycin decreased cell viability by 20%. In addition, tunicamycin inhibited the androgen-induced expression of AR target genes KLK3 and CaMKK2 by 50%. RTKs have been shown to enhance AR activity and we used an antibody array to identify changes in the phosphorylation status of RTKs in response to androgen stimulation. Hormone treatment increased the activity of Insulin like Growth Factor 1-Receptor (IGF-1R) ten-fold and this was associated with a concomitant increase in the N-linked glycosylation of the receptor, analyzed by lectin enrichment experiments. Glycosylation is known to be important for the processing and stability of RTKs. Inhibition of N-linked glycosylation resulted in accumulation of IGF-1R pro-receptor with altered mobility as shown by immunoprecipitation. Confocal imaging revealed that androgen induced plasma-membrane localization of IGF-1R was blocked by tunicamycin. In conclusion we have established that the glycosylation of IGF-1R is necessary for the full activation of the receptor in response to androgen treatment and that perturbing this process can break the feedback loop between AR and IGF-1R activation in prostate cells. Achieving similar results selectively in a clinical setting will be an important challenge in the future.
Collapse
Affiliation(s)
- Harri M. Itkonen
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory (EMBL) Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ian G. Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory (EMBL) Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cancer Prevention and Department of Urology, Oslo University Hospitals, Oslo, Norway
- * E-mail:
| |
Collapse
|
62
|
Takayama KI, Inoue S. Transcriptional network of androgen receptor in prostate cancer progression. Int J Urol 2013; 20:756-68. [DOI: 10.1111/iju.12146] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/21/2013] [Indexed: 02/06/2023]
|
63
|
Racioppi L. CaMKK2: a novel target for shaping the androgen-regulated tumor ecosystem. Trends Mol Med 2013; 19:83-8. [PMID: 23332598 PMCID: PMC3565098 DOI: 10.1016/j.molmed.2012.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/11/2012] [Accepted: 12/16/2012] [Indexed: 01/03/2023]
Abstract
The androgen receptor (AR) is pivotal in the biology of sex hormone-regulated malignancies, with prostate cancer (PC) the most affected tumor. AR signals control the growth, survival, and migration of cancer cells, and they regulate the activation of macrophages, a cell type pivotal to the tumor ecosystem. Intriguingly, CaMKK2 has recently been identified as both an important AR-regulated gene in the context of PC and as a critical regulator of macrophage activation. By contrast, CaMKK2 is barely detectable in normal prostate or immune cells that mediate the response against tumorigenesis. These novel findings suggest that CaMKK2 resides at a critical molecular node that shapes the cancer ecosystem, and identifies this kinase as a novel therapeutic target for sex hormone-regulated cancers.
Collapse
Affiliation(s)
- Luigi Racioppi
- Department of Medicine, Duke University, Durham, NC 27707, USA.
| |
Collapse
|