51
|
Gougoumas DD, Vizirianakis IS, Triviai IN, Tsiftsoglou AS. Activation of Prn-p gene and stable transfection of Prn-p cDNA in leukemia MEL and neuroblastoma N2a cells increased production of PrP(C) but not prevented DNA fragmentation initiated by serum deprivation. J Cell Physiol 2007; 211:551-9. [PMID: 17186498 DOI: 10.1002/jcp.20969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prion protein (PrP(C)) via its isoform PrP(SC) is involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). We observed that murine erythroleukemia (MEL) cells arrested in phase G(1) undergo transcriptional activation of Prn-p gene. Here, we explored the potential role of activation of Prn-p gene and cytosolic accumulation of PrP(C) in growth arrest, differentiation, and apoptotic DNA fragmentation by stably transfecting MEL and N2a cells with Prn-p cDNA. Stably transfected MEL cells (clones # 6, 12, 20, 38, and 42) were assessed for growth and differentiation, while clones N2a13 and N2a8 of N2a cells for growth and apoptosis by flow cytometry using Annexin V and propidium iodide (PI). Our results indicate that (a) Induction of terminal differentiation of stably transfected MEL cells led to growth arrest, activation of Prn-p gene, concomitant expression of transfected Prn-p cDNA, suppression of bax gene, cytosolic accumulation of PrP(C), and DNA fragmentation. The latter was also induced in non-differentiated MEL cells growing under serum-free conditions; (b) similarly, serum deprivation promoted growth arrest, apoptosis/necrosis associated with DNA fragmentation in parental N2a and N2a13 cells that produced relative high level of PrP(C) and not PrP(SC). These data indicate that activation of Prn-p gene and expression of transfected Prn-p cDNA in cells of both hematopoietic and neuronal origin occurred concomitantly, and led to cytosolic accumulation of PrP(C) and DNA damage induced by serum deprivation. PrP(C) production failed to protect DNA fragmentation induced by serum deprivation. The question how does PrP(C) contribute to growth arrest and DNA fragmentation is discussed.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation
- Culture Media, Serum-Free/metabolism
- Cytosol/metabolism
- DNA Fragmentation
- Dimethyl Sulfoxide/pharmacology
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/physiopathology
- Mice
- Neuroblastoma/genetics
- Neuroblastoma/metabolism
- Neuroblastoma/pathology
- Neuroblastoma/physiopathology
- PrPC Proteins/biosynthesis
- Prion Proteins
- Prions/biosynthesis
- Prions/genetics
- RNA, Messenger/biosynthesis
- Time Factors
- Transcriptional Activation
- Transfection
- Up-Regulation
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Dimitrios D Gougoumas
- Department of Pharmaceutical Sciences, Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | |
Collapse
|
52
|
Nicolas O, Gavín R, Braun N, Ureña JM, Fontana X, Soriano E, Aguzzi A, del Río JA. Bcl‐2 overexpression delays caspase‐3 activation and rescues cerebellar degeneration in prion‐deficient mice that overexpress amino‐terminally truncated prion. FASEB J 2007; 21:3107-17. [PMID: 17494993 DOI: 10.1096/fj.06-7827com] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prnp knockout mice that overexpress an amino-truncated form of PrPc (deltaPrP) are ataxic and display cerebellar cell loss and premature death. Studies on the molecular and intracellular events that trigger cell death in these mutants may contribute to elucidate the functions of PrPc and to the design of treatments for prion disease. Here we examined the effects of Bcl-2 overexpression in neurons on the development of the neurological syndrome and cerebellar pathology of deltaPrP. We show that deltaPrP overexpression activates the stress-associated kinases ERK1-2 in reactive astroglia, p38 and the phosphorylation of p53, which leads to the death of cerebellar neurons in mutant mice. We found that the expression of deltaPrP in cell lines expressing very low levels of PrPc strongly induces the activation of apoptotic pathways, thereby leading to caspase-3 activation and cell death, which can be prevented by coexpressing Bcl-2. Finally, we corroborate in vivo that neuronal-directed Bcl-2 overexpression in deltaPrP mice (deltaPrP Bcl-2) markedly reduces caspase-3 activation, glial activation, and neuronal cell death in cerebellum by improving locomotor deficits and life expectancy.
Collapse
Affiliation(s)
- Oriol Nicolas
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Priola SA, Vorberg I. Molecular aspects of disease pathogenesis in the transmissible spongiform encephalopathies. Mol Biotechnol 2007; 33:71-88. [PMID: 16691009 DOI: 10.1385/mb:33:1:71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The transmissible spongiform encephalopathies (TSE), or prion diseases, are a group of rare, fatal, and transmissible neurodegenerative diseases of mammals for which there are no known viral or bacterial etiological agents. The bovine form of these diseases, bovine spongiform encephalopathy (BSE), has crossed over into humans to cause variant Creutzfeldt-Jakob disease. As a result, BSE and the TSE diseases are now considered a significant threat to human health. Understanding the basic mechanisms of TSE pathogenesis is essential for the development of effective TSE diagnostic tests and anti-TSE therapeutic regimens. This review provides an overview of the molecular mechanisms that underlie this enigmatic group of diseases.
Collapse
Affiliation(s)
- Suzette A Priola
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 S. 4th St., Hamilton, MT 59840, USA.
| | | |
Collapse
|
54
|
Baumann F, Tolnay M, Brabeck C, Pahnke J, Kloz U, Niemann HH, Heikenwalder M, Rülicke T, Bürkle A, Aguzzi A. Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO J 2007; 26:538-47. [PMID: 17245436 PMCID: PMC1783444 DOI: 10.1038/sj.emboj.7601510] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 11/17/2006] [Indexed: 11/08/2022] Open
Abstract
PrP(C)-deficient mice expressing prion protein variants with large amino-proximal deletions (termed PrP(DeltaF)) suffer from neurodegeneration, which is rescued by full-length PrP(C). We now report that expression of PrP(DeltaCD), a PrP variant lacking 40 central residues (94-134), induces a rapidly progressive, lethal phenotype with extensive central and peripheral myelin degeneration. This phenotype was rescued dose-dependently by coexpression of full-length PrP(C) or PrP(C) lacking all octarepeats. Expression of a PrP(C) variant lacking eight residues (114-121) was innocuous in the presence or absence of full-length PrP(C), yet enhanced the toxicity of PrP(DeltaCD) and diminished that of PrP(DeltaF). Therefore, deletion of the entire central domain generates a strong recessive-negative mutant of PrP(C), whereas removal of residues 114-121 creates a partial agonist with context-dependent action. These findings suggest that myelin integrity is maintained by a constitutively active neurotrophic protein complex involving PrP(C), whose effector domain encompasses residues 94-134.
Collapse
Affiliation(s)
- Frank Baumann
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Markus Tolnay
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Christine Brabeck
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jens Pahnke
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Ulrich Kloz
- Transgenic Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Hartmut H Niemann
- Strukturbiologie Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | | | - Thomas Rülicke
- Institute of Laboratory Animal Science and Research Center Biomodels Austria University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
- Department of Pathology, Institute of Neuropathology, University Hospital of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland. Tel.: +41 1 255 2107; Fax: +41 1 255 4402; E-mail:
| |
Collapse
|
55
|
Vana K, Zuber C, Nikles D, Weiss S. Novel aspects of prions, their receptor molecules, and innovative approaches for TSE therapy. Cell Mol Neurobiol 2007; 27:107-28. [PMID: 17151946 DOI: 10.1007/s10571-006-9121-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/20/2006] [Indexed: 10/23/2022]
Abstract
1. Prion diseases are a group of rare, fatal neurodegenerative diseases, also known as transmissible spongiform encephalopathies (TSEs), that affect both animals and humans and include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt-Jakob disease (CJD) in humans. TSEs are usually rapidly progressive and clinical symptoms comprise dementia and loss of movement coordination due to the accumulation of an abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(c)). 2. This article reviews the current knowledge on PrP(c) and PrP(Sc), prion replication mechanisms, interaction partners of prions, and their cell surface receptors. Several strategies, summarized in this article, have been investigated for an effective antiprion treatment including development of a vaccination therapy and screening for potent chemical compounds. Currently, no effective treatment for prion diseases is available. 3. The identification of the 37 kDa/67 kDa laminin receptor (LRP/LR) and heparan sulfate as cell surface receptors for prions, however, opens new avenues for the development of alternative TSE therapies.
Collapse
Affiliation(s)
- Karen Vana
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377, München, Germany
| | | | | | | |
Collapse
|
56
|
Sunyach C, Cisse MA, da Costa CA, Vincent B, Checler F. The C-terminal products of cellular prion protein processing, C1 and C2, exert distinct influence on p53-dependent staurosporine-induced caspase-3 activation. J Biol Chem 2006; 282:1956-63. [PMID: 17121821 DOI: 10.1074/jbc.m609663200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The cellular prion protein (PrP(c)) undergoes various endopro-teolytic attacks within its N-terminal domain, leading to the production of C-terminal fragments (C) tethered to the plasma membrane and soluble N-terminal peptides (N). One of these cleavages occurs at position 110/111, thereby generating C1 and N1 products. We have reported that disintegrins ADAM-10, -9, and -17 participate either directly or indirectly to this proteolytic event. An alternative proteolytic event taking place around residue 90 yields C2 and N2 fragments. The putative function of these proteolytic fragments remained to be established. We have set up two novel human embryonic kidney 293 cell lines stably overexpressing either C1 or C2. We show that C1 potentiates staurosporine-induced caspase-3 activation through a p53-dependent mechanism. Thus, C1 positively controls p53 transcription and mRNA levels and increases p53-like immunoreactivity and activity. C1-induced caspase-3 activation remained unaffected by the blockade of endocytosis in HEK 293 cells and was abolished in p53-deficient fibroblasts. Conversely, overexpression of the C2 fragment did not significantly sensitize HEK 293 cells to apoptotic stimuli and did not modify p53 mRNA levels or activity. Therefore, the nature of the proteolytic cleavage taking place on PrP(c) yielded C-terminal catabolites with distinct function and could be seen as a switch mechanism controlling the function of the PrP(c) in cell survival.
Collapse
Affiliation(s)
- Claire Sunyach
- Institut de Pharmacologie Moleculaire et cellulaire du CNRS, UMR6097, Université Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | | | | | | | | |
Collapse
|
57
|
Baker KL, Daniels SB, Lennington JB, Lardaro T, Czap A, Notti RQ, Cooper O, Isacson O, Frasca S, Conover JC. Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse. J Comp Neurol 2006; 498:747-61. [PMID: 16927265 DOI: 10.1002/cne.21090] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The MRL mouse is unique in its capacity for regenerative healing of wounds. This regenerative ability includes complete closure, with little scarring, of wounds to the ear pinna and repair of cardiac muscle, without fibrosis, following cryoinjury. Here, we examine whether neurogenic zones within the MRL brain show enhanced regenerative capacity. The largest neurogenic zone in the adult brain, the subventricular zone (SVZ), lies adjacent to the lateral wall of the lateral ventricle and is responsible for replacement of interneuron populations within the olfactory bulb. Initial gross observation of the anterior forebrain in MRL mice revealed enlarged lateral ventricles; however, little neurodegeneration was detected within the SVZ or surrounding tissues. Instead, increased proliferation within the SVZ was observed, based on incorporation of the thymidine analogue bromodeoxyuridine. Closer examination using electron microscopy revealed that a significant number of SVZ astrocytes interpolated within the ependyma and established contact with the ventricle. In addition, subependymal, protuberant nests of cells, consisting primarily of neuroblasts, were found along the anterior SVZ of MRL mice. Whole mounts of the lateral wall of the lateral ventricle stained for the neuroblast marker doublecortin revealed normal formation of chains of migratory neuroblasts along the entire wall and introduction of enhanced green fluorescent protein-tagged retrovirus into the lateral ventricles confirmed that newly generated neuroblasts were able to track into the olfactory bulb.
Collapse
Affiliation(s)
- Kasey L Baker
- Center for Regenerative Biology, University of Connecticut, Storrs, 06269, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Zhang Y, Qin K, Wang J, Hung T, Zhao RY. Dividing roles of prion protein in staurosporine-mediated apoptosis. Biochem Biophys Res Commun 2006; 349:759-68. [PMID: 16950206 DOI: 10.1016/j.bbrc.2006.08.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 08/17/2006] [Indexed: 11/24/2022]
Abstract
Prion protein (PrPC) is a normal cellular glycoprotein that is expressed in almost all tissues including the central nervous system. Much attention has been focused on this protein because conversion of the normal PrPC to the diseased form (PrPSc) plays an essential role in transmissible spongiform encephalopathies such as mad cow disease and Creutzfeldt-Jakob disease. In spite of the extensive effort, the normal physiological function of PrPC remains elusive. Emerging evidence suggests that PrPC plays a protective role against cellular stresses including apoptosis induced by various pro-apoptotic agents such as Bax and staurosporine (STS), however, other reports showed overexpression of PrPC enhances STS-mediated apoptosis. In this study, we took a different approach by depleting endogenous PrPC using specific interfering RNA technique and compared the depleting and overproducing effects of PrPC on STS-induced apoptosis in neuro-2a (N2a) cells. We demonstrate here that down-regulation of PrPC sensitizes N2a cells to STS-induced cytotoxicity and apoptosis. The enhanced apoptosis induced by STS was shown by increased DNA fragmentation, immunoreactivity of Bax, and caspase-3 cleavage. We also showed that overproduction of PrPC had little or no effect on STS-mediated DNA fragmentation in N2a cells but it augments STS-mediated apoptosis in HEK293 cells, suggesting a cell line-specific effect. In addition, the inhibitory effect of PrPC on STS-mediated cellular stress appears to be modulated in part through induction of cell cycle G2 accumulation. Together, our data suggest that physiological level of endogenous PrPC plays a protective role against STS-mediated cellular stress. Loss of this protection could render cells more prone to cellular insults such as STS.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, People's Republic of China
| | | | | | | | | |
Collapse
|
59
|
Konturek PC, Bazela K, Kukharskyy V, Bauer M, Hahn EG, Schuppan D. Helicobacter pylori upregulates prion protein expression in gastric mucosa: a possible link to prion disease. World J Gastroenterol 2006; 11:7651-6. [PMID: 16437693 PMCID: PMC4727223 DOI: 10.3748/wjg.v11.i48.7651] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Pathological prion protein (PrP(sc)) is responsible for the development of transmissible spongiform encephalopathies (TSE). While PrPc enters the organism via the oral route, less data is available to know about its uptake and the role of gastrointestinal inflammation on the expression of prion precursor PrPc, which is constitutively expressed in the gastric mucosa. METHODS We studied PrPc expression in the gastric mucosa of 10 Helicobacter pylori-positive patients before and after successful H pylori eradication compared to non-infected controls using RT-PCR and Western blotting. The effect of central mediators of gastric inflammation, i.e., gastrin, prostaglandin E(2) (PGE(2)), tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1beta) on PrPc expression was analyzed in gastric cell lines. RESULTS PrPc expression was increased in H pylori-infection compared with non-infected controls and decreased to normal after successful eradication. Gastrin, PGE(2), and IL-1beta dose-dependently upregulated PrPc in gastric cells, while TNF-alpha had no effect. CONCLUSION H pylori infection leads to the upregulation of gastric PrPc expression. This can be linked to H pylori induced hypergastrinemia and increased mucosal PGE(2) and IL-1beta synthesis. H pylori creates a milieu for enhanced propagation of prions in the gastrointestinal tract.
Collapse
Affiliation(s)
- Peter C Konturek
- Department of Medicine I, University Erlangen-Nuremberg, Germany.
| | | | | | | | | | | |
Collapse
|
60
|
Radovanovic I, Braun N, Giger OT, Mertz K, Miele G, Prinz M, Navarro B, Aguzzi A. Truncated prion protein and Doppel are myelinotoxic in the absence of oligodendrocytic PrPC. J Neurosci 2006; 25:4879-88. [PMID: 15888663 PMCID: PMC6724775 DOI: 10.1523/jneurosci.0328-05.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cellular prion protein PrP(C) confers susceptibility to transmissible spongiform encephalopathies, yet its normal function is unknown. Although PrP(C)-deficient mice develop and live normally, expression of amino proximally truncated PrP(C) (DeltaPrP) or of its structural homolog Doppel (Dpl) causes cerebellar degeneration that is prevented by coexpression of full-length PrP(C). We now report that mice expressing DeltaPrP or Dpl suffer from widespread leukoencephalopathy. Oligodendrocyte-specific expression of full-length PrP(C) under control of the myelin basic protein (MBP) promoter repressed leukoencephalopathy and vastly extended survival but did not prevent cerebellar granule cell (CGC) degeneration. Conversely, neuron-specific PrP(C) expression under control of the neuron-specific enolase (NSE) promoter antagonized CGC degeneration but not leukoencephalopathy. PrP(C) was found in purified myelin and in cultured oligodendrocytes of both wild-type and MBP-PrP transgenic mice but not in NSE-PrP mice. These results identify white-matter damage as an extraneuronal PrP-associated pathology and suggest a previously unrecognized role of PrP(C) in myelin maintenance.
Collapse
Affiliation(s)
- Ivan Radovanovic
- Institute of Neuropathology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Fornai F, Ferrucci M, Gesi M, Bandettini di Poggio A, Giorgi FS, Biagioni F, Paparelli A. A hypothesis on prion disorders: Are infectious, inherited, and sporadic causes so distinct? Brain Res Bull 2006; 69:95-100. [PMID: 16533656 DOI: 10.1016/j.brainresbull.2005.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 12/06/2005] [Indexed: 11/21/2022]
Abstract
Prion diseases include a group of either sporadic, inherited or infectious disorders characterized by spongiform neurodegeneration and reactive glyosis in several brain regions. Whatever the origin, the neuropathological hallmark of prion diseases is the presence of brain aggregates containing an altered isoform of a cellular protein, named prion protein. Recent findings show the potential toxicity of the normal cellular prion protein, which occurs when its physiological metabolism is altered. In particular, several studies demonstrate that accumulation of the prion protein in the cytosol can be a consequence of an increased amount of misfolded prion proteins, a derangement of the correct protein trafficking or a reduced activity of the ubiquitin-proteasome system. The same effects can be a consequence of a mutation in the gene coding for the prion protein. In all these conditions, one assists to accumulation and self-replication of insoluble prion proteins which leads to a severe disease resembling what observed following typical "prion infections". This article provides an opinion aimed at reconciling the classic Prusiner's theory concerning the "prion concepts" with the present knowledge arising from experimental studies on neurodegenerative disorders, suggesting a few overlapping steps in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- F Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, via Roma 55, 56126 Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
62
|
Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen F, Gu Y, Hasegawa H, Salehi-Rad S, Wang L, Rogaeva E, Fraser P, Robinson B, St George-Hyslop P, Tandon A. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 2005; 280:34025-32. [PMID: 16079129 DOI: 10.1074/jbc.m505143200] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mutations in the PTEN-induced kinase 1 (PINK1) gene have recently been implicated in autosomal recessive early onset Parkinson Disease (1, 2). To investigate the role of PINK1 in neurodegeneration, we designed human and murine neuronal cell lines expressing either wild-type PINK1 or PINK1 bearing a mutation associated with Parkinson Disease. We show that under basal and staurosporine-induced conditions, the number of terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive cells was lower in wild-type PINK1 expressing SH-SY5Y cells than in mock-transfected cells. This phenotype was due to a PINK1-mediated reduction in cytochrome c release from mitochondria, which prevents subsequent caspase-3 activation. We show that overexpression of wild-type PINK1 strongly reduced both basal and staurosporine-induced caspase 3 activity. Overexpression of wild-type PINK1 also reduced the levels of cleaved caspase-9, caspase-3, caspase-7, and activated poly(ADP-ribose) polymerase under both basal and staurosporine-induced conditions. In contrast, Parkinson disease-related mutations and a kinase-inactive mutation in PINK1 abrogated the protective effect of PINK1. Together, these results suggest that PINK1 reduces the basal neuronal pro-apoptotic activity and protects neurons from staurosporine-induced apoptosis. Loss of this protective function may therefore underlie the degeneration of nigral dopaminergic neurons in patients with PINK1 mutations.
Collapse
Affiliation(s)
- Agnes Petit
- Centre for Research in Neurodegenerative Diseases, Department of Medicine (Neurology), University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Gudkov AV, Komarova EA. Prospective therapeutic applications of p53 inhibitors. Biochem Biophys Res Commun 2005; 331:726-36. [PMID: 15865929 DOI: 10.1016/j.bbrc.2005.03.153] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Indexed: 10/25/2022]
Abstract
p53, in addition to being a key cancer preventive factor, is also a determinant of cancer treatment side effects causing excessive apoptotic death in several normal tissues during cancer therapy. p53 inhibitory strategy has been suggested to protect normal tissues from chemo- and radiotherapy, and to treat other pathologies associated with stress-mediated activation of p53. This strategy was validated by isolation and testing of small molecule p53 inhibitor pifithrin-alpha that demonstrated broad tissue protecting capacity. However, in some normal tissues and tumors p53 plays protective role by inducing growth arrest and preventing cells from premature entrance into mitosis and death from mitotic catastrophe. Inhibition of this function of p53 can sensitize tumor cells to chemo- and radiotherapy, thus opening new potential application of p53 inhibitors and justifying the need in pharmacological agents targeting specifically either pro-apoptotic or growth arrest functions of p53.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
64
|
Abstract
The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and activation of p53 can trigger apoptosis in many cell types including neurons. Apoptosis is a form of programmed cell death that occurs in neurons during development of the nervous system and may also be responsible for neuronal deaths that occur in neurological disorders such as stroke, and Alzheimer's and Parkinson's diseases. p53 production is rapidly increased in neurons in response to a range of insults including DNA damage, oxidative stress, metabolic compromise, and cellular calcium overload. Target genes induced by p53 in neurons include those encoding the pro-apoptotic proteins Bax and the BH3-only proteins PUMA and Noxa. In addition to such transcriptional control of the cell death machinery, p53 may more directly trigger apoptosis by acting at the level of mitochondria, a process that can occur in synapses (synaptic apoptosis). Preclinical data suggest that agents that inhibit p53 may be effective therapeutics for several neurodegenerative conditions.
Collapse
Affiliation(s)
- Carsten Culmsee
- Department Pharmazie, Pharmazeutische Biologie-Biotechnologie, Ludwig-Maximilians-Universität, München, Germany.
| | | |
Collapse
|
65
|
Sunyach C, Checler F. Combined pharmacological, mutational and cell biology approaches indicate that p53-dependent caspase 3 activation triggered by cellular prion is dependent on its endocytosis. J Neurochem 2005; 92:1399-407. [PMID: 15748158 DOI: 10.1111/j.1471-4159.2004.02989.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have previously established that cellular prion PrP(c) elicited p53-dependent caspase 3 activation in various transfected cells and primary cultured neurons. Although we showed that PrP(c) modulates p53 expression at both transcriptional and post-transcriptional levels, it remained unclear as to whether cellular prion signals at the membrane to trigger intracellular messages or if prion proapoptotic activity necessitated its translocation into the cytoplasm. Here, we compare the processing and cell death-related functions of PrP(c) with those of a mutated PrP(c) protein (N-3F4 MoPrP(c)) in which three basic N-terminal residues responsible for PrP(c) internalization had been mutated. As expected, N-3F4 MoPrP(c) remains exclusively located at the membrane, whereas PrP(c) partitions between membrane-associated and intracellular compartments, but both, proteins undergo constitutive and protein kinase C-regulated disintegrin-mediated proteolysis, leading to N1 fragment production. Unlike PrP(c), N-3F4 MoPrP(c) expression does not induce caspase 3 activation after stimulation by staurosporine and was inert on p53 expression and promoter transactivation in both human cells and TSM1 mouse neurons. Interestingly, PrP(c)-induced caspase 3 activation was closely linked to its endocytosis. This phenotype was enhanced by proteasomal inhibition and prevented by sucrose treatment. Accordingly, immunohistochemical analysis showed that protection towards degradation increased intracellular PrP(c)-like immunoreactivity, while sucrose treatments fully abolished PrP(c) intracellular expression and co-localization with transferrin. Altogether, we, establish here, using combined biochemical, mutational and cell biology approaches, that the caspase 3 activation associated with cellular prion is closely related to its ability to undergo endocytosis. This is, to our knowledge, the first direct description of an endocytosis-dependent PrP(c)-associated function.
Collapse
Affiliation(s)
- Claire Sunyach
- Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | |
Collapse
|
66
|
Hachiya NS, Yamada M, Watanabe K, Jozuka A, Ohkubo T, Sano K, Takeuchi Y, Kozuka Y, Sakasegawa Y, Kaneko K. Mitochondrial localization of cellular prion protein (PrPC) invokes neuronal apoptosis in aged transgenic mice overexpressing PrPC. Neurosci Lett 2005; 374:98-103. [PMID: 15644272 DOI: 10.1016/j.neulet.2004.10.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 10/12/2004] [Accepted: 10/13/2004] [Indexed: 11/20/2022]
Abstract
Recent studies suggest that the disease isoform of prion protein (PrPSc) is non-neurotoxic in the absence of cellular isoform of prion protein (PrPC), indicating that PrPC may participate directly in the neurodegenerative damage by itself. Meanwhile, transgenic mice harboring a high-copy-number of wild-type mouse (Mo) PrPC develop a spontaneous neurological dysfunction in an age-dependent manner, even without inoculation of PrPSc and thus, investigations of these aged transgenic mice may lead to the understanding how PrPC participate in the neurotoxic property of PrP. Here we demonstrate mitochondria-mediated neuronal apoptosis in aged transgenic mice overexpressing wild-type MoPrPC (Tg(MoPrP)4053/FVB). The aged mice exhibited an aberrant mitochondrial localization of PrPC concomitant with decreased proteasomal activity, while younger littermates did not. Such aberrant mitochondrial localization was accompanied by decreased mitochondrial manganese superoxide dismutase (Mn-SOD) activity, cytochrome c release into the cytosol, caspase-3 activation, and DNA fragmentation, most predominantly in hippocampal neuronal cells. Following cell culture studies confirmed that decrease in the proteasomal activity is fundamental for the PrPC-related, mitochondria-mediated apoptosis. Hence, the neurotoxic property of PrPC could be explained by the mitochondria-mediated neuronal apoptosis, at least in part.
Collapse
Affiliation(s)
- Naomi S Hachiya
- Department of a Cortical Function Disorders, National Institute of Neuroscience (NIN), National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
He Z, Cho YY, Ma WY, Choi HS, Bode AM, Dong Z. Regulation of Ultraviolet B-induced Phosphorylation of Histone H3 at Serine 10 by Fyn Kinase. J Biol Chem 2005; 280:2446-54. [PMID: 15537652 DOI: 10.1074/jbc.m402053200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ultraviolet B (UVB) induces phosphorylation of histone H3 at serine 10, and mitogen-activated protein kinases are involved in this signal transduction pathway. Here we provide evidence that Fyn kinase, a member of the Src kinase family, is involved in the UVB-induced phosphorylation of histone H3 at serine 10. UVB distinctly increased Fyn kinase activity and phosphorylation. Fyn kinase inhibitors 4-amino-5-(4-chlorophenyl)-7(t-butyl)pyrazol(3,4-d)pyramide and leflunomide, an Src kinase inhibitor, suppressed both UVB-induced phosphorylation of histone H3 at serine 10 and Fyn kinase activity and phosphorylation. UVB-induced phosphorylation of histone H3 at serine 10 was blocked by either a dominant-negative mutant of Fyn (DNM-Fyn) kinase or small interfering RNA of Fyn kinase. UVB-induced phosphorylation and activities of ERKs and protein kinase B/Akt were markedly inhibited by DNM-Fyn kinase. However, DNM-Fyn kinase did not inhibit UVB-induced phosphorylation of p38 MAPK or c-Jun N-terminal kinases. Active Fyn kinase phosphorylated histone H3 at serine 10 in vitro, and the phosphorylated Fyn kinase could translocate into the nucleus of HaCaT cells. These results indicate that Fyn kinase plays a key role in the UVB-induced phosphorylation of histone H3 at serine 10.
Collapse
Affiliation(s)
- Zhiwei He
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | |
Collapse
|
68
|
Roucou X, LeBlanc AC. Cellular prion protein neuroprotective function: implications in prion diseases. J Mol Med (Berl) 2004; 83:3-11. [PMID: 15645198 DOI: 10.1007/s00109-004-0605-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
Prion protein can display two conformations: a normal cellular conformation (PrP) and a pathological conformation associated with prion diseases (PrP(Sc)). Three complementary strategies are used by researchers investigating how PrP is involved in the pathogenesis of prion diseases: elucidation of the normal function of PrP, determination of how PrP(Sc) is toxic to neurons, and unraveling the mechanism for the conversion of PrP to PrP(Sc). We review the normal function of PrP as an antioxidant and an antiapoptotic protein in vivo and in vitro. This review also addresses contrasting evidence that PrP is cytotoxic. Finally, we discuss the implication of the neuroprotective role of PrP in prion diseases.
Collapse
Affiliation(s)
- Xavier Roucou
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, 3755 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
| | | |
Collapse
|
69
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2450-2453. [DOI: 10.11569/wcjd.v12.i10.2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
70
|
Diarra-Mehrpour M, Arrabal S, Jalil A, Pinson X, Gaudin C, Piétu G, Pitaval A, Ripoche H, Eloit M, Dormont D, Chouaib S. Prion protein prevents human breast carcinoma cell line from tumor necrosis factor alpha-induced cell death. Cancer Res 2004; 64:719-27. [PMID: 14744790 DOI: 10.1158/0008-5472.can-03-1735] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To define genetic determinants of tumor cell resistance to the cytotoxic action of tumor necrosis factor alpha (TNF), we have applied cDNA microarrays to a human breast carcinoma TNF-sensitive MCF7 cell line and its established TNF-resistant clone. Of a total of 5760 samples of cDNA examined, 3.6% were found to be differentially expressed in TNF-resistant 1001 cells as compared with TNF-sensitive MCF7 cells. On the basis of available literature data, the striking finding is the association of some differentially expressed genes involved in the phosphatidylinositol-3-kinase/Akt signaling pathway. More notably, we found that the PRNP gene coding for the cellular prion protein (PrP(c)), was 17-fold overexpressed in the 1001 cell line as compared with the MCF7 cell line. This differential expression was confirmed at the cell surface by immunostaining that indicated that PrP(c) is overexpressed at both mRNA and protein levels in the TNF-resistant derivative. Using recombinant adenoviruses expressing the human PrP(c,) our data demonstrate that PrP(c) overexpression converted TNF-sensitive MCF7 cells into TNF-resistant cells, at least in part, by a mechanism involving alteration of cytochrome c release from mitochondria and nuclear condensation.
Collapse
Affiliation(s)
- Maryam Diarra-Mehrpour
- Laboratoire de Cytokines et Immunologie des Tumeurs Humaines, Institut National de la Santé et de la Recherche Médicale U-487, Institut Gustave Roussy Pavillon de Recherche 1 and Institut Fédératif de Recherche, Villejuif, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
The normal function of prion protein (PrP) is usually disregarded at the expense of the more fascinating role of PrP in transmissible prion diseases. However, the normal PrP may play an important role in cellular function in the central nervous system, since PrP is highly expressed in neurons and motifs in the sequence of PrP are conserved in evolution. The finding that prion null mice do not have a significant overt phenotype suggests that the normal function of PrP is of minor importance. However, the absence of PrP in cells or in vivo contributes to an increased susceptibility to oxidative stress or apoptosis-inducing insults. An alternative explanation is that the PrP normal function is so important that it is redundant. Probing into the characteristics of PrP has revealed a number of features that could mediate important cellular functions. The neuroprotective actions so far identified with PrP are initiated through cell surface signaling, antioxidant activity, or anti-Bax function. Here, we review the characteristics of the PrP and the evidence that PrP protects against neurodegeneration and neuronal cell death.
Collapse
Affiliation(s)
- Xavier Roucou
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Malcolm Gains
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Andréa C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
72
|
Anderson L, Rossi D, Linehan J, Brandner S, Weissmann C. Transgene-driven expression of the Doppel protein in Purkinje cells causes Purkinje cell degeneration and motor impairment. Proc Natl Acad Sci U S A 2004; 101:3644-9. [PMID: 15007176 PMCID: PMC373516 DOI: 10.1073/pnas.0308681101] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Doppel (Dpl) and Prion (PrP) proteins show 25% sequence identity and share several structural features with only minor differences. Dpl shows a PrP-like fold of its C-terminal globular domain and lacks the flexible N-terminal tail. The physiological functions of both proteins are unknown. However, ubiquitous Dpl overexpression in the brain of PrP knockout mice correlated with ataxia and Purkinje cell degeneration in the cerebellum. Interestingly, a similar phenotype was reported in transgenic mice expressing an N-terminally truncated PrP (DeltaPrP) in Purkinje cells by the L7 promoter (TgL7-DeltaPrP). Coexpression of full-length PrP rescued both the neurological syndromes caused by either Dpl or DeltaPrP. To evaluate whether the two proteins caused cerebellar neurodegeneration by the same mechanism, we generated transgenic mice selectively expressing Dpl in Purkinje cells by the same L7 promoter. Such mice showed ataxia and Purkinje cell loss that depended on the level of Dpl expression. Interestingly, the effects of high levels of Dpl were not counterbalanced by the presence of two Prnp alleles. By contrast, PrP coexpression was sufficient to abrogate motor impairment and to delay the neurodegenerative process caused by moderate level of Dpl. A similar situation was reported for the corresponding TgL7-DeltaPrP mice supporting the concept that Dpl and DeltaPrP cause cell death, possibly by interfering with a common signaling cascade essential for cell survival.
Collapse
Affiliation(s)
- Lucy Anderson
- Medical Research Council Prion Unit and Department of Neurodegenerative Disease, and Division of Neuropathology, Institute of Neurology, University College, Queen Square, London WC1N 3BG, United Kingdom
| | | | | | | | | |
Collapse
|
73
|
Mattson MP, Sherman M. Perturbed signal transduction in neurodegenerative disorders involving aberrant protein aggregation. Neuromolecular Med 2004; 4:109-32. [PMID: 14528056 DOI: 10.1385/nmm:4:1-2:109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Accepted: 06/25/2003] [Indexed: 02/04/2023]
Abstract
Aggregation of abnormal proteins, both inside and outside of cells, is a prominent feature of major neurodegenerative disorders, including Alzheimer's, Parkinson's, polyglutamine expansion, and prion diseases. Other articles in this special issue of NeuroMolecular Medicine describe the genetic and molecular factors that promote aberrant protein aggregation. In the present article, we consider how it is that pathogenic aggregation-prone proteins compromise signal transduction pathways that regulate neuronal plasticity and survival. In some cases the protein in question may have widespread and relatively nonspecific effects on signaling. For example, amyloid beta-peptide induces membrane-associated oxidative stress, which impairs the function of various receptors, ion channels and transporters, as well as downstream kinases and transcription factors. Other proteins, such as polyglutamine repeat proteins, may affect specific protein -protein interactions, including those involved in signaling pathways activated by neurotransmitters, neurotrophins, and steroid hormones. Synapses are particularly sensitive to abnormal protein aggregation and impaired synaptic signaling may trigger apoptosis and related cell death cascades. Impairment of signal transduction in protein aggregation disorders may be amenable to therapy as demonstrated by a recent study showing that dietary restriction can preserve synaptic function and protect neurons in a mouse model of Huntington's disease. Finally, emerging findings are revealing how activation of certain signaling pathways can suppress protein aggregation and/or the cytotoxicity resulting from the abnormal protein aggregation. A better understanding of how abnormal protein aggregation occurs and how it affects and is affected by specific signal transduction pathways, is leading to novel approaches for preventing and treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Baltimore, MD 21224, USA.
| | | |
Collapse
|
74
|
Silveira JR, Caughey B, Baron GS. Prion protein and the molecular features of transmissible spongiform encephalopathy agents. Curr Top Microbiol Immunol 2004; 284:1-50. [PMID: 15148986 DOI: 10.1007/978-3-662-08441-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Transmissible spongiform encephalopathy (TSE) diseases, or prion diseases, are neurodegenerative diseases found in a number of mammals, including man. Although they are generally rare, TSEs are always fatal, and as of yet there are no practical therapeutic avenues to slow the course of disease. The epidemic of bovine spongiform encephalopathy (BSE) in the UK greatly increased the awareness of TSE diseases. Although it appears that BSE has not spread to North America, chronic wasting disease (CWD), a TSE found in cervids, is causing significant concern. Despite decades of investigation, the exact nature of the infectious agent of the TSEs is still controversial. Although many questions remain, substantial efforts have been made to understand the molecular features of TSE agents, with the hope of enhancing diagnosis and treatment of disease, as well as understanding the fundamental nature of the infectious agent itself. This review summarizes the current understanding of these molecular features, focusing on the role of the prion protein (PrP(c)) and its relationship to the disease-associated isoform (PrP(Sc)).
Collapse
Affiliation(s)
- J R Silveira
- Laboratory of Persistent Viral Diseases, NIAID, NIH, Rocky Mountain Laboratories, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | |
Collapse
|
75
|
Paitel E, Sunyach C, Alves da Costa C, Bourdon JC, Vincent B, Checler F. Primary Cultured Neurons Devoid of Cellular Prion Display Lower Responsiveness to Staurosporine through the Control of p53 at Both Transcriptional and Post-transcriptional Levels. J Biol Chem 2004; 279:612-8. [PMID: 14570892 DOI: 10.1074/jbc.m310453200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We assessed the contribution of the cellular prion protein (PrPc) in the control of neuronal apoptosis by examining cell death in both human cells and murine primary cultured neurons. We first confirmed our previous finding that staurosporine-induced caspase activation is increased by PrPc overexpression in HEK293 cells. We show here that this phenotype is fully dependent on p53 and that the control of p53 activity by PrPc occurs at both transcriptional and post-transcriptional levels in human cells. Of most interest, we demonstrate that neuronal endogenous PrPc also controls a p53-dependent pro-apoptotic phenotype. Thus, DNA fragmentation and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling)-positive cells were lower in primary cultured neurons derived from Zrch-1 mice embryos in which PrPc has been abrogated than in wild-type neurons. PrPc knock-out neurons also displayed drastically diminished caspase-3-like activity and immunoreactivity together with reduced p53 expression and transcriptional activity, a phenotype complemented in part by PrPc transfection. Interestingly, p53 expression was also reduced in the brain of adult Prnp-/- mice. Neuronal PrPc likely controls p53 at a post-transcriptional level because the deletion of cellular prion protein is accompanied by a higher Mdm2-like immunoreactivity and reduced phosphorylated p38 MAPK expression. We therefore propose that the physiological function of endogenous cellular prion could be to regulate p53-dependent caspase-3-mediated neuronal cell death. This phenotype likely occurs through up-regulation of p53 promoter transactivation as well as downstream by controlling p53 stability via Mdm2 expression.
Collapse
Affiliation(s)
- Erwan Paitel
- Institut de Pharmacologie Moléculaire et Cellulaire du CNRS, UMR6097, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
76
|
Nanoparticles for delivery of pifithrins to combat cell death due to chemotherapy and radiation. J Drug Deliv Sci Technol 2004. [DOI: 10.1016/s1773-2247(04)50046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
77
|
da Costa CA, Masliah E, Checler F. Beta-synuclein displays an antiapoptotic p53-dependent phenotype and protects neurons from 6-hydroxydopamine-induced caspase 3 activation: cross-talk with alpha-synuclein and implication for Parkinson's disease. J Biol Chem 2003; 278:37330-5. [PMID: 12867415 DOI: 10.1074/jbc.m306083200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have established stable transfectants expressing beta-synuclein in TSM1 neurons. We show that in basal and staurosporine-induced conditions the number of terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL)-positive beta-synuclein-expressing neurons was drastically lower than in mock-transfected TSM1 cells. This was accompanied by a lower DNA fragmentation as evidenced by the reduction of propidium iodide incorporation measured by fluorescence-activated cell sorter analysis. beta-Synuclein strongly reduces staurosporine-induced caspase 3 activity and immunoreactivity. We establish that beta-synuclein triggers a drastic reduction of p53 expression and transcriptional activity. This was accompanied by increased Mdm2 immunoreactivity while p38 expression appeared enhanced, indicating that beta-synuclein-induced p53 down-regulation likely occurs at a post-transcriptional level. We showed previously that alpha-synuclein displays an antiapoptotic function that was abolished by the dopaminergic derived toxin 6-hydroxydopamine (6OHDA). Interestingly, beta-synuclein retains its ability to protect TSM1 neurons even after 6OHDA treatment. Furthermore, beta-synuclein restores the antiapoptotic function of alpha-synuclein in 6OHDA-treated neurons. Altogether, our data document for the first time that beta-synuclein protects neurons from staurosporine and 6OHDA-stimulated caspase activation in a p53-dependent manner. Our observation that beta-synuclein contributes to restoration of the alpha-synuclein antiapoptotic function abolished by 6OHDA may have direct implications for Parkinson's disease pathology. In this context, the cross-talk between these two parent proteins is discussed.
Collapse
Affiliation(s)
- Cristine Alves da Costa
- Institut de Pharmacologie Moléculaire et Cellulaire of Centre National de la Recherche Scientifique, UMR6097, 06560 Valbonne, France
| | | | | |
Collapse
|
78
|
Dupuis L, Loeffler JP. Protéine cellulaire du prion : au-delà des encéphalopathies spongiformes. Med Sci (Paris) 2003; 19:783-5. [PMID: 14593605 DOI: 10.1051/medsci/20031989783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
79
|
Affiliation(s)
- Adriano Aguzzi
- Department of Pathology, University Hospital of Zürich, Schmelzbergstr. 12, CH-8091 Zürich, Switzerland.
| | | |
Collapse
|