51
|
Mamo G. Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 156:433-464. [PMID: 27432247 DOI: 10.1007/10_2016_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.Anaerobes play health-promoting roles through their bioactive products as well as application of whole cells. The bioactive compounds produced by these microorganisms include antimicrobial agents and substances such as immunomodulators and vitamins. Bacteriocins produced by anaerobes have been in use as preservatives for about 40 years. Because these substances are effective at low concentrations, encounter relatively less resistance from bacteria and are safe to use, there is a growing interest in these antimicrobial agents. Moreover, several antibiotics have been reported from the cultures of anaerobes. Closthioamide and andrimid produced by Clostridium cellulolyticum and Pantoea agglomerans, respectively, are examples of novel antibiotics of anaerobe origin. The discovery of such novel bioactive compounds is expected to encourage further studies which can potentially lead to tapping of the antibiotic production potential of this fascinating group of microorganisms.Anaerobes are widely used in preparation of fermented foods and beverages. During the fermentation processes, these organisms produce a number of bioactive compounds including anticancer, antihypertensive and antioxidant substances. The well-known health promoting effect of fermented food is mostly due to these bioactive compounds. In addition to their products, whole cell anaerobes have very interesting applications for enhancing the quality of life. Probiotic anaerobes have been on the market for many years and are receiving growing acceptance as health promoters. Gut anaerobes have been used to treat patients suffering from severe Clostridium difficile infection syndromes including diarrhoea and colitis which cannot be treated by other means. Whole cell anaerobes are also studied to detect and cure cancer. In recent years, evidence is emerging that anaerobes constituting the microbiome are linked to our overall health. A dysfunctional microbiome is believed to be the cause of many diseases including cancer, allergy, infection, obesity, diabetes and several other disorders. Maintaining normal microflora is believed to alleviate some of these serious health problems. Indeed, the use of probiotics and prebiotics which favourably change the number and composition of the gut microflora is known to render a health promoting effect. Our interaction with the microbiome anaerobes is complex. In fact, not only our lives but also our identities are more closely linked to the anaerobic microbial world than we may possibly imagine. We are just at the beginning of unravelling the secret of association between the microbiome and human body, and a clear understanding of the association may bring a paradigm shift in the way we diagnose and treat diseases and disorders. This chapter highlights some of the work done on bioactive compounds and whole cell applications of the anaerobes that foster human health and improve the quality of life.
Collapse
Affiliation(s)
- Gashaw Mamo
- Biotechnology, Center for Chemistry & Chemical Engineering, Lund University, 221 00, Lund, Sweden.
| |
Collapse
|
52
|
Flores-Ferrándiz J, Chinchilla R. Organocatalytic enantioselective conjugate addition of aldehydes to maleimides in deep eutectic solvents. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2016.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
53
|
Matilla MA, Nogellova V, Morel B, Krell T, Salmond GPC. Biosynthesis of the acetyl-CoA carboxylase-inhibiting antibiotic, andrimid in Serratia is regulated by Hfq and the LysR-type transcriptional regulator, AdmX. Environ Microbiol 2016; 18:3635-3650. [PMID: 26914969 PMCID: PMC5216899 DOI: 10.1111/1462-2920.13241] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/20/2016] [Indexed: 12/30/2022]
Abstract
Infections due to multidrug-resistant bacteria represent a major global health challenge. To combat this problem, new antibiotics are urgently needed and some plant-associated bacteria are a promising source. The rhizobacterium Serratia plymuthica A153 produces several bioactive secondary metabolites, including the anti-oomycete and antifungal haterumalide, oocydin A and the broad spectrum polyamine antibiotic, zeamine. In this study, we show that A153 produces a second broad spectrum antibiotic, andrimid. Using genome sequencing, comparative genomics and mutagenesis, we defined new genes involved in andrimid (adm) biosynthesis. Both the expression of the adm gene cluster and regulation of andrimid synthesis were investigated. The biosynthetic cluster is operonic and its expression is modulated by various environmental cues, including temperature and carbon source. Analysis of the genome context of the adm operon revealed a gene encoding a predicted LysR-type regulator, AdmX, apparently unique to Serratia strains. Mutagenesis and gene expression assays demonstrated that AdmX is a transcriptional activator of the adm gene cluster. At the post-transcriptional level, the expression of the adm cluster is positively regulated by the RNA chaperone, Hfq, in an RpoS-independent manner. Our results highlight the complexity of andrimid biosynthesis - an antibiotic with potential clinical and agricultural utility.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
- Department of Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasProf. Albareda 1Granada18008Spain
| | - Veronika Nogellova
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| | - Bertrand Morel
- Department of Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasProf. Albareda 1Granada18008Spain
| | - Tino Krell
- Department of Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasProf. Albareda 1Granada18008Spain
| | - George P. C. Salmond
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| |
Collapse
|
54
|
Ishikawa F, Sugimoto H, Kakeya H. In Vitro Investigation of Crosstalk between Fatty Acid and Polyketide Synthases in the Andrimid Biosynthetic Assembly Line. Chembiochem 2016; 17:2137-2142. [DOI: 10.1002/cbic.201600410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Fumihiro Ishikawa
- Department of System Chemotherapy and Molecular Sciences; Division of Bioinformatics and Chemical Genomics; Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo Kyoto 606-8501 Japan
| | - Hiroyasu Sugimoto
- Department of System Chemotherapy and Molecular Sciences; Division of Bioinformatics and Chemical Genomics; Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo Kyoto 606-8501 Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences; Division of Bioinformatics and Chemical Genomics; Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
55
|
Stereoselective conjugate addition of carbonyl compounds to maleimides using a diaminomethyleneindenedione organocatalyst. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
56
|
Silvers MA, Pakhomova S, Neau DB, Silvers WC, Anzalone N, Taylor CM, Waldrop GL. Crystal Structure of Carboxyltransferase from Staphylococcus aureus Bound to the Antibacterial Agent Moiramide B. Biochemistry 2016; 55:4666-74. [PMID: 27471863 DOI: 10.1021/acs.biochem.6b00641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dramatic increase in the prevalence of antibiotic-resistant bacteria has necessitated a search for new antibacterial agents against novel targets. Moiramide B is a natural product, broad-spectrum antibiotic that inhibits the carboxyltransferase component of acetyl-CoA carboxylase, which catalyzes the first committed step in fatty acid synthesis. Herein, we report the 2.6 Å resolution crystal structure of moiramide B bound to carboxyltransferase. An unanticipated but significant finding was that moiramide B bound as the enol/enolate. Crystallographic studies demonstrate that the (4S)-methyl succinimide moiety interacts with the oxyanion holes of the enzyme, supporting the notion that an anionic enolate is the active form of the antibacterial agent. Structure-activity studies demonstrate that the unsaturated fatty acid tail of moiramide B is needed only for entry into the bacterial cell. These results will allow the design of new antibacterial agents against the bacterial form of carboxyltransferase.
Collapse
Affiliation(s)
| | | | - David B Neau
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853-1301, United States.,Northeastern Collaborative Access Team, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - William C Silvers
- Department of Radiology, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | | | | | | |
Collapse
|
57
|
Antibacterial Activity of Juglone against Staphylococcus aureus: From Apparent to Proteomic. Int J Mol Sci 2016; 17:ijms17060965. [PMID: 27322260 PMCID: PMC4926497 DOI: 10.3390/ijms17060965] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
The proportion of foodborne disease caused by pathogenic microorganisms is rising worldwide, with staphylococcal food poisoning being one of the main causes of this increase. Juglone is a plant-derived 1,4-naphthoquinone with confirmed antibacterial and antitumor activities. However, the specific mechanism underlying its antibacterial activity against Staphylococcus aureus remains unclear. To elucidate the mechanism underlying its antibacterial activity, isobaric tags for relative and absolute quantitation methods of quantitative proteomics were applied for analysis of the 53 proteins that were differentially expressed after treatment with juglone. Combined with verification experiments, such as detection of changes in DNA and RNA content and quantification of oxidative damage, our results suggested that juglone effectively increased the protein expression of oxidoreductase and created a peroxidative environment within the cell, significantly reducing cell wall formation and increasing membrane permeability. We hypothesize that juglone binds to DNA and reduces DNA transcription and replication directly. This is the first study to adopt a proteomic approach to investigate the antibacterial mechanism of juglone.
Collapse
|
58
|
Nájera C, Miguel Sansano J, Gómez-Bengoa E. Heterocycle-based bifunctional organocatalysts in asymmetric synthesis. PURE APPL CHEM 2016. [DOI: 10.1515/pac-2016-0403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractDifferent chiral bifunctional organocatalysts derived from trans-cyclohexane-1,2-diamine bearing different types of guanidine units able to form-hydrogen bonding activation have been designed. Conformational rigid 2-aminobenzimidazoles bearing a tertiary amino group have been used in enantioselective Michael type reactions of activated methylene compounds to nitroalkenes. The C2 symmetric bis(2-aminobenzimidazole) derivatives the appropriate organocatalyst for the conjugate addition of 1,3-dicarbonyl compounds to maleimides as well as for the SN1 reaction of benzylic alcohols with carbon nucleophiles. 2-Aminobenzimidazoles bearing a primary amino group have shown excellent catalytic activity in the Michael reaction of aldehydes to maleimides and nitroalkenes. Diastereomeric 2-aminopyrimidines bearing a prolinamide unit have been incorporated in the trans-cyclohexane-1,2-diamine scaffold and have been used for the inter- and intra-molecular direct aldol reaction under solvent-free conditions. For the Michael reaction of aldehydes with maleimides the primary amine 2-aminopyrimidine has shown excellent efficiency as organocatalyst. The bifunctional character of these organocatalysts has been demonstrated by means of DFT calculations.
Collapse
Affiliation(s)
- Carmen Nájera
- 1Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - José Miguel Sansano
- 1Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Enrique Gómez-Bengoa
- 2Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco, Apdo. 1072, E-20018 San Sebastián, Spain
| |
Collapse
|
59
|
Khan SN, Khan AU. Breaking the Spell: Combating Multidrug Resistant 'Superbugs'. Front Microbiol 2016; 7:174. [PMID: 26925046 PMCID: PMC4757689 DOI: 10.3389/fmicb.2016.00174] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
Multidrug-resistant (MDR) bacteria have become a severe threat to community wellbeing. Conventional antibiotics are getting progressively more ineffective as a consequence of resistance, making it imperative to realize improved antimicrobial options. In this review we emphasized the microorganisms primarily reported of being resistance, referred as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae) accentuating their capacity to "escape" from routine antimicrobial regimes. The upcoming antimicrobial agents showing great potential and can serve as alternative therapeutic options are discussed. We also provided succinct overview of two evolving technologies; specifically network pharmacology and functional genomics profiling. Furthermore, In vivo imaging techniques can provide novel targets and a real time tool for potential lead molecule assessment. The employment of such approaches at prelude of a drug development process, will enables more informed decisions on candidate drug selection and will maximize or predict therapeutic potential before clinical testing.
Collapse
Affiliation(s)
| | - Asad U. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| |
Collapse
|
60
|
Zhao BL, Zhang D, Liu L, Du DM. Organocatalytic asymmetric Michael addition of α-alkylidene succinimides to nitrostyrenes. Org Biomol Chem 2016; 14:6337-45. [DOI: 10.1039/c6ob00711b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A squaramide-catalyzed asymmetric Michael addition of α-alkylidene succinimides to nitrostyrenes for the synthesis of chiral succinimide derivatives was described.
Collapse
Affiliation(s)
- Bo-Liang Zhao
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
| | - Dongxiang Zhang
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
| | - Lei Liu
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
| | - Da-Ming Du
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- People's Republic of China
| |
Collapse
|
61
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
62
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
63
|
Diomandé SE, Nguyen-The C, Guinebretière MH, Broussolle V, Brillard J. Role of fatty acids in Bacillus environmental adaptation. Front Microbiol 2015; 6:813. [PMID: 26300876 PMCID: PMC4525379 DOI: 10.3389/fmicb.2015.00813] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022] Open
Abstract
The large bacterial genus Bacillus is widely distributed in the environment and is able to colonize highly diverse niches. Some Bacillus species harbor pathogenic characteristics. The fatty acid (FA) composition is among the essential criteria used to define Bacillus species. Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species. Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH. Like many other Gram-positive bacteria, Bacillus strains display a well-defined FA synthesis II system that is equilibrated with a FA degradation pathway and regulated to efficiently respond to the needs of the cell. Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment. Some of these exogenous FAs may provide a powerful strategy for preserving food against contamination by the Bacillus pathogenic strains responsible for foodborne illness.
Collapse
Affiliation(s)
- Sara E Diomandé
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Christophe Nguyen-The
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Marie-Hélène Guinebretière
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Véronique Broussolle
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Julien Brillard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; UMR 1333 DGIMI, INRA, Université de Montpellier Montpellier, France
| |
Collapse
|
64
|
Flores-Ferrándiz J, Fiser B, Gómez-Bengoa E, Chinchilla R. Solvent-Induced Reversal of Enantioselectivity in the Synthesis of Succinimides by the Addition of Aldehydes to Maleimides Catalysed by Carbamate-Monoprotected 1,2-Diamines. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403415] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
65
|
Chang FY, Kawashima SA, Brady SF. Mutations in the proteolipid subunits of the vacuolar H+-ATPase provide resistance to indolotryptoline natural products. Biochemistry 2014; 53:7123-31. [PMID: 25319670 PMCID: PMC4238801 DOI: 10.1021/bi501078j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Indolotryptoline natural products
represent a small family of structurally
unique chromopyrrolic acid-derived antiproliferative agents. Like
many prospective anticancer agents before them, the exploration of
their potential clinical utility has been hindered by the limited
information known about their mechanism of action. To study the mode
of action of two closely related indolotryptolines (BE-54017, cladoniamide
A), we selected for drug resistant mutants using a multidrug resistance-suppressed
(MDR-sup) Schizosaccharomyces pombe strain. As fission
yeast maintains many of the basic cancer-relevant cellular processes
present in human cells, it represents an appealing model to use in
determining the potential molecular target of antiproliferative natural
products through resistant mutant screening. Full genome sequencing
of resistant mutants identified mutations in the c and c′ subunits
of the proteolipid substructure of the vacuolar H+-ATPase
complex (V-ATPase). This collection of resistance-conferring mutations
maps to a site that is distant from the nucleotide-binding sites of
V-ATPase and distinct from sites found to confer resistance to known
V-ATPase inhibitors. Acid vacuole staining, cross-resistance studies,
and direct c/c′ subunit mutagenesis all suggest that indolotryptolines
are likely a structurally novel class of V-ATPase inhibitors. This
work demonstrates the general utility of resistant mutant selection
using MDR-sup S. pombe as a rapid and potentially
systematic approach for studying the modes of action of cytotoxic
natural products.
Collapse
Affiliation(s)
- Fang-Yuan Chang
- Laboratory of Genetically Encoded Small Molecules, Howard Hughes Medical Institute, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | | | | |
Collapse
|
66
|
Silvers MA, Robertson GT, Taylor CM, Waldrop GL. Design, Synthesis, and Antibacterial Properties of Dual-Ligand Inhibitors of Acetyl-CoA Carboxylase. J Med Chem 2014; 57:8947-59. [DOI: 10.1021/jm501082n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Molly A. Silvers
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Gregory T. Robertson
- Department
of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Carol M. Taylor
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Grover L. Waldrop
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
67
|
Shin Y, Han S, De U, Park J, Sharma S, Mishra NK, Lee EK, Lee Y, Kim HS, Kim IS. Ru(II)-Catalyzed Selective C–H Amination of Xanthones and Chromones with Sulfonyl Azides: Synthesis and Anticancer Evaluation. J Org Chem 2014; 79:9262-71. [PMID: 25225782 DOI: 10.1021/jo501709f] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Youngmi Shin
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sangil Han
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Umasankar De
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jihye Park
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Satyasheel Sharma
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Neeraj Kumar Mishra
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Eui-Kyung Lee
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Youngil Lee
- Department
of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyung Sik Kim
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - In Su Kim
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
68
|
Machado D, Rodrigues LR, Rocha I. A kinetic model for curcumin production in Escherichia coli. Biosystems 2014; 125:16-21. [PMID: 25218090 DOI: 10.1016/j.biosystems.2014.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/01/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Curcumin is a natural compound obtained from turmeric, and is well known for its pharmacological effects. In this work, we design a heterologous pathway for industrial production of curcumin in Escherichia coli. A kinetic model of the pathway is then developed and connected to a kinetic model of the central carbon metabolism of E. coli. This model is used for optimization of the mutant strain through a rational design approach, and two manipulation targets are identified for overexpression. Dynamic simulations are then performed to compare the curcumin production profiles of the different mutant strains. Our results show that it is possible to obtain a significant improvement in the curcumin production rates with the proposed mutants. The kinetic model here developed can be an important framework to optimize curcumin production at an industrial scale and add value to its biomedical potential.
Collapse
Affiliation(s)
- Daniel Machado
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Lígia R Rodrigues
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Isabel Rocha
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
69
|
Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. PERSPECTIVES IN MEDICINAL CHEMISTRY 2014; 6:25-64. [PMID: 25232278 PMCID: PMC4159373 DOI: 10.4137/pmc.s14459] [Citation(s) in RCA: 871] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed.
Collapse
Affiliation(s)
- Richard J Fair
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Berlin, Germany
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
70
|
Flores-Ferrándiz J, Chinchilla R. Solvent-dependent enantioswitching in the Michael addition of α,α-disubstituted aldehydes to maleimides organocatalyzed by mono-N-Boc-protected cyclohexa-1,2-diamines. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.tetasy.2014.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
71
|
Brylinski M, Waldrop GL. Computational redesign of bacterial biotin carboxylase inhibitors using structure-based virtual screening of combinatorial libraries. Molecules 2014; 19:4021-45. [PMID: 24699146 PMCID: PMC6271951 DOI: 10.3390/molecules19044021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/19/2014] [Accepted: 03/25/2014] [Indexed: 01/22/2023] Open
Abstract
As the spread of antibiotic resistant bacteria steadily increases, there is an urgent need for new antibacterial agents. Because fatty acid synthesis is only used for membrane biogenesis in bacteria, the enzymes in this pathway are attractive targets for antibacterial agent development. Acetyl-CoA carboxylase catalyzes the committed and regulated step in fatty acid synthesis. In bacteria, the enzyme is composed of three distinct protein components: biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase. Fragment-based screening revealed that amino-oxazole inhibits biotin carboxylase activity and also exhibits antibacterial activity against Gram-negative organisms. In this report, we redesigned previously identified lead inhibitors to expand the spectrum of bacteria sensitive to the amino-oxazole derivatives by including Gram-positive species. Using 9,411 small organic building blocks, we constructed a diverse combinatorial library of 1.2×10⁸ amino-oxazole derivatives. A subset of 9×10⁶ of these compounds were subjected to structure-based virtual screening against seven biotin carboxylase isoforms using similarity-based docking by eSimDock. Potentially broad-spectrum antibiotic candidates were selected based on the consensus ranking by several scoring functions including non-linear statistical models implemented in eSimDock and traditional molecular mechanics force fields. The analysis of binding poses of the top-ranked compounds docked to biotin carboxylase isoforms suggests that: (1) binding of the amino-oxazole anchor is stabilized by a network of hydrogen bonds to residues 201, 202 and 204; (2) halogenated aromatic moieties attached to the amino-oxazole scaffold enhance interactions with a hydrophobic pocket formed by residues 157, 169, 171 and 203; and (3) larger substituents reach deeper into the binding pocket to form additional hydrogen bonds with the side chains of residues 209 and 233. These structural insights into drug-biotin carboxylase interactions will be tested experimentally in in vitro and in vivo systems to increase the potency of amino-oxazole inhibitors towards both Gram-negative as well as Gram-positive species.
Collapse
Affiliation(s)
- Michal Brylinski
- Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Grover L Waldrop
- Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
72
|
Genome-wide saturation mutagenesis of Burkholderia pseudomallei K96243 predicts essential genes and novel targets for antimicrobial development. mBio 2014; 5:e00926-13. [PMID: 24520057 PMCID: PMC3950516 DOI: 10.1128/mbio.00926-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infectious disease for which there is no vaccine. B. pseudomallei is listed as a tier 1 select agent, and as current therapeutic options are limited due to its natural resistance to most antibiotics, the development of new antimicrobial therapies is imperative. To identify drug targets and better understand the complex B. pseudomallei genome, we sought a genome-wide approach to identify lethal gene targets. As B. pseudomallei has an unusually large genome spread over two chromosomes, an extensive screen was required to achieve a comprehensive analysis. Here we describe transposon-directed insertion site sequencing (TraDIS) of a library of over 106 transposon insertion mutants, which provides the level of genome saturation required to identify essential genes. Using this technique, we have identified a set of 505 genes that are predicted to be essential in B. pseudomallei K96243. To validate our screen, three genes predicted to be essential, pyrH, accA, and sodB, and a gene predicted to be nonessential, bpss0370, were independently investigated through the generation of conditional mutants. The conditional mutants confirmed the TraDIS predictions, showing that we have generated a list of genes predicted to be essential and demonstrating that this technique can be used to analyze complex genomes and thus be more widely applied. Burkholderia pseudomallei is a lethal human pathogen that is considered a potential bioterrorism threat and has limited treatment options due to an unusually high natural resistance to most antibiotics. We have identified a set of genes that are required for bacterial growth and thus are excellent candidates against which to develop potential novel antibiotics. To validate our approach, we constructed four mutants in which gene expression can be turned on and off conditionally to confirm that these genes are required for the bacteria to survive.
Collapse
|
73
|
Song ZT, Zhang T, Du HL, Ma ZW, Zhang CH, Tao JC. Highly EnantioselectiveMichael Addition Promoted by a New Diterpene-Derived Bifunctional Thiourea Catalyst: A Doubly Stereocontrolled Approach to Chiral Succinimide Derivatives. Chirality 2014; 26:121-7. [DOI: 10.1002/chir.22279] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 11/17/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Zhong-Tai Song
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan People's Republic of China
| | - Tao Zhang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan People's Republic of China
- School of Pharmacy; Xinxiang Medical University; Xinxiang Henan People's Republic of China
| | - Hai-Long Du
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan People's Republic of China
| | - Zhi-Wei Ma
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan People's Republic of China
| | - Chang-Hua Zhang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan People's Republic of China
| | - Jing-Chao Tao
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan People's Republic of China
| |
Collapse
|
74
|
Matviiuk T, Mori G, Lherbet C, Rodriguez F, Pasca MR, Gorichko M, Guidetti B, Voitenko Z, Baltas M. Synthesis of 3-heteryl substituted pyrrolidine-2,5-diones via catalytic Michael reaction and evaluation of their inhibitory activity against InhA and Mycobacterium tuberculosis. Eur J Med Chem 2014; 71:46-52. [DOI: 10.1016/j.ejmech.2013.10.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/16/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
|
75
|
Pidot SJ, Coyne S, Kloss F, Hertweck C. Antibiotics from neglected bacterial sources. Int J Med Microbiol 2014; 304:14-22. [DOI: 10.1016/j.ijmm.2013.08.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
76
|
Matviiuk T, Rodriguez F, Saffon N, Mallet-Ladeira S, Gorichko M, de Jesus Lopes Ribeiro AL, Pasca MR, Lherbet C, Voitenko Z, Baltas M. Design, chemical synthesis of 3-(9H-fluoren-9-yl)pyrrolidine-2,5-dione derivatives and biological activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis. Eur J Med Chem 2013; 70:37-48. [DOI: 10.1016/j.ejmech.2013.09.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
|
77
|
Avila A, Chinchilla R, Gómez-Bengoa E, Nájera C. Enantioselective Michael addition of aldehydes to maleimides organocatalysed by chiral 1,2-diamines: an experimental and theoretical study. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
78
|
Pang S, Octavia S, Feng L, Liu B, Reeves PR, Lan R, Wang L. Genomic diversity and adaptation of Salmonella enterica serovar Typhimurium from analysis of six genomes of different phage types. BMC Genomics 2013; 14:718. [PMID: 24138507 PMCID: PMC3853940 DOI: 10.1186/1471-2164-14-718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 10/11/2013] [Indexed: 12/28/2022] Open
Abstract
Background Salmonella enterica serovar Typhimurium (or simply Typhimurium) is the most common serovar in both human infections and farm animals in Australia and many other countries. Typhimurium is a broad host range serovar but has also evolved into host-adapted variants (i.e. isolated from a particular host such as pigeons). Six Typhimurium strains of different phage types (defined by patterns of susceptibility to lysis by a set of bacteriophages) were analysed using Illumina high-throughput genome sequencing. Results Variations between strains were mainly due to single nucleotide polymorphisms (SNPs) with an average of 611 SNPs per strain, ranging from 391 SNPs to 922 SNPs. There were seven insertions/deletions (indels) involving whole or partial gene deletions, four inactivation events due to IS200 insertion and 15 pseudogenes due to early termination. Four of these inactivated or deleted genes may be virulence related. Nine prophage or prophage remnants were identified in the six strains. Gifsy-1, Gifsy-2 and the sopE2 and sspH2 phage remnants were present in all six genomes while Fels-1, Fels-2, ST64B, ST104 and CP4-57 were variably present. Four strains carried the 90-kb plasmid pSLT which contains several known virulence genes. However, two strains were found to lack the plasmid. In addition, one strain had a novel plasmid similar to Typhi strain CT18 plasmid pHCM2. Conclusion The genome data suggest that variations between strains were mainly due to accumulation of SNPs, some of which resulted in gene inactivation. Unique genetic elements that were common between host-adapted phage types were not found. This study advanced our understanding on the evolution and adaptation of Typhimurium at genomic level.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | |
Collapse
|
79
|
Desriac F, Jégou C, Balnois E, Brillet B, Le Chevalier P, Fleury Y. Antimicrobial peptides from marine proteobacteria. Mar Drugs 2013; 11:3632-60. [PMID: 24084784 PMCID: PMC3826127 DOI: 10.3390/md11103632] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 01/03/2023] Open
Abstract
After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of "classical" antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs.
Collapse
Affiliation(s)
- Florie Desriac
- University of Brest, LUBEM EA 3882, SFR 148, Quimper 29000, France.
| | | | | | | | | | | |
Collapse
|
80
|
Jeong YC, Moloney MG. Synthesis and antibacterial activity of monocyclic 3-carboxamide tetramic acids. Beilstein J Org Chem 2013; 9:1899-906. [PMID: 24204399 PMCID: PMC3817595 DOI: 10.3762/bjoc.9.224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/23/2013] [Indexed: 11/23/2022] Open
Abstract
A chemical library of carboxamide-substituted tetramates designed by analogy with antibacterial natural products, a method for their rapid construction, and the evaluation of their antibacterial activity is reported.
Collapse
Affiliation(s)
- Yong-Chul Jeong
- Chemistry Research Laboratory, University of Oxford, Mansfield Rd, University of Oxford, OX1 3TA, UK
| | | |
Collapse
|
81
|
Rodríguez-Sánchez DG, Pacheco A, García-Cruz MI, Gutiérrez-Uribe JA, Benavides-Lozano JA, Hernández-Brenes C. Isolation and structure elucidation of avocado seed (Persea americana) lipid derivatives that inhibit Clostridium sporogenes endospore germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7403-11. [PMID: 23829335 DOI: 10.1021/jf401407s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Avocado fruit extracts are known to exhibit antimicrobial properties. However, the effects on bacterial endospores and the identity of antimicrobial compounds have not been fully elucidated. In this study, avocado seed extracts were tested against Clostridium sporogenes vegetative cells and active endospores. Bioassay-guided purification of a crude extract based on inhibitory properties linked antimicrobial action to six lipid derivatives from the family of acetogenin compounds. Two new structures and four compounds known to exist in nature were identified as responsible for the activity. Structurally, most potent molecules shared features of an acetyl moiety and a trans-enone group. All extracts produced inhibition zones on vegetative cells and active endospores. Minimum inhibitory concentrations (MIC) of isolated molecules ranged from 7.8 to 15.6 μg/mL, and bactericidal effects were observed for an enriched fraction at 19.5 μg/mL. Identified molecules showed potential as natural alternatives to additives and antibiotics used by the food and pharmaceutical industries to inhibit Gram-positive spore-forming bacteria.
Collapse
Affiliation(s)
- Dariana Graciela Rodríguez-Sánchez
- Department of Biotechnology and Food Engineering, School of Biotechnology and Food, Tecnológico de Monterrey-Campus Monterrey, Monterrey, NL, México
| | | | | | | | | | | |
Collapse
|
82
|
Avila A, Chinchilla R, Gómez-Bengoa E, Nájera C. Enantioselective Synthesis of Succinimides by Michael Addition of Aldehydes to Maleimides Organocatalyzed by Chiral Primary Amine-Guanidines. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300492] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
83
|
Denkel LA, Rhen M, Bange FC. Biotin sulfoxide reductase contributes to oxidative stress tolerance and virulence in Salmonella enterica serovar Typhimurium. MICROBIOLOGY-SGM 2013; 159:1447-1458. [PMID: 23657680 DOI: 10.1099/mic.0.067256-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxidative stress converts sulfur residues of molecules like biotin and methionine into their oxidized forms. Here we show that the biotin sulfoxide reductase BisC of Salmonella enterica serovar Typhimurium (S. Typhimurium) repairs both oxidized biotin and oxidized methionine. Exposure to H2O2 in vitro reduced survival of a S. Typhimurium ΔbisC mutant. Furthermore, replication of the ΔbisC mutant inside IFN-γ activated macrophages was reduced. In vitro tolerance of the mutant to H2O2 was restored by plasmids carrying either bisC or msrA; the latter encodes a methioinine sulfoxide reductase. In contrast, the proliferation defect inside IFN-γ activated macrophages was rescued by bisC but not by msrA. Thus growth of the ΔbisC mutant in IFN-γ activated macrophages required repair of oxidized biotin. Both the ΔbisC and a biotin auxotrophic (ΔbioB) mutant were attenuated in mice, suggesting that besides biotin biosynthesis, biotin repair was essential for virulence of S. Typhimurium in vivo. Attenuation of the ΔbisC mutant was more pronounced in 129 mice that produce a stronger oxidative response. These results show that BisC is essential for full virulence of Salmonella by contributing to the defence of S. Typhimurium against host-derived stress, and provides an attractive drug target since it is not present in mammals.
Collapse
Affiliation(s)
- Luisa A Denkel
- Dept. of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, 30625 Hannover, Germany
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Franz-Christoph Bange
- Dept. of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, 30625 Hannover, Germany
| |
Collapse
|
84
|
Broussard TC, Price AE, Laborde SM, Waldrop GL. Complex Formation and Regulation of Escherichia coli Acetyl-CoA Carboxylase. Biochemistry 2013; 52:3346-57. [DOI: 10.1021/bi4000707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tyler C. Broussard
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| | - Amanda E. Price
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| | - Susan M. Laborde
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| | - Grover L. Waldrop
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| |
Collapse
|
85
|
Andrimid production at low temperature by a psychrotolerant Serratia proteamaculans strain. World J Microbiol Biotechnol 2013; 29:1773-81. [DOI: 10.1007/s11274-013-1338-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/24/2013] [Indexed: 12/29/2022]
|
86
|
A capillary electrophoretic assay for acetyl coenzyme A carboxylase. Anal Biochem 2013; 437:32-8. [PMID: 23435309 DOI: 10.1016/j.ab.2013.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/24/2013] [Accepted: 02/07/2013] [Indexed: 01/18/2023]
Abstract
A simple off-column capillary electrophoretic (CE) assay for measuring acetyl coenzyme A carboxylase holoenzyme (holo-ACC) activity and inhibition was developed. The two reactions catalyzed by the holo-ACC components, biotin carboxylase (BC) and carboxyltransferase (CT), were simultaneously monitored in this assay. Acetyl coenzyme A (CoA), malonyl-CoA, adenosine triphosphate (ATP), and adenosine diphosphate (ADP) were separated by capillary electrophoresis, and the depletion of ATP and acetyl-CoA as well as the production of ADP and malonyl-CoA were monitored. Inhibition of holo-ACC by the BC inhibitor, 2-amino-N,N-dibenzyloxazole-5-carboxamide, and the carboxyltransferase inhibitor, andrimid, was confirmed using this assay. A previously reported off-column CE assay for only the CT component of ACC was optimized, and an off-column CE assay for the BC component of ACC also was developed.
Collapse
|
87
|
Graff JR, Forschner-Dancause SR, Menden-Deuer S, Long RA, Rowley DC. Vibrio cholerae Exploits Sub-Lethal Concentrations of a Competitor-Produced Antibiotic to Avoid Toxic Interactions. Front Microbiol 2013; 4:8. [PMID: 23386845 PMCID: PMC3559943 DOI: 10.3389/fmicb.2013.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/08/2013] [Indexed: 11/29/2022] Open
Abstract
Vibrio cholerae is a human pathogenic marine bacterium inhabiting coastal regions and is vectored into human food and water supplies via attachment to particles including detritus, phytoplankton, and zooplankton. Particle colonization by the pathogen is inhibited by an antagonistic interaction with the particle-associated Vibrionales bacterium SWAT3, a producer of the antibiotic andrimid. By analyzing the individual movement behaviors of V. cholerae exposed to a gradient of andrimid in a microfluidics device, we show that the pathogen has a concentration dependent avoidance response to sub-lethal concentrations of the pure antibiotic and to the metabolites produced by a growing colony of SWAT3-wild-type. This avoidance behavior includes a 25% increase in swimming speeds, 30% increase in run lengths, and a shift in the direction of the bacteria away from the andrimid source. Consequently, these behavioral shifts at low concentrations of andrimid would lead to higher diffusivity and result in the dispersion of bacteria away from the competitor and source of the antibiotic. Such alterations in motility were not elicited in response to a non-andrimid-producing SWAT3 mutant, suggesting andrimid may be a negative effector of chemotaxis for V. cholerae. The behavioral response of colonizing bacteria to sub-inhibitory concentrations of competitor-produced antibiotics is one mechanism that can influence microbial diversity and interspecific competition on particles, potentially affecting human health in coastal communities and element cycling in the ocean.
Collapse
Affiliation(s)
- Jason R. Graff
- Graduate School of Oceanography, University of Rhode IslandNarragansett, RI, USA
| | | | - Susanne Menden-Deuer
- Graduate School of Oceanography, University of Rhode IslandNarragansett, RI, USA
| | - Richard A. Long
- Department of Biological Sciences and Marine Science Program, University of South CarolinaColumbia, SC, USA
| | - David C. Rowley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode IslandKingston, RI, USA
| |
Collapse
|
88
|
Yitzhaki S, Rostron JE, Xu Y, Rideout MC, Authement RN, Barlow SB, Segall AM. Similarities between exogenously- and endogenously-induced envelope stress: the effects of a new antibacterial molecule, TPI1609-10. PLoS One 2012; 7:e44896. [PMID: 23071502 PMCID: PMC3469575 DOI: 10.1371/journal.pone.0044896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
Antibiotics with novel and/or multiple targets are highly desirable in the face of the steady rise of clinical antibiotic resistance. We have screened and identified small molecules, typified by the compound TPI1609-10 (aka SM10), with antibiotic activity against both gram-positive and gram-negative bacteria. SM10 was screened in vitro to bind branched Holliday junction intermediates of homologous recombination and tyrosine recombinase-mediated recombination; thus, the cellular targets of the small molecules were expected to include the RuvABC Holliday junction resolvasome and the XerCD complex involved in proper segregation of replicated chromosomes to daughter cells. SM10 indeed induces DNA damage and filamentation in E. coli. However, SM10 also induces envelope stress and causes increased production of intracellular reactive oxygen species. In addition, SM10 has similar effects to endogenously-induced envelope stress via overproducing outer membrane proteins (OmpC and OmpF), which also induces the SOS response, chromosome fragmentation, and production of reactive oxygen species. The synergy between SM10, and cerulenin, a fatty acid synthesis inhibitor, together with the SM10 hypersensitivity of cpx and rpoE mutants, further support that SM10's mode of action damages membrane damage. The lethality of SM10 treatment and of OmpC overproduction are observed in both aerobically- and anaerobically-grown cells, and is accompanied by substantial DNA damage even anaerobically. Thus, only some DNA damage is due to reactive oxygen. We propose that membrane depolarization and the potential reduction in intracellular pH, leading to abasic site formation, cause a substantial amount of the DNA damage associated with both SM10 treatment and endogenous envelope stress. While it is difficult to completely exclude effects related to envelope damage as the sources of DNA damage, trapping intermediates associated with DNA repair and chromosome segregation pathways remains very likely. Thus SM10 may have distinct but synergistic modes of action.
Collapse
Affiliation(s)
- Shmuel Yitzhaki
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Jason E. Rostron
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Yan Xu
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Marc C. Rideout
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - R. Nathan Authement
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Steven B. Barlow
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
- Electron Microscopy Facility, San Diego State University, San Diego, California, United States of America
| | - Anca M. Segall
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
89
|
Inhibitors of fatty acid synthesis in prokaryotes and eukaryotes as anti-infective, anticancer and anti-obesity drugs. Future Med Chem 2012; 4:1113-51. [PMID: 22709254 DOI: 10.4155/fmc.12.62] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is a large range of diseases, such diabetes and cancer, which are connected to abnormal fatty acid metabolism in human cells. Therefore, inhibitors of human fatty acid synthase have great potential to manage or treat these diseases. In prokaryotes, fatty acid synthesis is important for signaling, as well as providing starting materials for the synthesis of phospholipids, which are required for the formation of the cell membrane. Recently, there has been renewed interest in the development of new molecules that target bacterial fatty acid synthases for the treatment of bacterial diseases. In this review, we look at the differences and similarities between fatty acid synthesis in humans and bacteria and highlight various small molecules that have been shown to inhibit either the mammalian or bacterial fatty acid synthase or both.
Collapse
|
90
|
Chauhan P, Kaur J, Chimni SS. Asymmetric Organocatalytic Addition Reactions of Maleimides: A Promising Approach Towards the Synthesis of Chiral Succinimide Derivatives. Chem Asian J 2012; 8:328-46. [DOI: 10.1002/asia.201200684] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Indexed: 01/27/2023]
|
91
|
Müller A, Münch D, Schmidt Y, Reder-Christ K, Schiffer G, Bendas G, Gross H, Sahl HG, Schneider T, Brötz-Oesterhelt H. Lipodepsipeptide empedopeptin inhibits cell wall biosynthesis through Ca2+-dependent complex formation with peptidoglycan precursors. J Biol Chem 2012; 287:20270-80. [PMID: 22514280 DOI: 10.1074/jbc.m112.369561] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Empedopeptin is a natural lipodepsipeptide antibiotic with potent antibacterial activity against multiresistant Gram-positive bacteria including methicillin-resistant Staphylococcus aureus and penicillin-resistant Streptococcus pneumoniae in vitro and in animal models of bacterial infection. Here, we describe its so far elusive mechanism of antibacterial action. Empedopeptin selectively interferes with late stages of cell wall biosynthesis in intact bacterial cells as demonstrated by inhibition of N-acetylglucosamine incorporation into polymeric cell wall and the accumulation of the ultimate soluble peptidoglycan precursor UDP-N-acetylmuramic acid-pentapeptide in the cytoplasm. Using membrane preparations and the complete cascade of purified, recombinant late stage peptidoglycan biosynthetic enzymes and their respective purified substrates, we show that empedopeptin forms complexes with undecaprenyl pyrophosphate containing peptidoglycan precursors. The primary physiological target of empedopeptin is undecaprenyl pyrophosphate-N-acetylmuramic acid(pentapeptide)-N-acetylglucosamine (lipid II), which is readily accessible at the outside of the cell and which forms a complex with the antibiotic in a 1:2 molar stoichiometry. Lipid II is bound in a region that involves at least the pyrophosphate group, the first sugar, and the proximal parts of stem peptide and undecaprenyl chain. Undecaprenyl pyrophosphate and also teichoic acid precursors are bound with lower affinity and constitute additional targets. Calcium ions are crucial for the antibacterial activity of empedopeptin as they promote stronger interaction with its targets and with negatively charged phospholipids in the membrane. Based on the high structural similarity of empedopeptin to the tripropeptins and plusbacins, we propose this mechanism of action for the whole compound class.
Collapse
Affiliation(s)
- Anna Müller
- Institute of Medical Microbiology, Immunology and Parasitology-Pharmaceutical Microbiology Section, University of Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Raut N, O'Connor G, Pasini P, Daunert S. Engineered cells as biosensing systems in biomedical analysis. Anal Bioanal Chem 2012; 402:3147-59. [PMID: 22311427 DOI: 10.1007/s00216-012-5756-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/07/2012] [Accepted: 01/16/2012] [Indexed: 01/08/2023]
Abstract
Over the past two decades there have been great advances in biotechnology, including use of nucleic acids, proteins, and whole cells to develop a variety of molecular analytical tools for diagnostic, screening, and pharmaceutical applications. Through manipulation of bacterial plasmids and genomes, bacterial whole-cell sensing systems have been engineered that can serve as novel methods for analyte detection and characterization, and as more efficient and cost-effective alternatives to traditional analytical techniques. Bacterial cell-based sensing systems are typically sensitive, specific and selective, rapid, easy to use, low-cost, and amenable to multiplexing, high-throughput, and miniaturization for incorporation into portable devices. This critical review is intended to provide an overview of available bacterial whole-cell sensing systems for assessment of a variety of clinically relevant analytes. Specifically, we examine whole-cell sensing systems for detection of bacterial quorum sensing molecules, organic and inorganic toxic compounds, and drugs, and for screening of antibacterial compounds for identification of their mechanisms of action. Methods used in the design and development of whole-cell sensing systems are also reviewed.
Collapse
Affiliation(s)
- Nilesh Raut
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | |
Collapse
|
93
|
Polyak SW, Abell AD, Wilce MCJ, Zhang L, Booker GW. Structure, function and selective inhibition of bacterial acetyl-coa carboxylase. Appl Microbiol Biotechnol 2011; 93:983-92. [PMID: 22183085 DOI: 10.1007/s00253-011-3796-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/21/2011] [Accepted: 11/24/2011] [Indexed: 11/24/2022]
Abstract
Acetyl-CoA carboxylase (ACC) catalyses the first committed step in fatty acid biosynthesis: a metabolic pathway required for several important biological processes including the synthesis and maintenance of cellular membranes. ACC employs a covalently attached biotin moiety to bind a carboxyl anion and then transfer it to acetyl-CoA, yielding malonyl-CoA. These activities occur at two different subsites: the biotin carboxylase (BC) and carboxyltransferase (CT). Structural biology, together with small molecule inhibitor studies, has provided new insights into the molecular mechanisms that govern ACC catalysis, specifically the BC and CT subunits. Here, we review these recent findings and highlight key differences between the bacterial and eukaryotic isozymes with a view to establish those features that provide an opportunity for selective inhibition. Especially important are examples of highly selective small molecule inhibitors capable of differentiating between ACCs from different phyla. The implications for early stage antibiotic discovery projects, stemming from these studies, are discussed.
Collapse
Affiliation(s)
- S W Polyak
- School of Molecular and Biomedical Science, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia.
| | | | | | | | | |
Collapse
|
94
|
Dimerization of the bacterial biotin carboxylase subunit is required for acetyl coenzyme A carboxylase activity in vivo. J Bacteriol 2011; 194:72-8. [PMID: 22037404 DOI: 10.1128/jb.06309-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetyl coenzyme A (acteyl-CoA) carboxylase (ACC) is the first committed enzyme of the fatty acid synthesis pathway. Escherichia coli ACC is composed of four different proteins. The first enzymatic activity of the ACC complex, biotin carboxylase (BC), catalyzes the carboxylation of the protein-bound biotin moiety of another subunit with bicarbonate in an ATP-dependent reaction. Although BC is found as a dimer in cell extracts and the carboxylase activities of the two subunits of the dimer are interdependent, mutant BC proteins deficient in dimerization are reported to retain appreciable activity in vitro (Y. Shen, C. Y. Chou, G. G. Chang, and L. Tong, Mol. Cell 22:807-818, 2006). However, in vivo BC must interact with the other proteins of the complex, and thus studies of the isolated BC may not reflect the intracellular function of the enzyme. We have tested the abilities of three BC mutant proteins deficient in dimerization to support growth and report that the two BC proteins most deficient in dimerization fail to support growth unless expressed at high levels. In contrast, the wild-type protein supports growth at low expression levels. We conclude that BC must be dimeric to fulfill its physiological function.
Collapse
|
95
|
Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc Natl Acad Sci U S A 2011; 108:17474-9. [PMID: 21969594 DOI: 10.1073/pnas.1110385108] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The worldwide spread of antibiotic-resistant bacteria has lent urgency to the search for antibiotics with new modes of action that are devoid of preexisting cross-resistances. We previously described a unique class of acyldepsipeptides (ADEPs) that exerts prominent antibacterial activity against Gram-positive pathogens including streptococci, enterococci, as well as multidrug-resistant Staphylococcus aureus. Here, we report that ADEP prevents cell division in Gram-positive bacteria and induces strong filamentation of rod-shaped Bacillus subtilis and swelling of coccoid S. aureus and Streptococcus pneumoniae. It emerged that ADEP treatment inhibits septum formation at the stage of Z-ring assembly, and that central cell division proteins delocalize from midcell positions. Using in vivo and in vitro studies, we show that the inhibition of Z-ring formation is a consequence of the proteolytic degradation of the essential cell division protein FtsZ. ADEP switches the bacterial ClpP peptidase from a regulated to an uncontrolled protease, and it turned out that FtsZ is particularly prone to degradation by the ADEP-ClpP complex. By preventing cell division, ADEP inhibits a vital cellular process of bacteria that is not targeted by any therapeutically applied antibiotic so far. Their unique multifaceted mechanism of action and antibacterial potency makes them promising lead structures for future antibiotic development.
Collapse
|
96
|
Wietz M, Månsson M, Gram L. Chitin stimulates production of the antibiotic andrimid in a Vibrio coralliilyticus strain. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:559-564. [PMID: 23761335 DOI: 10.1111/j.1758-2229.2011.00259.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vibrio coralliilyticus is a putative coral pathogen in tropical oceans, but also possesses antagonistic traits. We previously reported antibacterial activity in Vibrio coralliilyticus strain S2052 based upon the antibiotic andrimid. The purpose of the present study was to determine whether V. coralliilyticus S2052 produces the antibiotic under conditions mimicking natural habitats of vibrios. S2052 synthesized andrimid with both chitin and macroalgal extracts as sole nutrient source. With chitin, the biosynthesis of metabolites other than andrimid was largely abolished, and the yield of the antibiotic per cell was twofold higher. In cultures with Artemia as live chitin model system, S2052 reached up to 10(8) cells ml(-1) , produced andrimid and showed attachment to the exoskeleton and chitinous exuviae. The metabolic focus on andrimid production with chitin indicates that the antibiotic could serve an ecophysiological function. S2052 was compared with two related V. coralliilyticus strains (LMG20984(T) and LMG10953). Despite overall similar secondary metabolomes, LMG20984(T) and LMG10953 did not produce andrimid, and their optimum biosynthetic temperature was 30 as compared with 25°C for S2052. In addition, S2052 appeared less pathogenic towards Artemia than reported for the type strain. Different physiologies of S2052 and closely related strains indicated that V. coralliilyticus subspecies may be adapted to different niches.
Collapse
Affiliation(s)
- Matthias Wietz
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark. Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
97
|
Parsons JB, Rock CO. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery? Curr Opin Microbiol 2011; 14:544-9. [PMID: 21862391 DOI: 10.1016/j.mib.2011.07.029] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 11/30/2022]
Abstract
The emergence of resistance against most current drugs emphasizes the need to develop new approaches to control bacterial pathogens, particularly Staphylococcus aureus. Bacterial fatty acid synthesis is one such target that is being actively pursued by several research groups to develop anti-Staphylococcal agents. Recently, the wisdom of this approach has been challenged based on the ability of a Gram-positive bacterium to incorporate extracellular fatty acids and thus circumvent the inhibition of de novo fatty acid synthesis. The generality of this conclusion has been challenged, and there is enough diversity in the enzymes and regulation of fatty acid synthesis in bacteria to conclude that there is not a single organism that can be considered typical and representative of bacteria as a whole. We are left without a clear resolution to this ongoing debate and await new basic research to define the pathways for fatty acid uptake and that determine the biochemical and genetic mechanisms for the regulation of fatty acid synthesis in Gram-positive bacteria. These crucial experiments will determine whether diversity in the control of this important pathway accounts for the apparently different responses of Gram-positive bacteria to the inhibition of de novo fatty acid synthesis in presence of extracellular fatty acid supplements.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | | |
Collapse
|
98
|
Alves J, Westling L, Peters EC, Harris JL, Trauger JW. Cloning, expression, and enzymatic activity of Acinetobacter baumannii and Klebsiella pneumoniae acetyl-coenzyme A carboxylases. Anal Biochem 2011; 417:103-11. [PMID: 21704013 DOI: 10.1016/j.ab.2011.05.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/02/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
Pathogenic Gram-negative bacteria are a major public health concern because they are causative agents of life-threatening hospital-acquired infections. Due to the increasing rates of resistance to available antibiotics, there is an urgent need to develop new drugs. Acetyl-coenzyme A carboxylase (ACCase) is a promising target for the development of novel antibiotics. We describe here the expression, purification, and enzymatic activity of recombinant ACCases from two clinically relevant Gram-negative pathogens, Acinetobacter baumannii and Klebsiella pneumoniae. Recombinant ACCase subunits (AccAD, AccB, and AccC) were expressed and purified, and the holoenzymes were reconstituted. ACCase enzyme activity was monitored by direct detection of malonyl-coenzyme A (malonyl-CoA) formation by liquid chromatography tandem mass spectrometry (LC-MS/MS). Steady-state kinetics experiments showed similar k(cat) and K(M) values for both enzymes. In addition, similar IC(50) values were observed for inhibition of both enzymes by a previously reported ACCase inhibitor. To provide a higher throughput assay suitable for inhibitor screening, we developed and validated a luminescence-based ACCase assay that monitors ATP depletion. Finally, we established an enzyme activity assay for the isolated AccAD (carboxyltransferase) subunit, which is useful for determining whether novel ACCase inhibitors inhibit the biotin carboxylase or carboxyltransferase site of ACCase. The methods described here could be applied toward the identification and characterization of novel inhibitors.
Collapse
Affiliation(s)
- Juliano Alves
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
99
|
Evans BS, Chen Y, Metcalf WW, Zhao H, Kelleher NL. Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. CHEMISTRY & BIOLOGY 2011; 18:601-7. [PMID: 21609841 PMCID: PMC3102229 DOI: 10.1016/j.chembiol.2011.03.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 02/02/2011] [Accepted: 03/07/2011] [Indexed: 11/17/2022]
Abstract
Many lead compounds in the search for new drugs derive from peptides and polyketides whose similar biosynthetic enzymes have been difficult to engineer for production of new derivatives. Problems with generating multiple analogs in a single experiment along with lack of high-throughput methods for structure-based screening have slowed progress in this area. Here, we use directed evolution and a multiplexed assay to screen a library of >14,000 members to generate three derivatives of the antibacterial compound, andrimid. Another limiting factor in reengineering these mega-enzymes of secondary metabolism has been that commonly used hosts such as Escherichia coli often give lower product titers, so our reengineering was performed in the native producer, Pantoea agglomerans. This integrated in vivo approach can be extended to larger enzymes to create analogs of natural products for bioactivity testing.
Collapse
Affiliation(s)
- Bradley S. Evans
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801
| | - Yunqiu Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208
| | - William W. Metcalf
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| | - Huimin Zhao
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801
| | - Neil L. Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208
| |
Collapse
|
100
|
Abstract
The synthesis of 3-acyltetramic acids, the substructure of bioactive natural products, via O-acylation of tetramic acids with carboxylic acids followed by acyl migration, has been investigated. This acylation sequence is mediated by N,N'-dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP) and is very sensitive to the nature of the nitrogen substituent (R(1)), the nature of the carboxylic acid (R(2)CO(2)H), and the amount of DMAP. Acylation of N-acyl tetramic acids with an alkyl carboxylic acid using 1.3 equiv of DMAP (with 1.1 equiv of DCC) unexpectedly gave the 3-acyltetramic acid directly as a result of acyl migration induced by excess amounts of DMAP. On the other hand, N-unsubstituted, N-alkyl, and N-acyl tetramic acids with alkyl and aromatic carboxylic acids gave the O-acyl tetramic acids by using only 0.1 equiv of DMAP (with 1.1 equiv of DCC); these could be further rearranged to the acyl product by treatment with excess DMAP. The tautomeric equilibrium of these 3-acyltetramic acids in solution was found to strongly depend on the nitrogen substituent group (R(1)) rather than the 3-acyl group.
Collapse
Affiliation(s)
- Yong-Chul Jeong
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, UK
| | | |
Collapse
|