51
|
Abstract
Studies of bioactive lipids in general and sphingolipids in particular have intensified over the past several years, revealing an unprecedented and unanticipated complexity of the lipidome and its many functions, which rivals, if not exceeds, that of the genome or proteome. These results highlight critical roles for bioactive sphingolipids in most, if not all, major cell biological responses, including all major cell signalling pathways, and they link sphingolipid metabolism to key human diseases. Nevertheless, the fairly nascent field of bioactive sphingolipids still faces challenges in its biochemical and molecular underpinnings, including defining the molecular mechanisms of pathway and enzyme regulation, the study of lipid-protein interactions and the development of cellular probes, suitable biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
- Northport Veterans Affairs Medical Center, Northport, New York 11768, USA
| |
Collapse
|
52
|
Abstract
Ceramide, a bioactive membrane sphingolipid, functions as an important second messenger in apoptosis and cell signaling. In response to stresses, it may be generated by de novo synthesis, sphingomyelin hydrolysis, and/or recycling of complex sphingolipids. It is cleared from cells through the activity of ceramidases, phosphorylation to ceramide-1-phosphate, or resynthesis into more complex sphingolipids. Ischemia/reperfusion (IR) injury occurs when oxygen/nutrition is rapidly reintroduced into ischemic tissue, resulting in cell death and tissue damage, and is a major concern in diverse clinical settings, including organ resection and transplantation. Numerous reports show that ceramide levels are markedly elevated during IR. Mitochondria are major sites of reactive oxygen species (ROS) production and play a key role in IR-induced and ceramide-mediated cell death and tissue damage. During the development of IR injury, the initial response of ROS and TNF-alpha production activates two major ceramide generating pathways (sphingomyelin hydrolysis and de novo ceramide synthesis). The increased ceramide has broad effects depending on the IR phases, including both pro- and antiapoptotic effects. Therefore, strategies that reduce the levels of ceramide, for example, by modulation of ceramidase and/or sphingomyelinases activities, may represent novel and promising therapeutic approaches to prevent or treat IR injury in diverse clinical settings.
Collapse
|
53
|
Evaluation of the Neuroprotective Effect of Sirt3 in Experimental Stroke. Transl Stroke Res 2018; 10:57-66. [DOI: 10.1007/s12975-017-0603-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 11/25/2022]
|
54
|
Novgorodov SA, Voltin JR, Gooz MA, Li L, Lemasters JJ, Gudz TI. Acid sphingomyelinase promotes mitochondrial dysfunction due to glutamate-induced regulated necrosis. J Lipid Res 2017; 59:312-329. [PMID: 29282302 DOI: 10.1194/jlr.m080374] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Inhibiting the glutamate/cystine antiporter system xc-, a key antioxidant defense machinery in the CNS, could trigger a novel form of regulated necrotic cell death, ferroptosis. The underlying mechanisms of system xc--dependent cell demise were elucidated using primary oligodendrocytes (OLs) treated with glutamate to block system xc- function. Pharmacological analysis revealed ferroptosis as a major contributing factor to glutamate-initiated OL death. A sphingolipid profile showed elevations of ceramide species and sphingosine that were preventable by inhibiting of an acid sphingomyelinase (ASM) activity. OL survival was enhanced by both downregulating ASM expression and blocking ASM activity. Glutamate-induced ASM activation seems to involve posttranscriptional mechanisms and was associated with a decreased GSH level. Further investigation of the mechanisms of OL response to glutamate revealed enhanced reactive oxygen species production, augmented lipid peroxidation, and opening of the mitochondrial permeability transition pore that were attenuated by hindering ASM. Of note, knocking down sirtuin 3, a deacetylase governing the mitochondrial antioxidant system, reduced OL survival. The data highlight the importance of the mitochondrial compartment in regulated necrotic cell death and accentuate the novel role of ASM in disturbing mitochondrial functions during OL response to glutamate toxicity, which is essential for pathobiology in stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Sergei A Novgorodov
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
| | - Joshua R Voltin
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
| | - Monika A Gooz
- Departments of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425
| | - Li Li
- Departments of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425
| | - John J Lemasters
- Departments of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425
| | - Tatyana I Gudz
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425 .,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401
| |
Collapse
|
55
|
Gleave JA, Arathoon LR, Trinh D, Lizal KE, Giguère N, Barber JH, Najarali Z, Khan MH, Thiele SL, Semmen MS, Koprich JB, Brotchie JM, Eubanks JH, Trudeau LE, Nash JE. Sirtuin 3 rescues neurons through the stabilisation of mitochondrial biogenetics in the virally-expressing mutant α-synuclein rat model of parkinsonism. Neurobiol Dis 2017; 106:133-146. [DOI: 10.1016/j.nbd.2017.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/14/2017] [Indexed: 01/01/2023] Open
|
56
|
She DT, Jo DG, Arumugam TV. Emerging Roles of Sirtuins in Ischemic Stroke. Transl Stroke Res 2017; 8:10.1007/s12975-017-0544-4. [PMID: 28656393 DOI: 10.1007/s12975-017-0544-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is one of the leading causes of death worldwide. It is characterized by a sudden disruption of blood flow to the brain causing cell death and damage, which will lead to neurological impairments. In the current state, only one drug is approved to be used in clinical setting and new therapies that confer ischemic neuroprotection are desperately needed. Several targets and pathways have been indicated to be neuroprotective in ischemic stroke, among which the sirtuin family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases has emerged as important modulators of several processes in the normal physiology and pathological conditions such as stroke. Recent studies have identified some members of the sirtuin family are able to ameliorate the devastating consequences of ischemic stroke by conferring neuroprotection by means of reducing neuronal cell death, oxidative stress, and neuroinflammation whereas some sirtuins are found to be detrimental in the pathophysiology of ischemic stroke. This review summarizes implications of sirtuins in ischemic stroke and the experimental evidences that demonstrate the potential of sirtuin modulators as neuroprotective therapy for ischemic stroke.
Collapse
Affiliation(s)
- David T She
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
57
|
Andrabi SS, Parvez S, Tabassum H. Progesterone induces neuroprotection following reperfusion-promoted mitochondrial dysfunction after focal cerebral ischemia in rats. Dis Model Mech 2017; 10:787-796. [PMID: 28363987 PMCID: PMC5482998 DOI: 10.1242/dmm.025692] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
Abstract
Organelle damage and increases in mitochondrial permeabilization are key events in the development of cerebral ischemic tissue injury because they cause both modifications in ATP turnover and cellular apoptosis/necrosis. Early restoration of blood flow and improvement of mitochondrial function might reverse the situation and help in recovery following an onset of stroke. Mitochondria and related bioenergetic processes can be effectively used as pharmacological targets. Progesterone (P4), one of the promising neurosteroids, has been found to be neuroprotective in various models of neurological diseases, through a number of mechanisms. This influenced us to investigate the possible role of P4 in the mitochondria-mediated neuroprotective mechanism in an ischemic stroke model of rat. In this study, we have shown the positive effect of P4 administration on behavioral deficits and mitochondrial health in an ischemic stroke injury model of transient middle cerebral artery occlusion (tMCAO). After induction of tMCAO, the rats received an initial intraperitoneal injection of P4 (8 mg/kg body weight) or vehicle at 1 h post-occlusion followed by subcutaneous injections at 6, 12 and 18 h. Behavioral assessment for functional deficits included grip strength, motor coordination and gait analysis. Findings revealed a significant improvement with P4 treatment in tMCAO animals. Staining of isolated brain slices from P4-treated rats with 2,3,5-triphenyltetrazolium chloride (TTC) showed a reduction in the infarct area in comparison to the vehicle group, indicating the presence of an increased number of viable mitochondria. P4 treatment was also able to attenuate mitochondrial reactive oxygen species (ROS) production, as well as block the mitochondrial permeability transition pore (mPTP), in the tMCAO injury model. In addition, it was also able to ameliorate the altered mitochondrial membrane potential and respiration ratio in the ischemic animals, thereby suggesting that P4 has a positive effect on mitochondrial bioenergetics. In conclusion, these results demonstrate that P4 treatment is beneficial in preserving the mitochondrial functions that are altered in cerebral ischemic injury and thus can help in defining better therapies. Summary: Progesterone treatment is beneficial in preserving the altered mitochondrial functions in cerebral ischemic injury and thus can help in defining better therapies.
Collapse
Affiliation(s)
- Syed Suhail Andrabi
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Heena Tabassum
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| |
Collapse
|
58
|
Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. The Current State of NAD + -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Med Res Rev 2017; 38:147-200. [PMID: 28094444 DOI: 10.1002/med.21436] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022]
Abstract
Sirtuins are NAD+ -dependent protein deacylases that cleave off acetyl, as well as other acyl groups, from the ε-amino group of lysines in histones and other substrate proteins. Seven sirtuin isotypes (Sirt1-7) have been identified in mammalian cells. As sirtuins are involved in the regulation of various physiological processes such as cell survival, cell cycle progression, apoptosis, DNA repair, cell metabolism, and caloric restriction, a dysregulation of their enzymatic activity has been associated with the pathogenesis of neoplastic, metabolic, infectious, and neurodegenerative diseases. Thus, sirtuins are promising targets for pharmaceutical intervention. Growing interest in a modulation of sirtuin activity has prompted the discovery of several small molecules, able to inhibit or activate certain sirtuin isotypes. Herein, we give an update to our previous review on the topic in this journal (Schemies, 2010), focusing on recent developments in sirtuin biology, sirtuin modulators, and their potential as novel therapeutic agents.
Collapse
Affiliation(s)
- Matthias Schiedel
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Tobias Rumpf
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
59
|
Fucho R, Casals N, Serra D, Herrero L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J 2016; 31:1263-1272. [PMID: 28003342 DOI: 10.1096/fj.201601156r] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022]
Abstract
Obesity is an epidemic, complex disease that is characterized by increased glucose, lipids, and low-grade inflammation in the circulation, among other factors. It creates the perfect scenario for the production of ceramide, the building block of the sphingolipid family of lipids, which is involved in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, obesity causes a decrease in fatty acid oxidation (FAO), which contributes to lipid accumulation within the cells, conferring more susceptibility to cell dysfunction. C16:0 ceramide, a specific ceramide species, has been identified recently as the principal mediator of obesity-derived insulin resistance, impaired fatty acid oxidation, and hepatic steatosis. In this review, we have sought to cover the importance of the ceramide species and their metabolism, the main ceramide signaling pathways in obesity, and the link between C16:0 ceramide, FAO, and obesity.-Fucho, R., Casals, N., Serra, D., Herrero, L. Ceramides and mitochondrial fatty acid oxidation in obesity.
Collapse
Affiliation(s)
- Raquel Fucho
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain; and.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain; .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain; .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
60
|
Osborne B, Bentley NL, Montgomery MK, Turner N. The role of mitochondrial sirtuins in health and disease. Free Radic Biol Med 2016; 100:164-174. [PMID: 27164052 DOI: 10.1016/j.freeradbiomed.2016.04.197] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/21/2016] [Accepted: 04/29/2016] [Indexed: 01/15/2023]
Abstract
Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety of subcellular localisations and have been found to remove a growing list of post-translational acyl modifications from target proteins. SIRT3, SIRT4, and SIRT5 are found primarily located in the mitochondria, and are involved in many of the key processes of this organelle. SIRT3 has been the subject of intense research and is primarily a deacetylase thought to function as a mitochondrial fidelity protein, with roles in mitochondrial substrate metabolism, protection against oxidative stress, and cell survival pathways. Less is known about the functional targets of SIRT4, which has deacetylase, ADP-ribosylase, and a newly-described lipoamidase function, although key roles in lipid and glutamine metabolism have been reported. SIRT5 modulates a host of newly-discovered acyl modifications including succinylation, malonylation, and glutarylation in both mitochondrial and extra-mitochondrial compartments, however the functional significance of SIRT5 in the regulation of many of its proposed target proteins remains to be discovered. Because of their influence on a broad range of pathways, SIRT3, SIRT4, and SIRT5 are implicated in a range of disease-states including metabolic disease such as diabetes, neurodegenerative diseases, cancer, and ageing-related disorders such as hearing-loss and cardiac dysfunction. We review the current knowledge on the function of the three mitochondrial sirtuins, their role in disease, and the current outstanding questions in the field.
Collapse
Affiliation(s)
- Brenna Osborne
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Nicholas L Bentley
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Magdalene K Montgomery
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia.
| |
Collapse
|
61
|
Montgomery MK, Brown SHJ, Lim XY, Fiveash CE, Osborne B, Bentley NL, Braude JP, Mitchell TW, Coster ACF, Don AS, Cooney GJ, Schmitz-Peiffer C, Turner N. Regulation of glucose homeostasis and insulin action by ceramide acyl-chain length: A beneficial role for very long-chain sphingolipid species. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1828-1839. [PMID: 27591968 DOI: 10.1016/j.bbalip.2016.08.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/13/2022]
Abstract
In a recent study, we showed that in response to high fat feeding C57BL/6, 129X1, DBA/2 and FVB/N mice all developed glucose intolerance, while BALB/c mice displayed minimal deterioration in glucose tolerance and insulin action. Lipidomic analysis of livers across these five strains has revealed marked strain-specific differences in ceramide (Cer) and sphingomyelin (SM) species with high-fat feeding; with increases in C16-C22 (long-chain) and reductions in C>22 (very long-chain) Cer and SM species observed in the four strains that developed HFD-induced glucose intolerance. Intriguingly, the opposite pattern was observed in sphingolipid species in BALB/c mice. These strain-specific changes in sphingolipid acylation closely correlated with ceramide synthase 2 (CerS2) protein content and activity, with reduced CerS2 levels/activity observed in glucose intolerant strains and increased content in BALB/c mice. Overexpression of CerS2 in primary mouse hepatocytes induced a specific elevation in very long-chain Cer, but despite the overall increase in ceramide abundance, there was a substantial improvement in insulin signal transduction, as well as decreased ER stress and gluconeogenic markers. Overall our findings suggest that very long-chain sphingolipid species exhibit a protective role against the development of glucose intolerance and hepatic insulin resistance.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Simon H J Brown
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Xin Y Lim
- Prince of Wales Clinical School, UNSW Australia, Sydney, NSW, Australia
| | - Corrine E Fiveash
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Brenna Osborne
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Nicholas L Bentley
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Jeremy P Braude
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Todd W Mitchell
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Adelle C F Coster
- School of Mathematics and Statistics, UNSW Australia, Sydney, NSW, Australia
| | - Anthony S Don
- Prince of Wales Clinical School, UNSW Australia, Sydney, NSW, Australia
| | - Gregory J Cooney
- Diabetes & Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, UNSW Australia, Sydney, NSW, Australia
| | - Carsten Schmitz-Peiffer
- Diabetes & Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, UNSW Australia, Sydney, NSW, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia.
| |
Collapse
|
62
|
Kumfu S, Charununtakorn ST, Jaiwongkam T, Chattipakorn N, Chattipakorn SC. Humanin prevents brain mitochondrial dysfunction in a cardiac ischaemia-reperfusion injury model. Exp Physiol 2016; 101:697-707. [DOI: 10.1113/ep085749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Sirinart Kumfu
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Savitree T. Charununtakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Thidarat Jaiwongkam
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
63
|
Couttas TA, Kain N, Suchowerska AK, Quek LE, Turner N, Fath T, Garner B, Don AS. Loss of ceramide synthase 2 activity, necessary for myelin biosynthesis, precedes tau pathology in the cortical pathogenesis of Alzheimer's disease. Neurobiol Aging 2016; 43:89-100. [PMID: 27255818 DOI: 10.1016/j.neurobiolaging.2016.03.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/01/2016] [Accepted: 03/27/2016] [Indexed: 01/07/2023]
Abstract
The anatomical progression of neurofibrillary tangle pathology throughout Alzheimer's disease (AD) pathogenesis runs inverse to the pattern of developmental myelination, with the disease preferentially affecting thinly myelinated regions. Myelin is comprised 80% of lipids, and the prototypical myelin lipids, galactosylceramide, and sulfatide are critical for neurological function. We observed severe depletion of galactosylceramide and sulfatide in AD brain tissue, which can be traced metabolically to the loss of their biosynthetic precursor, very long chain ceramide. The synthesis of very long chain ceramides is catalyzed by ceramide synthase 2 (CERS2). We demonstrate a significant reduction in CERS2 activity as early as Braak stage I/II in temporal cortex, and Braak stage III/IV in hippocampus and frontal cortex, indicating that loss of myelin-specific ceramide synthase activity precedes neurofibrillary tangle pathology in cortical regions. These findings open a new vista on AD pathogenesis by demonstrating a defect in myelin lipid biosynthesis at the preclinical stages of the disease. We posit that, over time, this defect contributes significantly to myelin deterioration, synaptic dysfunction, and neurological decline.
Collapse
Affiliation(s)
- Timothy A Couttas
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nupur Kain
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Alexandra K Suchowerska
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Lake-Ee Quek
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nigel Turner
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Thomas Fath
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Anthony S Don
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
64
|
Serrano JCE, Cassanye A, Martín-Gari M, Granado-Serrano AB, Portero-Otín M. Effect of Dietary Bioactive Compounds on Mitochondrial and Metabolic Flexibility. Diseases 2016; 4:diseases4010014. [PMID: 28933394 PMCID: PMC5456301 DOI: 10.3390/diseases4010014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/25/2016] [Accepted: 03/07/2016] [Indexed: 12/21/2022] Open
Abstract
Metabolic flexibility is the capacity of an organism to adequately respond to changes in the environment, such as nutritional input, energetic demand, etc. An important player in the capacity of adaptation through different stages of metabolic demands is the mitochondrion. In this context, mitochondrial dysfunction has been attributed to be the onset and center of many chronic diseases, which are denoted by an inability to adapt fuel preferences and induce mitochondrial morphological changes to respond to metabolic demands, such as mitochondrial number, structure and function. Several nutritional interventions have shown the capacity to induce changes in mitochondrial biogenesis/degradation, oxidative phosphorylation efficiency, mitochondrial membrane composition, electron transfer chain capacity, etc., in metabolic inflexibility states that may open new target options and mechanisms of action of bioactive compounds for the treatment of metabolic diseases. This review is focused in three well-recognized food bioactive compounds that modulate insulin sensitivity, polyphenols, ω-3 fatty acids and dietary fiber, by several mechanism of action, like caloric restriction properties and inflammatory environment modulation, both closely related to mitochondrial function and dynamics.
Collapse
Affiliation(s)
- Jose C E Serrano
- Department of Experimental Medicine, University of Lleida, Av. Alcalde Rovira Roure 80, Lleida 25198, Spain.
| | - Anna Cassanye
- Department of Experimental Medicine, University of Lleida, Av. Alcalde Rovira Roure 80, Lleida 25198, Spain.
| | - Meritxell Martín-Gari
- Department of Experimental Medicine, University of Lleida, Av. Alcalde Rovira Roure 80, Lleida 25198, Spain.
| | - Ana Belen Granado-Serrano
- Department of Experimental Medicine, University of Lleida, Av. Alcalde Rovira Roure 80, Lleida 25198, Spain.
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida, Av. Alcalde Rovira Roure 80, Lleida 25198, Spain.
| |
Collapse
|