51
|
Perlow-Poehnelt RA, Likhterov I, Wang L, Scicchitano DA, Geacintov NE, Broyde S. Increased flexibility enhances misincorporation: temperature effects on nucleotide incorporation opposite a bulky carcinogen-DNA adduct by a Y-family DNA polymerase. J Biol Chem 2006; 282:1397-408. [PMID: 17090533 DOI: 10.1074/jbc.m606769200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Y-family DNA polymerase Dpo4, from the thermophilic crenarchaeon Sulfolobus solfataricus P2, offers a valuable opportunity to investigate the effect of conformational flexibility on the bypass of bulky lesions because of its ability to function efficiently at a wide range of temperatures. Combined molecular modeling and experimental kinetic studies have been carried out for 10S-(+)-trans-anti-[BP]-N2-dG ((+)-ta-[BP]G), a lesion derived from the covalent reaction of a benzo[a]pyrene metabolite with guanine in DNA, at 55 degrees C and results compared with an earlier study at 37 degrees C (Perlow-Poehnelt, R. A., Likhterov, I., Scicchitano, D. A., Geacintov, N. E., and Broyde, S. (2004) J. Biol. Chem. 279, 36951-36961). The experimental results show that there is more overall nucleotide insertion opposite (+)-ta-[BP]G due to particularly enhanced mismatch incorporation at 55 degrees C compared with 37 degrees C. The molecular dynamics simulations suggest that mismatched nucleotide insertion opposite (+)-ta-[BP]G is increased at 55 degrees C compared with 37 degrees C because the higher temperature shifts the preference of the damaged base from the anti to the syn conformation, with the carcinogen on the more open major groove side. The mismatched dNTP structures are less distorted when the damaged base is syn than when it is anti, at the higher temperature. However, with the normal partner dCTP, the anti conformation with close to Watson-Crick alignment remains more favorable. The molecular dynamics simulations are consistent with the kcat values for nucleotide incorporation opposite the lesion studied, providing structural interpretation of the experimental observations. The observed temperature effect suggests that conformational flexibility plays a role in nucleotide incorporation and bypass fidelity opposite (+)-ta-[BP]G by Dpo4.
Collapse
|
52
|
Batra VK, Shock DD, Prasad R, Beard WA, Hou EW, Pedersen LC, Sayer JM, Yagi H, Kumar S, Jerina DM, Wilson SH. Structure of DNA polymerase beta with a benzo[c]phenanthrene diol epoxide-adducted template exhibits mutagenic features. Proc Natl Acad Sci U S A 2006; 103:17231-6. [PMID: 17079493 PMCID: PMC1630674 DOI: 10.1073/pnas.0605069103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have determined the crystal structure of the human base excision repair enzyme DNA polymerase beta (Pol beta) in complex with a 1-nt gapped DNA substrate containing a template N2-guanine adduct of the tumorigenic (-)-benzo[c]phenanthrene 4R,3S-diol 2S,1R-epoxide in the gap. Nucleotide insertion opposite this adduct favors incorrect purine nucleotides over the correct dCMP and hence can be mutagenic. The structure reveals that the phenanthrene ring system is stacked with the base pair immediately 3' to the modified guanine, thereby occluding the normal binding site for the correct incoming nucleoside triphosphate. The modified guanine base is displaced downstream and prevents the polymerase from achieving the catalytically competent closed conformation. The incoming nucleotide binding pocket is distorted, and the adducted deoxyguanosine is in a syn conformation, exposing its Hoogsteen edge, which can hydrogen-bond with dATP or dGTP. In a reconstituted base excision repair system, repair of a deaminated cytosine (i.e., uracil) opposite the adducted guanine was dramatically decreased at the Pol beta insertion step, but not blocked. The efficiency of gap-filling dCMP insertion opposite the adduct was diminished by >6 orders of magnitude compared with an unadducted templating guanine. In contrast, significant misinsertion of purine nucleotides (but not dTMP) opposite the adducted guanine was observed. Pol beta also misinserts a purine nucleotide opposite the adduct with ungapped DNA and exhibits limited bypass DNA synthesis. These results indicate that Pol beta-dependent base excision repair of uracil opposite, or replication through, this bulky DNA adduct can be mutagenic.
Collapse
Affiliation(s)
- Vinod K. Batra
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - David D. Shock
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Rajendra Prasad
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - William A. Beard
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Esther W. Hou
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Lars C. Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Jane M. Sayer
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda MD 20892; and
| | - Haruhiko Yagi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda MD 20892; and
| | - Subodh Kumar
- Environmental Toxicology and Chemistry Laboratory, Great Lakes Center, Buffalo State College, Buffalo, NY 14222
| | - Donald M. Jerina
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda MD 20892; and
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
53
|
Ong JL, Loakes D, Jaroslawski S, Too K, Holliger P. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide. J Mol Biol 2006; 361:537-50. [PMID: 16859707 DOI: 10.1016/j.jmb.2006.06.050] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/13/2006] [Accepted: 06/21/2006] [Indexed: 11/19/2022]
Abstract
DNA polymerases enable key technologies in modern biology but for many applications, native polymerases are limited by their stringent substrate recognition. Here we describe short-patch compartmentalized self-replication (spCSR), a novel strategy to expand the substrate spectrum of polymerases in a targeted way. spCSR is based on the previously described CSR, but unlike CSR only a short region (a "patch") of the gene under investigation is diversified and replicated. This allows the selection of polymerases under conditions where catalytic activity and processivity are compromised to the extent that full self-replication is inefficient. We targeted two specific motifs involved in substrate recognition in the active site of DNA polymerase I from Thermus aquaticus (Taq) and selected for incorporation of both ribonucleotide- (NTP) and deoxyribonucleotide-triphosphates (dNTPs) using spCSR. This allowed the isolation of multiple variants of Taq with apparent dual substrate specificity. They were able to synthesize RNA, while still retaining essentially wild-type (wt) DNA polymerase activity as judged by PCR. One such mutant (AA40: E602V, A608V, I614M, E615G) was able to incorporate both NTPs and dNTPs with the same catalytic efficiency as the wt enzyme incorporates dNTPs. AA40 allowed the generation of mixed RNA-DNA amplification products in PCR demonstrating DNA polymerase, RNA polymerase as well as reverse transcriptase activity within the same polypeptide. Furthermore, AA40 displayed an expanded substrate spectrum towards other 2'-substituted nucleotides and was able to synthesize nucleic acid polymers in which each base bore a different 2'-substituent. Our results suggest that spCSR will be a powerful strategy for the generation of polymerases with altered substrate specificity for applications in nano- and biotechnology and in the enzymatic synthesis of antisense and RNAi probes.
Collapse
Affiliation(s)
- Jennifer L Ong
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | |
Collapse
|
54
|
Yakovleva L, Shuman S. Nucleotide misincorporation, 3'-mismatch extension, and responses to abasic sites and DNA adducts by the polymerase component of bacterial DNA ligase D. J Biol Chem 2006; 281:25026-40. [PMID: 16816388 DOI: 10.1074/jbc.m603302200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA ligase D (LigD) participates in a mutagenic pathway of nonhomologous end joining in bacteria. LigD consists of an ATP-dependent ligase domain fused to a polymerase domain (POL) and a phosphoesterase module. The POL domain performs templated and nontemplated primer extension reactions with either dNTP or rNTP substrates. Here we report that Pseudomonas LigD POL is an unfaithful nucleic acid polymerase. Although the degree of infidelity in nucleotide incorporation varies according to the mispair produced, we find that a correctly paired ribonucleotide is added to the DNA primer terminus more rapidly than the corresponding correct deoxyribonucleotide and incorrect nucleotides are added much more rapidly with rNTP substrates than with dNTPs, no matter what the mispair configuration. We find that 3' mispairs are extended by LigD POL, albeit more slowly than 3' paired primer-templates. The magnitude of the rate effect on mismatch extension varies with the identity of the 3' mispair, but it was generally the case that mispaired ends were extended more rapidly with rNTP substrates than with dNTPs. These results lend credence to the suggestion that LigD POL might fill in short 5'-overhangs with ribonucleotides when repairing double strand breaks in quiescent cells. We report that LigD POL can add a deoxynucleotide opposite an abasic lesion in the template strand, albeit slowly. Ribonucleotides are inserted more rapidly at an abasic lesion than are deoxys. LigD POL displays feeble activity in extending a preformed primer terminus opposing an abasic site, but can readily bypass the lesion by slippage of the primer 3' di- or trinucleotide and realignment to the template sequence distal to the abasic site. Covalent benzo[a]pyrene-dG and benzo[c]phenanthrene-dA adducts in the template strand are durable roadblocks to POL elongation. POL can slowly insert a dNMP opposite the adduct, but is impaired in the subsequent extension step.
Collapse
Affiliation(s)
- Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
57
|
Wang L, Wu M, Yan SF, Patel DJ, Geacintov NE, Broyde S. Accommodation of a 1S-(-)-benzo[c]phenanthrenyl-N6-dA adduct in the Y-family Dpo4 DNA polymerase active site: structural insights through molecular dynamics simulations. Chem Res Toxicol 2005; 18:441-56. [PMID: 15777084 PMCID: PMC4696753 DOI: 10.1021/tx049786v] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular modeling and molecular dynamics simulations have been performed to elucidate feasible structures in the Y-family Dpo4 DNA polymerase for the 1S-(-)-trans-anti-B[c]Ph-N6-dA adduct, derived from the fjord region polycyclic aromatic hydrocarbon (PAH) benzo[c]phenanthrene. Three types of models were delineated as follows: an intercalation model, a model with the aromatic ring system in the polymerase major groove open pocket, and a -1 deletion major groove model. All four 2'-deoxyribonucleoside 5'-triphosphates (dNTPs) were considered in the first two cases, and a normal Watson-Crick partner positioned to have skipped the modified template was employed as the incoming dNTP in the -1 deletion case. The trajectories derived from the dynamics simulations were analyzed in detail to evaluate the extents of distortion for each system. Overall, our results suggest that the major groove model is the least distorted, followed by the -1 deletion model, while the intercalation model is perturbed the most. The syn-dGTP and syn-dATP mismatches opposite the lesion are well-accommodated in the major groove model, as is the normal Watson-Crick partner dTTP. The intercalation model appears most likely to impede the polymerase. More broadly, these models look reasonable for other PAH metabolite-derived adducts to adenine with similar 1S stereochemistry. Furthermore, these models suggest how error-prone translesion synthesis by Y-family polymerases might produce mutations that may play a role in the initiation of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Suse Broyde
- To whom correspondence should be addressed. Tel: 212-998-8231. Fax: 212-995-4015.
| |
Collapse
|