51
|
Chalut C. MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria. Tuberculosis (Edinb) 2016; 100:32-45. [DOI: 10.1016/j.tube.2016.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
|
52
|
Grzegorzewicz AE, de Sousa-d'Auria C, McNeil MR, Huc-Claustre E, Jones V, Petit C, Angala SK, Zemanová J, Wang Q, Belardinelli JM, Gao Q, Ishizaki Y, Mikušová K, Brennan PJ, Ronning DR, Chami M, Houssin C, Jackson M. Assembling of the Mycobacterium tuberculosis Cell Wall Core. J Biol Chem 2016; 291:18867-79. [PMID: 27417139 DOI: 10.1074/jbc.m116.739227] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
The unique cell wall of mycobacteria is essential to their viability and the target of many clinically used anti-tuberculosis drugs and inhibitors under development. Despite intensive efforts to identify the ligase(s) responsible for the covalent attachment of the two major heteropolysaccharides of the mycobacterial cell wall, arabinogalactan (AG) and peptidoglycan (PG), the enzyme or enzymes responsible have remained elusive. We here report on the identification of the two enzymes of Mycobacterium tuberculosis, CpsA1 (Rv3267) and CpsA2 (Rv3484), responsible for this function. CpsA1 and CpsA2 belong to the widespread LytR-Cps2A-Psr (LCP) family of enzymes that has been shown to catalyze a variety of glycopolymer transfer reactions in Gram-positive bacteria, including the attachment of wall teichoic acids to PG. Although individual cpsA1 and cpsA2 knock-outs of M. tuberculosis were readily obtained, the combined inactivation of both genes appears to be lethal. In the closely related microorganism Corynebacterium glutamicum, the ortholog of cpsA1 is the only gene involved in this function, and its conditional knockdown leads to dramatic changes in the cell wall composition and morphology of the bacteria due to extensive shedding of cell wall material in the culture medium as a result of defective attachment of AG to PG. This work marks an important step in our understanding of the biogenesis of the unique cell envelope of mycobacteria and opens new opportunities for drug development.
Collapse
Affiliation(s)
- Anna E Grzegorzewicz
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Célia de Sousa-d'Auria
- the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Michael R McNeil
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Emilie Huc-Claustre
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Victoria Jones
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Cécile Petit
- the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606-3390
| | - Shiva Kumar Angala
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Júlia Zemanová
- the Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH-1, 84215 Bratislava, Slovakia
| | - Qinglan Wang
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, the Key Laboratory of Medical Molecular Virology of MOE & MOH, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Juan Manuel Belardinelli
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Qian Gao
- the Key Laboratory of Medical Molecular Virology of MOE & MOH, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yoshimasa Ishizaki
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, the Institute of Microbial Chemistry (BIKAKEN), Kamiosaki, Shinagawa-ku, Tokyo 3-14-23, Japan, and
| | - Katarína Mikušová
- the Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH-1, 84215 Bratislava, Slovakia
| | - Patrick J Brennan
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Donald R Ronning
- the Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606-3390
| | - Mohamed Chami
- the C-CINA Center for Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Christine Houssin
- the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France,
| | - Mary Jackson
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682,
| |
Collapse
|
53
|
Trehalose Polyphleates Are Produced by a Glycolipid Biosynthetic Pathway Conserved across Phylogenetically Distant Mycobacteria. Cell Chem Biol 2016; 23:278-289. [PMID: 27028886 DOI: 10.1016/j.chembiol.2015.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/02/2015] [Accepted: 11/26/2015] [Indexed: 11/22/2022]
Abstract
Mycobacteria synthesize a variety of structurally related glycolipids with major biological functions. Common themes have emerged for the biosynthesis of these glycolipids, including several families of proteins. Genes encoding these proteins are usually clustered on bacterial chromosomal islets dedicated to the synthesis of one glycolipid family. Here, we investigated the function of a cluster of five genes widely distributed across non-tuberculous mycobacteria. Using defined mutant analysis and in-depth structural characterization of glycolipids from wild-type or mutant strains of Mycobacterium smegmatis and Mycobacterium abscessus, we established that they are involved in the formation of trehalose polyphleates (TPP), a family of compounds originally described in Mycobacterium phlei. Comparative genomics and lipid analysis of strains distributed along the mycobacterial phylogenetic tree revealed that TPP is synthesized by a large number of non-tuberculous mycobacteria. This work unravels a novel glycolipid biosynthetic pathway in mycobacteria and extends the spectrum of bacteria that produce TPP.
Collapse
|
54
|
Székely R, Cole ST. Mechanistic insight into mycobacterial MmpL protein function. Mol Microbiol 2016; 99:831-4. [DOI: 10.1111/mmi.13306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2015] [Indexed: 01/05/2023]
Affiliation(s)
- R. Székely
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute; CH1015 Lausanne Switzerland
| | - S. T. Cole
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute; CH1015 Lausanne Switzerland
| |
Collapse
|
55
|
Bernut A, Viljoen A, Dupont C, Sapriel G, Blaise M, Bouchier C, Brosch R, de Chastellier C, Herrmann JL, Kremer L. Insights into the smooth-to-rough transitioning inMycobacterium bolletiiunravels a functional Tyr residue conserved in all mycobacterial MmpL family members. Mol Microbiol 2015; 99:866-83. [DOI: 10.1111/mmi.13283] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Audrey Bernut
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280; 13288 Marseille France
| | - Christian Dupont
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
| | - Guillaume Sapriel
- UMR1173; INSERM; Université de Versailles St Quentin; 2 avenue de la Source de la Bièvre 78180 Montigny le Bretonneux France
| | - Mickaël Blaise
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
| | | | - Roland Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée; 25 rue du Dr. Roux 75724 Paris France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280; 13288 Marseille France
| | - Jean-Louis Herrmann
- UMR1173; INSERM; Université de Versailles St Quentin; 2 avenue de la Source de la Bièvre 78180 Montigny le Bretonneux France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
- INSERM; CPBS; 34293 Montpellier France
| |
Collapse
|
56
|
Evolutionary landscape of the Mycobacterium tuberculosis complex from the viewpoint of PhoPR: implications for virulence regulation and application to vaccine development. mBio 2015; 6:e01289-15. [PMID: 26489860 PMCID: PMC4620462 DOI: 10.1128/mbio.01289-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Different members of the Mycobacterium genus have evolved to cause tuberculosis in diverse human populations and in a variety of animal species. Our cumulative knowledge of mycobacterial genomes indicates that mutations in the PhoPR two-component virulence system were acquired not only during the natural evolution of mycobacterial species but also during in vitro subculture, which has given rise to the attenuated reference strain H37Ra or to different daughter strains of Mycobacterium bovis BCG. PhoPR is a well-known regulator of pathogenic phenotypes, including secretion of the virulence factor ESAT-6, biosynthesis of acyltrehalose-based lipids, and modulation of antigen export, in members of the Mycobacterium tuberculosis complex (MTBC). Evolutionarily conserved polymorphisms in PhoPR from Mycobacterium africanum, M. bovis, or M. tuberculosis H37Ra result in loss of functional phenotypes. Interestingly, some members of the MTBC have acquired compensatory mutations to counteract these polymorphisms and, probably, to maintain their pathogenic potential. Some of these compensatory mutations include the insertion of the IS6110 element upstream from phoPR in a particular M. bovis strain that is able to transmit between humans or polymorphisms in M. africanum and M. bovis that affect the regulatory region of the espACD operon, allowing PhoPR-independent ESAT-6 secretion. This review highlights the increasing knowledge of the significance of PhoPR in the evolution of the MTBC and its potential application in the construction of new attenuated vaccines based on phoPR inactivation. In this context, the live attenuated vaccine MTBVAC, based on a phoP fadD26 deletion mutant of M. tuberculosis, is the first vaccine of this kind to successfully enter into clinical development, representing a historic milestone in the field of human vaccinology.
Collapse
|
57
|
Chou TH, Delmar JA, Wright CC, Kumar N, Radhakrishnan A, Doh JK, Licon MH, Bolla JR, Lei HT, Rajashankar KR, Su CC, Purdy GE, Yu EW. Crystal structure of the Mycobacterium tuberculosis transcriptional regulator Rv0302. Protein Sci 2015; 24:1942-55. [PMID: 26362239 DOI: 10.1002/pro.2802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis is a pathogenic bacterial species, which is neither Gram positive nor Gram negative. It has a unique cell wall, making it difficult to kill and conferring resistance to antibiotics that disrupt cell wall biosynthesis. Thus, the mycobacterial cell wall is critical to the virulence of these pathogens. Recent work shows that the mycobacterial membrane protein large (MmpL) family of transporters contributes to cell wall biosynthesis by exporting fatty acids and lipidic elements of the cell wall. The expression of the Mycobacterium tuberculosis MmpL proteins is controlled by a complicated regulatory network system. Here we report crystallographic structures of two forms of the TetR-family transcriptional regulator Rv0302, which participates in regulating the expression of MmpL proteins. The structures reveal a dimeric, two-domain molecule with architecture consistent with the TetR family of regulators. Comparison of the two Rv0302 crystal structures suggests that the conformational changes leading to derepression may be due to a rigid body rotational motion within the dimer interface of the regulator. Using fluorescence polarization and electrophoretic mobility shift assays, we demonstrate the recognition of promoter and intragenic regions of multiple mmpL genes by this protein. In addition, our isothermal titration calorimetry and electrophoretic mobility shift experiments indicate that fatty acids may be the natural ligand of this regulator. Taken together, these experiments provide new perspectives on the regulation of the MmpL family of transporters.
Collapse
Affiliation(s)
- Tsung-Han Chou
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011
| | - Jared A Delmar
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011
| | - Catherine C Wright
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, 97239
| | - Nitin Kumar
- Department of Chemistry, Iowa State University, Ames, Iowa, 50011
| | | | - Julia K Doh
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, 97239
| | - Meredith H Licon
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, 97239
| | - Jani Reddy Bolla
- Department of Chemistry, Iowa State University, Ames, Iowa, 50011
| | - Hsiang-Ting Lei
- Department of Chemistry, Iowa State University, Ames, Iowa, 50011
| | - Kanagalaghatta R Rajashankar
- NE-CAT and Department of Chemistry and Chemical Biology, Argonne National Laboratory, Cornell University, Argonne, Illinois, 60439
| | - Chih-Chia Su
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011
| | - Georgiana E Purdy
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, 97239
| | - Edward W Yu
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011.,Department of Chemistry, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
58
|
Delmar JA, Chou TH, Wright CC, Licon MH, Doh JK, Radhakrishnan A, Kumar N, Lei HT, Bolla JR, Rajashankar KR, Su CC, Purdy GE, Yu EW. Structural Basis for the Regulation of the MmpL Transporters of Mycobacterium tuberculosis. J Biol Chem 2015; 290:28559-28574. [PMID: 26396194 DOI: 10.1074/jbc.m115.683797] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 11/06/2022] Open
Abstract
The mycobacterial cell wall is critical to the virulence of these pathogens. Recent work shows that the MmpL (mycobacterial membrane protein large) family of transporters contributes to cell wall biosynthesis by exporting fatty acids and lipidic elements of the cell wall. The expression of the Mycobacterium tuberculosis MmpL proteins is controlled by a complex regulatory network, including the TetR family transcriptional regulators Rv3249c and Rv1816. Here we report the crystal structures of these two regulators, revealing dimeric, two-domain molecules with architecture consistent with the TetR family of regulators. Buried extensively within the C-terminal regulatory domains of Rv3249c and Rv1816, we found fortuitous bound ligands, which were identified as palmitic acid (a fatty acid) and isopropyl laurate (a fatty acid ester), respectively. Our results suggest that fatty acids may be the natural ligands of these regulatory proteins. Using fluorescence polarization and electrophoretic mobility shift assays, we demonstrate the recognition of promoter and intragenic regions of multiple mmpL genes by these proteins. Binding of palmitic acid renders these regulators incapable of interacting with their respective operator DNAs, which will result in derepression of the corresponding mmpL genes. Taken together, these experiments provide new perspectives on the regulation of the MmpL family of transporters.
Collapse
Affiliation(s)
- Jared A Delmar
- Departments of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
| | - Tsung-Han Chou
- Departments of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
| | - Catherine C Wright
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon 97239
| | - Meredith H Licon
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon 97239
| | - Julia K Doh
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon 97239
| | | | - Nitin Kumar
- Departments of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Hsiang-Ting Lei
- Departments of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Jani Reddy Bolla
- Departments of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Kanagalaghatta R Rajashankar
- Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439
| | - Chih-Chia Su
- Departments of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
| | - Georgiana E Purdy
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon 97239
| | - Edward W Yu
- Departments of Physics and Astronomy, Iowa State University, Ames, Iowa 50011; Departments of Chemistry, Iowa State University, Ames, Iowa 50011.
| |
Collapse
|
59
|
Bailo R, Bhatt A, Aínsa JA. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development. Biochem Pharmacol 2015; 96:159-67. [DOI: 10.1016/j.bcp.2015.05.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/05/2015] [Indexed: 11/26/2022]
|
60
|
Nataraj V, Varela C, Javid A, Singh A, Besra GS, Bhatt A. Mycolic acids: deciphering and targeting the Achilles' heel of the tubercle bacillus. Mol Microbiol 2015; 98:7-16. [PMID: 26135034 PMCID: PMC4949712 DOI: 10.1111/mmi.13101] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 12/31/2022]
Abstract
Mycolic acids are unique long chain fatty acids found in the lipid-rich cell walls of mycobacteria including the tubercle bacillus Mycobacterium tuberculosis. Essential for viability and virulence, enzymes involved in the biosynthesis of mycolic acids represent novel targets for drug development. This is particularly relevant to the impact on global health given the rise of multidrug resistant and extensively drug resistant strains of M. tuberculosis. In this review, we discuss recent advances in our understanding of how mycolic acid are synthesised, especially the potential role of specialised fatty acid synthase complexes. Also, we examine the role of a recently reported mycolic acid transporter MmpL3 with reference to several reports of the targeting of this transporter by diverse compounds with anti-M. tuberculosis activity. Additionally, we consider recent findings that place mycolic acid biosynthesis in the context of the cell biology of the bacterium, viz its localisation and co-ordination with the bacterial cytoskeleton, and its role beyond maintaining cell envelope integrity.
Collapse
Affiliation(s)
- Vijayashankar Nataraj
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cristian Varela
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Asma Javid
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Albel Singh
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gurdyal S Besra
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
61
|
The rv1184c locus encodes Chp2, an acyltransferase in Mycobacterium tuberculosis polyacyltrehalose lipid biosynthesis. J Bacteriol 2014; 197:201-10. [PMID: 25331437 DOI: 10.1128/jb.02015-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Trehalose glycolipids are found in many bacteria in the suborder Corynebacterineae, but methyl-branched acyltrehaloses are exclusive to virulent species such as the human pathogen Mycobacterium tuberculosis. In M. tuberculosis, the acyltransferase PapA3 catalyzes the formation of diacyltrehalose (DAT), but the enzymes responsible for downstream reactions leading to the final product, polyacyltrehalose (PAT), have not been identified. The PAT biosynthetic gene locus is similar to that of another trehalose glycolipid, sulfolipid 1. Recently, Chp1 was characterized as the terminal acyltransferase in sulfolipid 1 biosynthesis. Here we provide evidence that the homologue Chp2 (Rv1184c) is essential for the final steps of PAT biosynthesis. Disruption of chp2 led to the loss of PAT and a novel tetraacyltrehalose species, TetraAT, as well as the accumulation of DAT, implicating Chp2 as an acyltransferase downstream of PapA3. Disruption of the putative lipid transporter MmpL10 resulted in a similar phenotype. Chp2 activity thus appears to be regulated by MmpL10 in a relationship similar to that between Chp1 and MmpL8 in sulfolipid 1 biosynthesis. Chp2 is localized to the cell envelope fraction, consistent with its role in DAT modification and possible regulatory interactions with MmpL10. Labeling of purified Chp2 by an activity-based probe was dependent on the presence of the predicted catalytic residue Ser141 and was inhibited by the lipase inhibitor tetrahydrolipstatin (THL). THL treatment of M. tuberculosis resulted in selective inhibition of Chp2 over PapA3, confirming Chp2 as a member of the serine hydrolase superfamily. Efforts to produce in vitro reconstitution of acyltransferase activity using straight-chain analogues were unsuccessful, suggesting that Chp2 has specificity for native methyl-branched substrates.
Collapse
|