51
|
Dalamon V, Fiori MC, Figueroa VA, Oliva CA, Del Rio R, Gonzalez W, Canan J, Elgoyhen AB, Altenberg GA, Retamal MA. Gap-junctional channel and hemichannel activity of two recently identified connexin 26 mutants associated with deafness. Pflugers Arch 2016; 468:909-18. [PMID: 26769242 DOI: 10.1007/s00424-016-1788-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/08/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023]
Abstract
Gap-junction channels (GJCs) are formed by head-to-head association of two hemichannels (HCs, connexin hexamers). HCs and GJCs are permeable to ions and hydrophilic molecules of up to Mr ~1 kDa. Hearing impairment of genetic origin is common, and mutations of connexin 26 (Cx26) are its major cause. We recently identified two novel Cx26 mutations in hearing-impaired subjects, L10P and G109V. L10P forms functional GJCs with slightly altered voltage dependence and HCs with decrease ATP/cationic dye selectivity. G109V does not form functional GJCs, but forms functional HCs with enhanced extracellular Ca(2+) sensitivity and subtle alterations in voltage dependence and ATP/cationic dye selectivity. Deafness associated with G109V could result from decreased GJCs activity, whereas deafness associated to L10P may have a more complex mechanism that involves changes in HC permeability.
Collapse
Affiliation(s)
- Viviana Dalamon
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vania A Figueroa
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Avenida Las Condes, 12438, Santiago, Chile
| | - Carolina A Oliva
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Avenida Las Condes, 12438, Santiago, Chile
| | - Rodrigo Del Rio
- Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile
| | - Wendy Gonzalez
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | - Jonathan Canan
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | - Ana B Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mauricio A Retamal
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Avenida Las Condes, 12438, Santiago, Chile.
| |
Collapse
|
52
|
Connexin channels in congenital skin disorders. Semin Cell Dev Biol 2016; 50:4-12. [PMID: 26775130 DOI: 10.1016/j.semcdb.2015.11.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022]
Abstract
Gap junctions and hemichannels comprised of connexins influence epidermal proliferation and differentiation. Significant advances in our understanding of the functional role of connexins in the skin have been made by studying the diseases caused by connexin mutations. Eleven clinically defined cutaneous disorders with an overlapping spectrum of phenotypes are caused by mutations in five different connexin genes, highlighting that disease presentation must be deciphered with an understanding of how connexin functions are affected. Increasing evidence suggests that the skin diseases produced by connexin mutations result from dominant gains of function. In palmoplantar keratoderma with deafness, the connexin 26 mutations transdominantly alter the function of wild-type connexin 43 and create leaky heteromeric hemichannels. In keratitis-ichthyosis-deafness syndrome, different connexin 26 mutations can either form dominant hemichannels with altered calcium regulation or increased calcium permeability, leading to clinical subtypes of this syndrome. It is only with detailed understanding of these subtle functional differences that we can hope to create successful pathophysiology driven therapies for the connexin skin disorders.
Collapse
|
53
|
García IE, Bosen F, Mujica P, Pupo A, Flores-Muñoz C, Jara O, González C, Willecke K, Martínez AD. From Hyperactive Connexin26 Hemichannels to Impairments in Epidermal Calcium Gradient and Permeability Barrier in the Keratitis-Ichthyosis-Deafness Syndrome. J Invest Dermatol 2016; 136:574-583. [PMID: 26777423 DOI: 10.1016/j.jid.2015.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 01/19/2023]
Abstract
The keratitis-ichthyosis-deafness (KID) syndrome is characterized by corneal, skin, and hearing abnormalities. KID has been linked to heterozygous dominant missense mutations in the GJB2 and GJB6 genes, encoding connexin26 and 30, respectively. In vitro evidence indicates that KID mutations lead to hyperactive (open) hemichannels, which in some cases is accompanied by abnormal function of gap junction channels. Transgenic mouse models expressing connexin26 KID mutations reproduce human phenotypes and present impaired epidermal calcium homeostasis and abnormal lipid composition of the stratum corneum affecting the water barrier. Here we have compiled relevant data regarding the KID syndrome and propose a mechanism for the epidermal aspects of the disease.
Collapse
Affiliation(s)
- Isaac E García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Felicitas Bosen
- LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
| | - Paula Mujica
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Amaury Pupo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Oscar Jara
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Klaus Willecke
- LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany.
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
54
|
Hemichannels Are Required for Amyloid β-Peptide-Induced Degranulation and Are Activated in Brain Mast Cells of APPswe/PS1dE9 Mice. J Neurosci 2015; 35:9526-38. [PMID: 26109673 DOI: 10.1523/jneurosci.3686-14.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) store an array of proinflammatory mediators in secretory granules that are rapidly released upon activation by diverse conditions including amyloid beta (Aβ) peptides. In the present work, we found a rapid degranulation of cultured MCs through a pannexin1 hemichannel (Panx1 HC)-dependent mechanism induced by Aβ25-35 peptide. Accordingly, Aβ25-35 peptide also increased membrane current and permeability, as well as intracellular Ca(2+) signal, mainly via Panx1 HCs because all of these responses were drastically inhibited by Panx1 HC blockers and absent in the MCs of Panx1(-/-) mice. Moreover, in acute coronal brain slices of control mice, Aβ25-35 peptide promoted both connexin 43 (Cx43)- and Panx1 HC-dependent MC dye uptake and histamine release, responses that were only Cx43 HC dependent in Panx1(-/-) mice. Because MCs have been found close to amyloid plaques of patients with Alzheimer's disease (AD), their distribution in brain slices of APPswe/PS1dE9 mice, a murine model of AD, was also investigated. The number of MCs in hippocampal and cortical areas increased drastically even before amyloid plaque deposits became evident. Therefore, MCs might act as early sensors of amyloid peptide and recruit other cells to the neuroinflammatory response, thus playing a critical role in the onset and progression of AD.
Collapse
|
55
|
Retamal MA, Reyes EP, García IE, Pinto B, Martínez AD, González C. Diseases associated with leaky hemichannels. Front Cell Neurosci 2015; 9:267. [PMID: 26283912 PMCID: PMC4515567 DOI: 10.3389/fncel.2015.00267] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023] Open
Abstract
Hemichannels (HCs) and gap junction channels (GJCs) formed by protein subunits called connexins (Cxs) are major pathways for intercellular communication. While HCs connect the intracellular compartment with the extracellular milieu, GJCs allow the interchange of molecules between cytoplasm of two contacting cells. Under physiological conditions, HCs are mostly closed, but they can open under certain stimuli allowing the release of autocrine and paracrine molecules. Moreover, some pathological conditions, like ischemia or other inflammation conditions, significantly increase HCs activity. In addition, some mutations in Cx genes associated with human diseases, such as deafness or cataracts, lead to the formation of more active HCs or “leaky HCs.” In this article we will revise cellular and molecular mechanisms underlying the appearance of leaky HCs, and the consequences of their expression in different cellular systems and animal models, in seeking a common pattern or pathological mechanism of disease.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Edison P Reyes
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile ; Centro de Investigación Biomédica, Universidad Autónoma de Chile Santiago, Chile
| | - Isaac E García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Bernardo Pinto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
56
|
Hsieh YH, Zou J, Jin JS, Yang H, Chen Y, Jiang C, Yang J, Tai PC. Monitoring channel activities of proteoliposomes with SecA and Cx26 gap junction in single oocytes. Anal Biochem 2015; 480:58-66. [PMID: 25862083 DOI: 10.1016/j.ab.2015.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
Establishing recordable channels in membranes of oocytes formed by expressing exogenous complementary DNA (cDNA) or messenger RNA (mRNA) has contributed greatly to understanding the molecular mechanisms of channel functions. Here, we report the extension of this semi-physiological system for monitoring the channel activity of preassembled membrane proteins in single cell oocytes by injecting reconstituted proteoliposomes along with substrates or regulatory molecules. We build on the observation that SecA from various bacteria forms active protein-conducting channels with injection of proteoliposomes, protein precursors, and ATP-Mg(2+). Such activity was enhanced by reconstituted SecYEG-SecDF•YajC liposome complexes that could be monitored easily and efficiently, providing correlation of in vitro and intact cell functionality. In addition, inserting reconstituted gap junction Cx26 liposomes into the oocytes allowed the demonstration of intracellular/extracellular Ca(2+)-regulated hemi-channel activities. The channel activities can be detected rapidly after injection, can be monitored for various effectors, and are dependent on specific exogenous lipid compositions. This simple and effective functional system with low endogenous channel activity should have broad applications for monitoring the specific channel activities of complex interactions of purified membrane proteins with their effectors and regulatory molecules.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Juan Zou
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Jin-Shan Jin
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Hsiuchin Yang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Yanyi Chen
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Chun Jiang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny Yang
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| | - Phang C Tai
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
57
|
Abstract
Gap-junction channels (GJCs) communicate the cytoplasm of adjacent cells and are formed by head-to-head association of two hemichannels (HCs), one from each of the neighbouring cells. GJCs mediate electrical and chemical communication between cells, whereas undocked HCs participate in paracrine signalling because of their permeability to molecules such as ATP. Sustained opening of HCs under pathological conditions results in water and solute fluxes that cannot be compensated by membrane transport and therefore lead to cell damage. Mutations of Cx26 (connexin 26) are the most frequent cause of genetic deafness and it is therefore important to understand the structure–function relationship of wild-type and deafness-associated mutants. Currently available connexin HC expression systems severely limit the pace of structural studies and there is no simple high-throughput HC functional assay. The Escherichia coli-based expression system presented in the present study yields milligram amounts of purified Cx26 HCs suitable for functional and structural studies. We also show evidence of functional activity of recombinant Cx26 HCs in intact bacteria using a new growth complementation assay. The E. coli-based expression system has high potential for structural studies and high-throughput functional screening of HCs. Human connexin 26 (Cx26) hemichannels (HCs) can be expressed in bacteria in a functional form. This new expression system yields milligram amounts of purified HCs and has high potential to advance studies of connexin HCs.
Collapse
|
58
|
Mitchell TJ, Zugarramurdi C, Olivera JF, Gatto C, Artigas P. Sodium and proton effects on inward proton transport through Na/K pumps. Biophys J 2015; 106:2555-65. [PMID: 24940773 DOI: 10.1016/j.bpj.2014.04.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/12/2014] [Accepted: 04/23/2014] [Indexed: 11/29/2022] Open
Abstract
The Na/K pump hydrolyzes ATP to export three intracellular Na (Nai) as it imports two extracellular K (Ko) across animal plasma membranes. Within the protein, two ion-binding sites (sites I and II) can reciprocally bind Na or K, but a third site (site III) exclusively binds Na in a voltage-dependent fashion. In the absence of Nao and Ko, the pump passively imports protons, generating an inward current (IH). To elucidate the mechanisms of IH, we used voltage-clamp techniques to investigate the [H]o, [Na]o, and voltage dependence of IH in Na/K pumps from ventricular myocytes and in ouabain-resistant pumps expressed in Xenopus oocytes. Lowering pHo revealed that Ho both activates IH (in a voltage-dependent manner) and inhibits it (in a voltage-independent manner) by binding to different sites. Nao effects depend on pHo; at pHo where no Ho inhibition is observed, Nao inhibits IH at all concentrations, but when applied at pHo that inhibits pump-mediated current, low [Na]o activates IH and high [Na]o inhibits it. Our results demonstrate that IH is a property inherent to Na/K pumps, not linked to the oocyte expression environment, explains differences in the characteristics of IH previously reported in the literature, and supports a model in which 1), protons leak through site III; 2), binding of two Na or two protons to sites I and II inhibits proton transport; and 3), pumps with mixed Na/proton occupancy of sites I and II remain permeable to protons.
Collapse
Affiliation(s)
- Travis J Mitchell
- Department of Cell and Molecular Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas; School of Biological Sciences. Illinois State University, Normal, Illinois
| | - Camila Zugarramurdi
- Department of Cell and Molecular Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - J Fernando Olivera
- Department of Cell and Molecular Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Craig Gatto
- School of Biological Sciences. Illinois State University, Normal, Illinois
| | - Pablo Artigas
- Department of Cell and Molecular Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas.
| |
Collapse
|
59
|
Keratitis-ichthyosis-deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43. J Invest Dermatol 2015; 135:1338-1347. [PMID: 25625422 PMCID: PMC4801018 DOI: 10.1038/jid.2015.20] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/09/2022]
Abstract
Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like the Keratitis-Ichthyosis-Deafness syndrome (KID). Because in the human skin connexin 26 (Cx26) is co-expressed with other connexins, like Cx43 and Cx30, and as the KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild-type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channel (GJC) functions remain unknown. In this study, we demonstrate that syndromic mutations, at the N terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) shows exacerbated hemichannel activity but nonfunctional GJCs; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca(2+) overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin.
Collapse
|
60
|
Mandal A, Shahidullah M, Delamere NA. Calcium entry via connexin hemichannels in lens epithelium. Exp Eye Res 2015; 132:52-8. [PMID: 25597520 PMCID: PMC4352408 DOI: 10.1016/j.exer.2015.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 01/09/2023]
Abstract
Exposure to hyposmotic solution causes release of ATP from lens cells via hemichannels. Because hemichannel opening feasibly could swamp the cells with calcium, we carried out studies to measure the magnitude of the increase in cytoplasmic calcium concentration caused by hemichannel opening. In studies on porcine lens epithelial cells in primary culture, propidium iodide (PI) uptake was measured as an index of hemichannel opening. PI uptake was increased significantly in cells exposed to hyposmotic solution. The PI increase under hyposmotic conditions was suppressed by GAP 27, a connexin inhibitor peptide. In studies on cells loaded with Fura-2, continuous exposure to hyposmotic solution caused a cytoplasmic calcium concentration increase that peaked within ∼30 s then remained elevated at or below the peak response for more than 60 min. The peak calcium concentration was 186 ± 2.3 nM compared to a baseline value of 98.0 ± 1.4 nM. The calcium concentration increased a lot further in cells exposed to A23187 (2.5 μM) or the sodium-calcium exchange inhibitor SN-6 (10 μM) added after the onset of the calcium rise in hyposmotic solution. The cytoplasmic calcium increase in hyposmotic solution was abolished by GAP 27. Calcium returned to baseline in cells exposed to hyposmotic solution then treated with GAP 27 starting 2 min after the onset of the calcium rise. The calcium increase in hyposmotic solution did not occur when calcium was eliminated from the bathing medium. The responses to hyposmotic and hyperosmotic stress were different. There was no detectable increase in calcium or PI entry in cells exposed to hyperosmotic solution (500mOsm). In summary, GAP 27-sensitive accumulation of PI by cultured lens epithelium points to connexin hemichannel opening and associated calcium entry. Even though connexins form channels with a large carrying capacity, calcium entry does not increase the cytoplasmic calcium concentration beyond a tolerable physiological range.
Collapse
Affiliation(s)
- Amritlal Mandal
- Dept. of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA
| | - Mohammad Shahidullah
- Dept. of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA.
| | - Nicholas A Delamere
- Dept. of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA
| |
Collapse
|
61
|
León-Paravic CG, Figueroa VA, Guzmán DJ, Valderrama CF, Vallejos AA, Fiori MC, Altenberg GA, Reuss L, Retamal MA. Carbon monoxide (CO) is a novel inhibitor of connexin hemichannels. J Biol Chem 2014; 289:36150-7. [PMID: 25384983 PMCID: PMC4276878 DOI: 10.1074/jbc.m114.602243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/07/2014] [Indexed: 12/13/2022] Open
Abstract
Hemichannels (HCs) are hexamers of connexins that can form gap-junction channels at points of cell contacts or "free HCs" at non-contacting regions. HCs are involved in paracrine and autocrine cell signaling, and under pathological conditions may induce and/or accelerate cell death. Therefore, studies of HC regulation are of great significance. Nitric oxide affects the activity of Cx43 and Cx46 HCs, whereas carbon monoxide (CO), another gaseous transmitter, modulates the activity of several ion channels, but its effect on HCs has not been explored. We studied the effect of CO donors (CORMs) on Cx46 HCs expressed in Xenopus laevis oocytes using two-electrode voltage clamp and on Cx43 and Cx46 expressed in HeLa cells using a dye-uptake technique. CORM-2 inhibited Cx46 HC currents in a concentration-dependent manner. The C-terminal domain and intracellular Cys were not necessary for the inhibition. The effect of CORM-2 was not prevented by guanylyl-cyclase, protein kinase G, or thioredoxin inhibitors, and was not due to endocytosis of HCs. However, the effect of CORM-2 was reversed by reducing agents that act extracellularly. Additionally, CO inhibited dye uptake of HeLa cells expressing Cx43 or Cx46, and MCF-7 cells, which endogenously express Cx43 and Cx46. Because CORM-2 carbonylates Cx46 in vitro and induces conformational changes, a direct effect of that CO on Cx46 is possible. The inhibition of HCs could help to understand some of the biological actions of CO in physiological and pathological conditions.
Collapse
Affiliation(s)
- Carmen G León-Paravic
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Vania A Figueroa
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Diego J Guzmán
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Carlos F Valderrama
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Antonio A Vallejos
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Mariana C Fiori
- the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Guillermo A Altenberg
- the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Luis Reuss
- the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Mauricio A Retamal
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
62
|
Cisterna BA, Cardozo C, Sáez JC. Neuronal involvement in muscular atrophy. Front Cell Neurosci 2014; 8:405. [PMID: 25540609 PMCID: PMC4261799 DOI: 10.3389/fncel.2014.00405] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022] Open
Abstract
The innervation of skeletal myofibers exerts a crucial influence on the maintenance of muscle tone and normal operation. Consequently, denervated myofibers manifest atrophy, which is preceded by an increase in sarcolemma permeability. Recently, de novo expression of hemichannels (HCs) formed by connexins (Cxs) and other none selective channels, including P2X7 receptors (P2X7Rs), and transient receptor potential, sub-family V, member 2 (TRPV2) channels was demonstrated in denervated fast skeletal muscles. The denervation-induced atrophy was drastically reduced in denervated muscles deficient in Cxs 43 and 45. Nonetheless, the transduction mechanism by which the nerve represses the expression of the above mentioned non-selective channels remains unknown. The paracrine action of extracellular signaling molecules including ATP, neurotrophic factors (i.e., brain-derived neurotrophic factor (BDNF)), agrin/LDL receptor-related protein 4 (Lrp4)/muscle-specific receptor kinase (MuSK) and acetylcholine (Ach) are among the possible signals for repression for connexin expression. This review discusses the possible role of relevant factors in maintaining the normal functioning of fast skeletal muscles and suppression of connexin hemichannel expression.
Collapse
Affiliation(s)
- Bruno A. Cisterna
- Departamento de Fisiología, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Christopher Cardozo
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical CenterBronx, NY, USA
- Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | - Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de ChileSantiago, Chile
- Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
63
|
Meckes B, Ambrosi C, Barnard H, Arce FT, Sosinsky GE, Lal R. Atomic force microscopy shows connexin26 hemichannel clustering in purified membrane fragments. Biochemistry 2014; 53:7407-14. [PMID: 25365227 PMCID: PMC4255643 DOI: 10.1021/bi501265p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Connexin
proteins form hexameric assemblies known as hemichannels.
When docked to form gap junction (GJ) channels, hemichannels play
a critical role in cell–cell communication and cellular homeostasis,
but often are functional entities on their own in unapposed cell membranes.
Defects in the Connexin26 (Cx26) gene are the major cause of hereditary
deafness arising from dysfunctional hemichannels in the cochlea. Structural
studies of Cx26 hemichannels properly trafficked and inserted in plasma
membranes, including their clustering that forms a plaque-like feature
in whole gap junctions, are limited. We used atomic force microscopy
(AFM) to study the surface topography of Cx26 hemichannels using two
different membrane preparations. Rat Cx26 containing appended carboxy
terminal V5 and hexahistidine tags were expressed in baculovirus/Sf9
cell systems. The expressed Cx26 proteins form hemichannels in situ
in Sf9 cells that were then purified either as (1) Sf9 membrane fragments
containing Cx26 hemichannels or (2) solubilized hemichannels. The
latter were subsequently reconstituted in liposomes. AFM images of
purified membrane fragments showed clusters of protein macromolecular
structures in the membrane that at higher magnification corresponded
to Cx26 hemichannels. Hemichannels reconstituted into DOPC bilayers
displayed two populations of channel heights likely resulting from
differences in orientations of inserted hemichannels. Hemichannels
in the protein rich portions of purified membranes also showed a reduced
channel height above the bilayer compared to membranes with reconstituted
hemichannels perhaps due to reduced AFM probe access to the lipid
bilayer. These preparations of purified membranes enriched for connexin
hemichannels that have been properly trafficked and inserted in membranes
provide a platform for high-resolution AFM imaging of the structure,
interconnexon interactions, and cooperativity of properly trafficked
and inserted noncrystalline connexin hemichannels.
Collapse
Affiliation(s)
- Brian Meckes
- Department of Bioengineering, ‡National Center for Microscopy and Imaging Research, §Department of Aerospace and Mechanical Engineering, ∥Department of Neurosciences, and ⊥Materials Science Program, University of California San Diego , 9500 Gillman Drive, La Jolla, California 92093, United States
| | | | | | | | | | | |
Collapse
|
64
|
Sáez PJ, Shoji KF, Aguirre A, Sáez JC. Regulation of hemichannels and gap junction channels by cytokines in antigen-presenting cells. Mediators Inflamm 2014; 2014:742734. [PMID: 25301274 PMCID: PMC4180397 DOI: 10.1155/2014/742734] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/19/2014] [Indexed: 12/13/2022] Open
Abstract
Autocrine and paracrine signals coordinate responses of several cell types of the immune system that provide efficient protection against different challenges. Antigen-presenting cells (APCs) coordinate activation of this system via homocellular and heterocellular interactions. Cytokines constitute chemical intercellular signals among immune cells and might promote pro- or anti-inflammatory effects. During the last two decades, two membrane pathways for intercellular communication have been demonstrated in cells of the immune system. They are called hemichannels (HCs) and gap junction channels (GJCs) and provide new insights into the mechanisms of the orchestrated response of immune cells. GJCs and HCs are permeable to ions and small molecules, including signaling molecules. The direct intercellular transfer between contacting cells can be mediated by GJCs, whereas the release to or uptake from the extracellular milieu can be mediated by HCs. GJCs and HCs can be constituted by two protein families: connexins (Cxs) or pannexins (Panxs), which are present in almost all APCs, being Cx43 and Panx1 the most ubiquitous members of each protein family. In this review, we focus on the effects of different cytokines on the intercellular communication mediated by HCs and GJCs in APCs and their impact on purinergic signaling.
Collapse
Affiliation(s)
- Pablo J. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Kenji F. Shoji
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Adam Aguirre
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
- Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Pasaje Harrington 287, Playa Ancha, 2360103 Valparaíso, Chile
| |
Collapse
|
65
|
Figueroa VA, Retamal MA, Cea LA, Salas JD, Vargas AA, Verdugo CA, Jara O, Martínez AD, Sáez JC. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca(2+) signaling in HeLa cells. Front Cell Neurosci 2014; 8:265. [PMID: 25237294 PMCID: PMC4154469 DOI: 10.3389/fncel.2014.00265] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/18/2014] [Indexed: 01/15/2023] Open
Abstract
Gap junction channels (GJCs) and hemichannels (HCs) are composed of protein subunits termed connexins (Cxs) and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive non-syndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the adenosine triphosphate release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects.
Collapse
Affiliation(s)
- Vania A Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Luis A Cea
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - José D Salas
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Aníbal A Vargas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Christian A Verdugo
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Oscar Jara
- Instituto Milenio, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Agustín D Martínez
- Instituto Milenio, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Instituto Milenio, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
66
|
R75Q de novo dominant mutation of GJB2 in a Chinese family with hearing loss and palmoplantar keratoderma. Int J Pediatr Otorhinolaryngol 2014; 78:1461-6. [PMID: 24975403 DOI: 10.1016/j.ijporl.2014.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/01/2014] [Accepted: 06/05/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Mutations in the GJB2 gene encoding connexin 26 (Cx26) are major causes of hereditary deafness. This study aimed to characterize the mutation profiles of the GJB2 gene in a Chinese family with sensorineural hearing loss. METHODS A Chinese family that included three individuals with sensorineural hearing loss and palmoplantar keratoderma underwent complete physical examinations, audiological examinations including pure tone audiometry and auditory brainstem response, skin pathological examination, and temporal CT scans. The entire coding region of GJB2, GJB3, GJB6, and the coding exons (exon7+8 and 19) of SLC26A4, mitochondrial 12SrRNA, and tRNA Ser (UCN) were sequenced. Structural analysis was performed to detect the effects of mutation on the tertiary structure of Cx26. RESULTS A dominant GJB2 mutation, c.224G>A (p.Arg75Gln, p.R75Q), was detected in the family. No other mutation was identified in GJB2, GJB3, GJB6, or the coding exons (exon7+8 and 19) of SLC26A4, mitochondrial 12SrRNA, and tRNA Ser (UCN). Structural analysis revealed that the p.R75Q mutation likely affects the structural stability and permeation properties of the Cx26 gap junction channel. CONCLUSION Our findings provide further evidence of a correlation between the p.R75Q mutation in Cx26 and a syndromic hearing impairment with palmoplantar keratoderma.
Collapse
|
67
|
Schalper KA, Carvajal-Hausdorf D, Oyarzo MP. Possible role of hemichannels in cancer. Front Physiol 2014; 5:237. [PMID: 25018732 PMCID: PMC4073485 DOI: 10.3389/fphys.2014.00237] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022] Open
Abstract
In humans, connexins (Cxs) and pannexins (Panxs) are the building blocks of hemichannels. These proteins are frequently altered in neoplastic cells and have traditionally been considered as tumor suppressors. Alteration of Cxs and Panxs in cancer cells can be due to genetic, epigenetic and post-transcriptional/post-translational events. Activated hemichannels mediate the diffusional membrane transport of ions and small signaling molecules. In the last decade hemichannels have been shown to participate in diverse cell processes including the modulation of cell proliferation and survival. However, their possible role in tumor growth and expansion remains largely unexplored. Herein, we hypothesize about the possible role of hemichannels in carcinogenesis and tumor progression. To support this theory, we summarize the evidence regarding the involvement of hemichannels in cell proliferation and migration, as well as their possible role in the anti-tumor immune responses. In addition, we discuss the evidence linking hemichannels with cancer in diverse models and comment on the current technical limitations for their study.
Collapse
Affiliation(s)
- Kurt A Schalper
- Servicio Anatomía Patológica, Clínica Alemana de Santiago, Facultad de Medicina Clinica Alemana Universidad del Desarrollo Santiago, Chile ; Department of Pathology, Yale School of Medicine New Haven, CT, USA
| | | | - Mauricio P Oyarzo
- Servicio Anatomía Patológica, Clínica Alemana de Santiago, Facultad de Medicina Clinica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
68
|
Reyes EP, Cerpa V, Corvalán L, Retamal MA. Cxs and Panx- hemichannels in peripheral and central chemosensing in mammals. Front Cell Neurosci 2014; 8:123. [PMID: 24847209 PMCID: PMC4023181 DOI: 10.3389/fncel.2014.00123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/18/2014] [Indexed: 01/08/2023] Open
Abstract
Connexins (Cxs) and Pannexins (Panx) form hemichannels at the plasma membrane of animals. Despite their low open probability under physiological conditions, these hemichannels release signaling molecules (i.e., ATP, Glutamate, PGE2) to the extracellular space, thus subserving several important physiological processes. Oxygen and CO2 sensing are fundamental to the normal functioning of vertebrate organisms. Fluctuations in blood PO2, PCO2 and pH are sensed at the carotid bifurcations of adult mammals by glomus cells of the carotid bodies. Likewise, changes in pH and/or PCO2 of cerebrospinal fluid are sensed by central chemoreceptors, a group of specialized neurones distributed in the ventrolateral medulla (VLM), raphe nuclei, and some other brainstem areas. After many years of research, the molecular mechanisms involved in chemosensing process are not completely understood. This manuscript will review data regarding relationships between chemosensitive cells and the expression of channels formed by Cxs and Panx, with special emphasis on hemichannels.
Collapse
Affiliation(s)
- Edison Pablo Reyes
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile ; Dirección de Investigación, Universidad Autónoma de Chile Santiago, Chile
| | - Verónica Cerpa
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Liliana Corvalán
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Mauricio Antonio Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
69
|
Sáez JC, Leybaert L. Hunting for connexin hemichannels. FEBS Lett 2014; 588:1205-11. [PMID: 24631534 DOI: 10.1016/j.febslet.2014.03.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/01/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Connexin hemichannels (connexons) are building blocks of gap junctions but also function as free unapposed channels, which has become an active field of research. Defining functions of hemichannels and their involvement in any biological event requires ruling out possible participation of other channels that share biophysical and regulatory properties, for example pannexins, CALHM1 and P2X receptors. The lack of specific inhibitors for these channels has become an obstacle in elucidating the role of connexin hemichannels. Several experimental approaches are now available to identify hemichannels at the cell surface and to characterize their electrophysiological, permeability and regulatory properties. The use of connexin knockout/knockdown, and the development of peptides that target intracellular connexin domains and specific antibodies directed to extracellular domains have helped to dissect the role of hemichannels in endogenously expressing systems. Moreover, studies of connexin mutants in exogenous expression systems have provided convincing evidence on hemichannels in the pathogenesis of several human genetic diseases. We here present a brief overview of connexin hemichannels as functional channels and itemize a list of aspects to consider when concluding on their involvement.
Collapse
Affiliation(s)
- Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago and Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 (Block B - Rm 031), 9000 Ghent, Belgium.
| |
Collapse
|
70
|
Fiori MC, Reuss L, Cuello LG, Altenberg GA. Functional analysis and regulation of purified connexin hemichannels. Front Physiol 2014; 5:71. [PMID: 24611052 PMCID: PMC3933781 DOI: 10.3389/fphys.2014.00071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/06/2014] [Indexed: 01/08/2023] Open
Abstract
Gap-junction channels (GJCs) are aqueous channels that communicate adjacent cells. They are formed by head-to-head association of two hemichannels (HCs), one from each of the adjacent cells. Functional HCs are connexin hexamers composed of one or more connexin isoforms. Deafness is the most frequent sensineural disorder, and mutations of Cx26 are the most common cause of genetic deafness. Cx43 is the most ubiquitous connexin, expressed in many organs, tissues, and cell types, including heart, brain, and kidney. Alterations in its expression and function play important roles in the pathophysiology of very frequent medical problems such as those related to cardiac and brain ischemia. There is extensive information on the relationship between phosphorylation and Cx43 targeting, location, and function from experiments in cells and organs in normal and pathological conditions. However, the molecular mechanisms of Cx43 regulation by phosphorylation are hard to tackle in complex systems. Here, we present the use of purified HCs as a model for functional and structural studies. Cx26 and Cx43 are the only isoforms that have been purified, reconstituted, and subjected to functional and structural analysis. Purified Cx26 and Cx43 HCs have properties compatible with those demonstrated in cells, and present methodologies for the functional analysis of purified HCs reconstituted in liposomes. We show that phosphorylation of serine 368 by PKC produces a partial closure of the Cx43 HCs, changing solute selectivity. We also present evidence that the effect of phosphorylation is highly cooperative, requiring modification of several connexin subunits, and that phosphorylation of serine 368 elicits conformational changes in the purified HCs. The use of purified HCs is starting to provide critical data to understand the regulation of HCs at the molecular level.
Collapse
Affiliation(s)
- Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Luis Reuss
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| |
Collapse
|
71
|
Retamal MA. Connexin and Pannexin hemichannels are regulated by redox potential. Front Physiol 2014; 5:80. [PMID: 24611056 PMCID: PMC3933782 DOI: 10.3389/fphys.2014.00080] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/08/2014] [Indexed: 01/28/2023] Open
Abstract
Connexins (Cxs) and Pannexins (Panxs) are two non-related protein families, having both the property to form hemichannels at the plasma membrane. There are 21 genes coding for different Cx based proteins and only 3 for Panx. Under physiological conditions, these hemichannels (Cxs and Panxs) present a low open probability, but when open, they allow the release of signaling molecules to the extracellular space. However, under pathological conditions, these hemichannels increase their open probability, inducing important lysis of metabolites, and ionic imbalance, which in turn induce the massive entry of Ca+2 to the cell. Actually, it is well recognized that Cxs and Panxs based channels play an important role in several diseases and -in many cases- this is associated with an aberrant hemichannel opening. Hemichannel opening and closing are controlled by a plethora of signaling including changes of the voltage plasma membrane, protein-protein interactions, and several posttranslational modifications, including protein cleavage, phosphorylation, glycosylation, hydroxylation and S-nitrosylation, among others. In particular, it has been recently shown that the cellular redox status modulates the opening/closing and permeability of at least Cx43, Cx46, and Panx1 hemichannels. Thus, for example, the gaseous transmitter nitric oxide (NO) can induce the S-nitrosylation of these proteins modulating in turn several of their properties. The reason is that the redox status of a cell is fundamental to set their response to the environment and also plays an important role in several pathologies. In this review, I will discuss how NO and other molecules associated with redox signaling modulate Cxs and Panx hemichannels properties.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Facultad de Medicina Clínica Alemana, Centro de Fisiología Celular e Integrativa, Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
72
|
Lohman AW, Isakson BE. Differentiating connexin hemichannels and pannexin channels in cellular ATP release. FEBS Lett 2014; 588:1379-88. [PMID: 24548565 DOI: 10.1016/j.febslet.2014.02.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 12/22/2022]
Abstract
Adenosine triphosphate (ATP) plays a fundamental role in cellular communication, with its extracellular accumulation triggering purinergic signaling cascades in a diversity of cell types. While the roles for purinergic signaling in health and disease have been well established, identification and differentiation of the specific mechanisms controlling cellular ATP release is less well understood. Multiple mechanisms have been proposed to regulate ATP release with connexin (Cx) hemichannels and pannexin (Panx) channels receiving major focus. However, segregating the specific roles of Panxs and Cxs in ATP release in a plethora of physiological and pathological contexts has remained enigmatic. This multifaceted problem has arisen from the selectivity of pharmacological inhibitors for Panxs and Cxs, methodological differences in assessing Panx and Cx function and the potential compensation by other isoforms in gene silencing and genetic knockout models. Consequently, there remains a void in the current understanding of specific contributions of Panxs and Cxs in releasing ATP during homeostasis and disease. Differentiating the distinct signaling pathways that regulate these two channels will advance our current knowledge of cellular communication and aid in the development of novel rationally-designed drugs for modulation of Panx and Cx activity, respectively.
Collapse
Affiliation(s)
- Alexander W Lohman
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA 22098, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, United States
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA 22098, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
73
|
Meigh L, Greenhalgh SA, Rodgers TL, Cann MJ, Roper DI, Dale N. CO₂directly modulates connexin 26 by formation of carbamate bridges between subunits. eLife 2013; 2:e01213. [PMID: 24220509 PMCID: PMC3821526 DOI: 10.7554/elife.01213] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Homeostatic regulation of the partial pressure of CO2 (PCO2) is vital for life. Sensing of pH has been proposed as a sufficient proxy for determination of PCO2 and direct CO2-sensing largely discounted. Here we show that connexin 26 (Cx26) hemichannels, causally linked to respiratory chemosensitivity, are directly modulated by CO2. A ‘carbamylation motif’, present in CO2-sensitive connexins (Cx26, Cx30, Cx32) but absent from a CO2-insensitive connexin (Cx31), comprises Lys125 and four further amino acids that orient Lys125 towards Arg104 of the adjacent subunit of the connexin hexamer. Introducing the carbamylation motif into Cx31 created a mutant hemichannel (mCx31) that was opened by increases in PCO2. Mutation of the carbamylation motif in Cx26 and mCx31 destroyed CO2 sensitivity. Course-grained computational modelling of Cx26 demonstrated that the proposed carbamate bridge between Lys125 and Arg104 biases the hemichannel to the open state. Carbamylation of Cx26 introduces a new transduction principle for physiological sensing of CO2. DOI:http://dx.doi.org/10.7554/eLife.01213.001 A number of gaseous molecules, including nitric oxide and carbon monoxide, play important roles in many cellular processes by acting as signalling molecules. Surprisingly, however, it has long been assumed that carbon dioxide – a gaseous molecule that is produced during cellular metabolism – is not a signalling molecule. Controlling the concentration of carbon dioxide (CO2) in a biological system is essential to sustain life, and it was thought that the body used pH – which is the concentration of hydrogen ions – as a proxy for the level of CO2. The concentration of CO2 is related to pH because CO2 reacts with water to form carbonic acid, which quickly breaks down to form hydrogen ions and bicarbonate ions. This close relationship has led many researchers to equate pH-sensing with CO2-sensing, and to suggest that a physiological receptor for CO2 does not exist. Recent research into structures called connexin hemichannels has challenged this view. Researchers found that when pH levels were held constant, increasing the level of CO2 caused the structures to open up, suggesting that CO2 could be directly detected by the hemichannels. Each hemichannel contains six connexin subunits, but the details of how the CO2 molecules interact with the individual connexin subunits to open up the hemichannels remained mysterious. Now Meigh et al. show that CO2 molecules bind to a specific amino acid (lysine) at a particular place (residue 125) in one of the connexin subunits to form a carbamate group. This group then interacts with the amino acid (arginine) at residue 104 in a neighbouring connexin subunit to form a carbamate bridge between the two subunits. This leads to structural changes that cause the gap junction hemichannels to open and release signals that can activate other cells. Since connexin hemichannels are found throughout the human body, these results suggest that CO2 might act as a signalling molecule in processes as diverse as the control of blood flow, breathing, hearing and reproduction. DOI:http://dx.doi.org/10.7554/eLife.01213.002
Collapse
Affiliation(s)
- Louise Meigh
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | | |
Collapse
|
74
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
75
|
Role of gap junctions and hemichannels in parasitic infections. BIOMED RESEARCH INTERNATIONAL 2013; 2013:589130. [PMID: 24236292 PMCID: PMC3819887 DOI: 10.1155/2013/589130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/07/2013] [Accepted: 08/26/2013] [Indexed: 02/06/2023]
Abstract
In vertebrates, connexins (Cxs) and pannexins (Panxs) are proteins that form gap junction channels and/or hemichannels located at cell-cell interfaces and cell surface, respectively. Similar channel types are formed by innexins in invertebrate cells. These channels serve as pathways for cellular communication that coordinate diverse physiologic processes. However, it is known that many acquired and inherited diseases deregulate Cx and/or Panx channels, condition that frequently worsens the pathological state of vertebrates. Recent evidences suggest that Cx and/or Panx hemichannels play a relevant role in bacterial and viral infections. Nonetheless, little is known about the role of Cx- and Panx-based channels in parasitic infections of vertebrates. In this review, available data on changes in Cx and gap junction channel changes induced by parasitic infections are summarized. Additionally, we describe recent findings that suggest possible roles of hemichannels in parasitic infections. Finally, the possibility of new therapeutic designs based on hemichannel blokers is presented.
Collapse
|
76
|
Giaume C, Leybaert L, Naus CC, Sáez JC. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 2013; 4:88. [PMID: 23882216 PMCID: PMC3713369 DOI: 10.3389/fphar.2013.00088] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/21/2013] [Indexed: 12/22/2022] Open
Abstract
Functional interaction between neurons and glia is an exciting field that has expanded tremendously during the past decade. Such partnership has multiple impacts on neuronal activity and survival. Indeed, numerous findings indicate that glial cells interact tightly with neurons in physiological as well as pathological situations. One typical feature of glial cells is their high expression level of gap junction protein subunits, named connexins (Cxs), thus the membrane channels they form may contribute to neuroglial interaction that impacts neuronal activity and survival. While the participation of gap junction channels in neuroglial interactions has been regularly reviewed in the past, the other channel function of Cxs, i.e., hemichannels located at the cell surface, has only recently received attention. Gap junction channels provide the basis for a unique direct cell-to-cell communication, whereas Cx hemichannels allow the exchange of ions and signaling molecules between the cytoplasm and the extracellular medium, thus supporting autocrine and paracrine communication through a process referred to as “gliotransmission,” as well as uptake and release of metabolites. More recently, another family of proteins, termed pannexins (Panxs), has been identified. These proteins share similar membrane topology but no sequence homology with Cxs. They form multimeric membrane channels with pharmacology somewhat overlapping with that of Cx hemichannels. Such duality has led to several controversies in the literature concerning the identification of the molecular channel constituents (Cxs versus Panxs) in glia. In the present review, we update and discuss the knowledge of Cx hemichannels and Panx channels in glia, their properties and pharmacology, as well as the understanding of their contribution to neuroglial interactions in brain health and disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050 Paris, France ; University Pierre et Marie Curie Paris, France ; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University Paris, France
| | | | | | | |
Collapse
|
77
|
De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 2013; 108:1-20. [PMID: 23851106 DOI: 10.1016/j.pneurobio.2013.06.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability.
Collapse
Affiliation(s)
- Marijke De Bock
- Dept. of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Cooper RS, Altenberg GA. Association/dissociation of the nucleotide-binding domains of the ATP-binding cassette protein MsbA measured during continuous hydrolysis. J Biol Chem 2013; 288:20785-20796. [PMID: 23723071 DOI: 10.1074/jbc.m113.477976] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In ATP-binding cassette proteins, the two nucleotide-binding domains (NBDs) work as dimers to bind and hydrolyze ATP, but the molecular mechanism of nucleotide hydrolysis is controversial. It is still unresolved whether hydrolysis leads to dissociation of the ATP-induced dimers or partial opening of the dimers such that the NBDs remain in contact during the hydrolysis cycle. We studied the bacterial lipid flippase MsbA by luminescence resonance energy transfer (LRET). The LRET signal between optical probes reacted with single-cysteine mutants was employed to follow NBD association/dissociation in real time. The intermonomer distances calculated from LRET data indicate that the NBDs separate completely following ATP hydrolysis, even in the presence of mm MgATP, and that the dissociation occurs following each hydrolysis cycle. The results support association/dissociation, as opposed to constant contact models, for the mode of operation of ATP-binding cassette proteins.
Collapse
Affiliation(s)
- Rebecca S Cooper
- From the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech Health Sciences Center, Lubbock, Texas 79430-6551
| | - Guillermo A Altenberg
- From the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech Health Sciences Center, Lubbock, Texas 79430-6551.
| |
Collapse
|
79
|
Figueroa V, Sáez PJ, Salas JD, Salas D, Jara O, Martínez AD, Sáez JC, Retamal MA. Linoleic acid induces opening of connexin26 hemichannels through a PI3K/Akt/Ca2+-dependent pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1169-79. [DOI: 10.1016/j.bbamem.2012.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 01/31/2023]
|