51
|
Holloway DT, Kon M, DeLisi C. In silico regulatory analysis for exploring human disease progression. Biol Direct 2008; 3:24. [PMID: 18564415 PMCID: PMC2464594 DOI: 10.1186/1745-6150-3-24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 06/18/2008] [Indexed: 12/24/2022] Open
Abstract
Background An important goal in bioinformatics is to unravel the network of transcription factors (TFs) and their targets. This is important in the human genome, where many TFs are involved in disease progression. Here, classification methods are applied to identify new targets for 152 transcriptional regulators using publicly-available targets as training examples. Three types of sequence information are used: composition, conservation, and overrepresentation. Results Starting with 8817 TF-target interactions we predict an additional 9333 targets for 152 TFs. Randomized classifiers make few predictions (~2/18660) indicating that our predictions for many TFs are significantly enriched for true targets. An enrichment score is calculated and used to filter new predictions. Two case-studies for the TFs OCT4 and WT1 illustrate the usefulness of our predictions: • Many predicted OCT4 targets fall into the Wnt-pathway. This is consistent with known biology as OCT4 is developmentally related and Wnt pathway plays a role in early development. • Beginning with 15 known targets, 354 predictions are made for WT1. WT1 has a role in formation of Wilms' tumor. Chromosomal regions previously implicated in Wilms' tumor by cytological evidence are statistically enriched in predicted WT1 targets. These findings may shed light on Wilms' tumor progression, suggesting that the tumor progresses either by loss of WT1 or by loss of regions harbouring its targets. • Targets of WT1 are statistically enriched for cancer related functions including metastasis and apoptosis. Among new targets are BAX and PDE4B, which may help mediate the established anti-apoptotic effects of WT1. • Of the thirteen TFs found which co-regulate genes with WT1 (p ≤ 0.02), 8 have been previously implicated in cancer. The regulatory-network for WT1 targets in genomic regions relevant to Wilms' tumor is provided. Conclusion We have assembled a set of features for the targets of human TFs and used them to develop classifiers for the determination of new regulatory targets. Many predicted targets are consistent with the known biology of their regulators, and new targets for the Wilms' tumor regulator, WT1, are proposed. We speculate that Wilms' tumor development is mediated by chromosomal rearrangements in the location of WT1 targets. Reviewers This article was reviewed by Trey Ideker, Vladimir A. Kuznetsov(nominated by Frank Eisenhaber), and Tzachi Pilpel.
Collapse
Affiliation(s)
- Dustin T Holloway
- Molecular Biology Cell Biology and Biochemistry Department, Boston University, 5 Cummington Street, Boston, USA
| | | | | |
Collapse
|
52
|
Chia MC, Leung A, Krushel T, Alajez NM, Lo KW, Busson P, Klamut HJ, Bastianutto C, Liu FF. Nuclear Factor-Y and Epstein Barr Virus in Nasopharyngeal Cancer. Clin Cancer Res 2008; 14:984-94. [DOI: 10.1158/1078-0432.ccr-07-0828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
53
|
Abstract
NF-Y is a trimeric transcription factor containing H2A/H2B-like subunits, which specifically binds to the CCAAT box, a common eukaryotic promoter element. To gain insights into NF-Y-dependent transcriptional regulation, we assessed its relationships with positive histone marks by chromatin immunoprecipitation-on-chip and correlative-profiling studies. Unbiased identification of binding sites shows that the majority of genes are bound by NF-Y in the promoter and/or within the coding region. Parallel analysis of H3K9-14ac and H3K4me3 sites indicates that NF-Y loci can be divided in two distinct clusters: (i) a large cohort contains H3K9-14ac and H3K4me3 marks and correlates with expression and (ii) a sizeable group is devoid of these marks and is found on transcriptionally silent genes. Within this class, we find that NF-Y binding is associated with negative histone marks, such as H4K20me3 and H3K27me3. NF-Y removal by a dominant negative NF-YA leads to a decrease in the transcription of expressed genes associated with H3K4me3 and H3K9-14ac, while increasing the levels of many inactive genes. These data indicate that NF-Y is embedded in positive as well as in negative methyl histone marks, serving a dual function in transcriptional regulation, as an activator or as a repressor.
Collapse
|
54
|
Tomita T, Kimura S. Regulation of mouse Scgb3a1 gene expression by NF-Y and association of CpG methylation with its tissue-specific expression. BMC Mol Biol 2008; 9:5. [PMID: 18194566 PMCID: PMC2266941 DOI: 10.1186/1471-2199-9-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 01/14/2008] [Indexed: 11/10/2022] Open
Abstract
Background Secretoglobin (SCGB) 3A1 is a secretory protein of small molecular weight with tumor suppressor function. It is highly expressed in lung and trachea in both human and mouse, with additional tissues expressing the protein that differ depending on the species. However, little is known about the function and transcriptional regulation of this gene in normal mouse tissues. Results By reporter gene transfection and gel mobility shift analyses, we demonstrated that expression of the mouse Scgb3a1 gene is regulated by a PU-box binding protein and a ubiquitous transcription factor NF-Y that respectively binds to the PU-boxes located at -99 to -105 bp and -158 to -164 bp, and the "CCAAT" binding sites located at -425 to -429 bp and -498 to -502 bp from the transcription start site of the gene. However, the effect of PU-box binding protein on transcriptional activation is minimal as compared to NF-Y, suggesting that NF-Y is a more critical transcription factor for mouse Scgb3a1 gene transcription. Despite that NF-Y is a ubiquitous factor, Scgb3a1 is highly expressed only in mouse lung and mtCC cells that are derived from SV40 transformed mouse Clara cells, but not in ten other mouse tissues/cells examined. Gene methylation analysis revealed that within 600 bp of the Scgb3a1 gene promoter region, there are nine CpG methylation sites present, of which two CpGs closest to the transcription start site of the gene are unmethylated in the tissues/cells expressing SCGB3A1. Conclusion A ubiquitous transcription factor NF-Y binds to and activates expression of the mouse Scgb3a1 gene and tissue-specific expression of the gene is associated with CpG methylation of the promoter.
Collapse
Affiliation(s)
- Takeshi Tomita
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
55
|
Ashktorab H, Daremipouran M, Wilson M, Siddiqi S, Lee EL, Rakhshani N, Malekzadeh R, Johnson AC, Hewitt SM, Smoot DT. Transactivation of the EGFR by AP-1 is induced by Helicobacter pylori in gastric cancer. Am J Gastroenterol 2007; 102:2135-46. [PMID: 17617207 DOI: 10.1111/j.1572-0241.2007.01400.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Helicobacter pylori infection of the gastric mucosa is strongly associated with gastritis, peptic ulcer disease, and gastric cancer. However, the mechanisms by which H. pylori causes cancer are currently unknown. Binding of epidermal growth factor (EGF) to its receptor (EGFR) may be important in the development of gastric cancer. This interaction accelerates cell proliferation and migration, and triggers epithelial cell signaling. In this study, we investigated the effects of H. pylori on EGFR- and AP-1-mediated signal transduction pathways in the AGS gastric epithelial cell line and gastric tissue from humans. METHODS Cells were treated with H. pylori and cell death was examined at a variety of time points using cell viability and trypan blue exclusion dye assay. To investigate the effects on EGFR regulation, AGS cells were transfected with a full-length and truncated EGFR luciferase (luc) reporter. Tissue microarray containing 44 samples of gastric biopsies from H. pylori-positive patients was analyzed for protein expression level of EGFR by immunohistochemistry. RESULTS EGFR promoter activity was increased (twofold) 3 h after treatment with H. pylori commenced. Using a series of EGFR promoter deletion mutants, we identified a region that was crucial for transactivation of the EGFR by H. pylori. To determine whether AP-1 binding was altered, we transfected AGS cells with an AP-1 luciferase construct and then treated them with H. pylori for up to 6 h. We found that AP-1 activity was induced by H. pylori in gastric cells, while electrophoretic mobility shift assays confirmed that binding of AP-1 to the EGFR promoter site was increased following H. pylori treatment. Binding of c-Jun and c-Fos to the EGFR promoter region -1,062/-900 was induced eight- and six fold, respectively, using ChIP assay. Active EGFR staining was markedly increased in gastric mucosa from infected persons, compared to uninfected controls. CONCLUSIONS We conclude that exposure of gastric cells to H. pylori induces increased production of EGFR through various signal transduction pathways, including those mediated by the EGFR and AP-1. Distinct effects on EGFR activation may specify the subset of AP-1 target genes that are selected, including those involved in proliferation and apoptosis. This is consistent with EGFR activation that was found in the gastric mucosa of humans infected with H. pylori. Hence, the balance between apoptosis and proliferation in these cells may be altered in response to injury caused by H. pylori infection, leading to an increased risk of cancer.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, District of Columbia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Yoshioka H, Geyer CB, Hornecker JL, Patel KT, McCarrey JR. In vivo analysis of developmentally and evolutionarily dynamic protein-DNA interactions regulating transcription of the Pgk2 gene during mammalian spermatogenesis. Mol Cell Biol 2007; 27:7871-85. [PMID: 17875925 PMCID: PMC2169153 DOI: 10.1128/mcb.00990-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transcription of the testis-specific Pgk2 gene is selectively activated in primary spermatocytes to provide a source of phosphoglycerate kinase that is critical to normal motility and fertility of mammalian spermatozoa. We examined dynamic changes in protein-DNA interactions at the Pgk2 gene promoter during murine spermatogenesis in vivo by performing genomic footprinting and chromatin immunoprecipitation assays with enriched populations of murine spermatogenic cells at stages prior to, during, and following transcription of this gene. We found that genes encoding the testis-specific homeodomain factor PBX4 and its coactivator, PREP1, are expressed in patterns that mirror expression of the Pgk2 gene and that these factors become bound to the Pgk2 enhancer in cells in which this gene is actively expressed. We therefore suggest that these factors, along with CREM and SP3, direct stage- and cell type-specific transcription of the Pgk2 gene during spermatogenesis. We propose that binding of PBX4, plus its coactivator PREP1, is a rate-limiting step leading to the initiation of tissue-specific transcription of the Pgk2 gene. This study provides insight into the developmentally dynamic establishment of tissue-specific protein-DNA interactions in vivo. It also allows us to speculate about the events that led to tissue-specific regulation of the Pgk2 gene during mammalian evolution.
Collapse
Affiliation(s)
- Hirotaka Yoshioka
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | | | | | |
Collapse
|
57
|
Krstic A, Mojsin M, Stevanovic M. Regulation of SOX3 gene expression is driven by multiple NF-Y binding elements. Arch Biochem Biophys 2007; 467:163-73. [PMID: 17910945 DOI: 10.1016/j.abb.2007.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 01/29/2023]
Abstract
The presented results demonstrate that human SOX3 promoter possesses three CCAAT box control elements involved in the regulation of SOX3 gene expression in NT2/D1 cells. By mutational analysis we have shown that all three elements are of functional relevance for constitutive SOX3 expression. Electrophoretic mobility shift assays indicate that the active complexes at three sites involve the ubiquitously expressed CCAAT binding protein NF-Y. The involvement of NF-Y in the up-regulation of SOX3 expression in NT2/D1 cells was demonstrated in vivo by Northern and Western blot analyses. Furthermore, in co-transfection experiments we have shown that NF-Y mediates transcriptional activation of SOX3 promoter. Our data indicate that multiple CCAAT control elements are involved in the regulation of the SOX3 promoter, suggesting that NF-Y functions as a key regulator of SOX3 gene expression. Further, our results indicate that these elements can be recognized as modulators of retinoic acid induced activation of SOX3 expression.
Collapse
Affiliation(s)
- Aleksandar Krstic
- Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | | | | |
Collapse
|
58
|
Barbaro V, Testa A, Di Iorio E, Mavilio F, Pellegrini G, De Luca M. C/EBPdelta regulates cell cycle and self-renewal of human limbal stem cells. ACTA ACUST UNITED AC 2007; 177:1037-49. [PMID: 17562792 PMCID: PMC2064364 DOI: 10.1083/jcb.200703003] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human limbal stem cells produce transit amplifying progenitors that migrate centripetally to regenerate the corneal epithelium. Coexpression of CCAAT enhancer binding protein δ (C/EBPδ), Bmi1, and ΔNp63α identifies mitotically quiescent limbal stem cells, which generate holoclones in culture. Upon corneal injury, a fraction of these cells switches off C/EBPδ and Bmi1, proliferates, and differentiates into mature corneal cells. Forced expression of C/EBPδ inhibits the growth of limbal colonies and increases the cell cycle length of primary limbal cells through the activity of p27Kip1 and p57Kip2. These effects are reversible; do not alter the limbal cell proliferative capacity; and are not due to apoptosis, senescence, or differentiation. C/EBPδ, but not ΔNp63α, indefinitely promotes holoclone self-renewal and prevents clonal evolution, suggesting that self-renewal and proliferation are distinct, albeit related, processes in limbal stem cells. C/EBPδ is recruited to the chromatin of positively (p27Kip1 and p57Kip2) and negatively (p16INK4A and involucrin) regulated gene loci, suggesting a direct role of this transcription factor in determining limbal stem cell identity.
Collapse
Affiliation(s)
- Vanessa Barbaro
- Epithelial Stem Cell Research Center, The Veneto Eye Bank Foundation, H. SS Giovanni and Paolo, 30100 Venice, Italy
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
The nuclear factor-Y (NF-Y), a trimeric, CCAAT-binding transcriptional activator with histone-like subunits, was until recently considered a prototypical promoter transcription factor. However, recent in vivo chromatin immunoprecipitation assays associated with microarray methodologies (chromatin immunoprecipitation on chip experiments) have indicated that a large portion of target sites (40%-50%) are located outside of core promoters. We applied the tethered particle motion technique to the major histocompatibility complex class II enhancer-promoter region to characterize i), the progressive compaction of DNA due to increasing concentrations of NF-Y, ii), the role of specific subunits and domains of NF-Y in the process, and iii), the interplay between NF-Y and the regulatory factor-X, which cooperatively binds to the X-box adjacent to the CCAAT box. Our study shows that NF-Y has histone-like activity, since it binds DNA nonspecifically with high affinity to compact it. This activity, which depends on the presence of all trimer subunits and of their glutamine-rich domains, seems to be attenuated by the transcriptional cofactor regulatory factor-X. Most importantly NF-Y-induced DNA compaction may facilitate promoter-enhancer interactions, which are known to be critical for expression regulation.
Collapse
|
60
|
Chiang MC, Chen HM, Lee YH, Chang HH, Wu YC, Soong BW, Chen CM, Wu YR, Liu CS, Niu DM, Wu JY, Chen YT, Chern Y. Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington's disease. Hum Mol Genet 2007; 16:483-98. [PMID: 17213233 DOI: 10.1093/hmg/ddl481] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. Using two mouse models of HD, we demonstrate that the urea cycle deficiency characterized by hyperammonemia, high blood citrulline and suppression of urea cycle enzymes is a prominent feature of HD. The resultant ammonia toxicity might exacerbate the neurological deficits of HD. Suppression of C/EBPalpha, a crucial transcription factor for the transcription of urea cycle enzymes, appears to mediate the urea cycle deficiency in HD. We found that in the presence of mutant Htt, C/EBPalpha loses its ability to interact with an important cofactor (CREB-binding protein). Moreover, mutant Htt recruited C/EBPalpha into aggregates, as well as suppressed expression of the C/EBPalpha gene. Consumption of protein-restricted diets not only led to the restoration of C/EBPalpha's activity, and repair of the urea cycle deficiency and hyperammonemia, but also ameliorated the formation of Htt aggregates, the motor deterioration, the suppression of striatal brain-derived neurotrophic factor and the normalization of three protein chaperones (Hsp27, Hsp70 and Hsp90). Treatments aimed at repairing the urea cycle deficiency may provide a new strategy for dealing with HD.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Borghini S, Vargiolu M, Di Duca M, Ravazzolo R, Ceccherini I. Nuclear factor Y drives basal transcription of the human TLX3, a gene overexpressed in T-cell acute lymphocytic leukemia. Mol Cancer Res 2006; 4:635-43. [PMID: 16966433 DOI: 10.1158/1541-7786.mcr-05-0250] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on a knocked-out mouse model and a few expression studies, TLX3 is regarded as a homeobox gene crucial for the development of the autonomic nervous system. This gene can undergo rearrangements or deregulation, giving rise to T-cell acute lymphocytic leukemia. The present report is focused on the identification of elements and factors playing a role in the TLX3 physiologic expression regulation and therefore likely to be involved in cancer development. In particular, after identifying the transcription start points, we have made use of in vitro transfection assays to show that the 5'-untranslated region of the gene is necessary for the basal promoter activity in cell lines from different origin. By site-directed mutagenesis, two tandem CCAAT boxes have been localized as critical elements of this region. In vivo chromatin immunoprecipitation and electrophoretic mobility shift assays have indicated that nuclear factor Y (NFY) recognizes these sites in all the analyzed cell lines. The physiologic role of such an interaction has been confirmed by a dominant-negative version of the NFY transcription factor that has turned out to decrease both in vitro TLX3 promoter activity and endogenous amount of mRNA. Finally, a consistent in vivo TLX3 expression impairment was also achieved after NFY mRNA knockdown. The full characterization of the TLX3 transcription regulation will ultimately provide crucial elements to define the involvement of this gene in T-cell acute lymphocytic leukemia development.
Collapse
Affiliation(s)
- Silvia Borghini
- Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, L.go Gerolamo Gaslini, 5, 16148 Genova, Italy
| | | | | | | | | |
Collapse
|
62
|
Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. THE PLANT CELL 2006; 18:2971-84. [PMID: 17138697 PMCID: PMC1693937 DOI: 10.1105/tpc.106.043299] [Citation(s) in RCA: 435] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The CCT (for CONSTANS, CONSTANS-LIKE, TOC1) domain is found in 45 Arabidopsis thaliana proteins involved in processes such as photoperiodic flowering, light signaling, and regulation of circadian rhythms. We show that this domain exhibits similarities to yeast HEME ACTIVATOR PROTEIN2 (HAP2), which is a subunit of the HAP2/HAP3/HAP5 trimeric complex that binds to CCAAT boxes in eukaryotic promoters. Moreover, we demonstrate that CONSTANS (CO), which promotes Arabidopsis flowering, interacts with At HAP3 and At HAP5 in yeast, in vitro, and in planta. Mutations in CO that delay flowering affect residues highly conserved between CCT and the DNA binding domain of HAP2. Taken together, these data suggest that CO might replace At HAP2 in the HAP complex to form a trimeric CO/At HAP3/At HAP5 complex. Flowering was delayed by overexpression of At HAP2 or At HAP3 throughout the plant or in phloem companion cells, where CO is expressed. This phenotype was correlated with reduced abundance of FLOWERING LOCUS T (FT) mRNA and no change in CO mRNA levels. At HAP2 or At HAP3 overexpression may therefore impair formation of a CO/At HAP3/At HAP5 complex leading to reduced expression of FT. During plant evolution, the number of genes encoding HAP proteins was greatly amplified, and these proteins may have acquired novel functions, such as mediating the effect of CCT domain proteins on gene expression.
Collapse
Affiliation(s)
- Stephan Wenkel
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
Viganò MA, Lamartine J, Testoni B, Merico D, Alotto D, Castagnoli C, Robert A, Candi E, Melino G, Gidrol X, Mantovani R. New p63 targets in keratinocytes identified by a genome-wide approach. EMBO J 2006; 25:5105-16. [PMID: 17036050 PMCID: PMC1630419 DOI: 10.1038/sj.emboj.7601375] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/28/2006] [Indexed: 12/27/2022] Open
Abstract
p63 is a developmentally regulated transcription factor related to p53. It is involved in the development of ectodermal tissues, including limb, skin and in general, multilayered epithelia. The DeltaNp63alpha isoform is thought to play a 'master' role in the asymmetric division of epithelial cells. It is also involved in the pathogenesis of several human diseases, phenotypically characterized by ectodermal dysplasia. Our understanding of transcriptional networks controlled by p63 is limited, owing to the low number of bona fide targets. To screen for new targets, we employed chromatin immunoprecipitation from keratinocytes (KCs) coupled to the microarray technology, using both CpG islands and promoter arrays. The former revealed 96 loci, the latter yielded 85 additional genes. We tested 40 of these targets in several functional assays, including: (i) in vivo binding by p63 in primary KCs; (ii) expression analysis in differentiating HaCaT cells and in cells overexpressing DeltaNp63alpha; (iii) promoter transactivation and (iv) immunostaining in normal tissues, confirming their regulation by p63. We discovered several new specific targets whose functional categorization links p63 to cell growth and differentiation.
Collapse
Affiliation(s)
- M Alessandra Viganò
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' di Milano, Milano, Italy
- Department of Biomolecular Sciences and Biotechnologies, University of Milan, Via Celoria, 26, Milan 20133, Italy. Tel.: +39 02 50315005; Fax: +39 02 50315044; E-mail:
| | | | - Barbara Testoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' di Milano, Milano, Italy
| | - Daniele Merico
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' di Milano, Milano, Italy
| | - Daniela Alotto
- Dipartimento di Chirurgia Plastica, Banca della Cute, Ospedale CTO, Torino, Italy
| | - Carlotta Castagnoli
- Dipartimento di Chirurgia Plastica, Banca della Cute, Ospedale CTO, Torino, Italy
| | - Amèlie Robert
- Service de Génomique Fonctionnelle CEA, Genopole Evry, France
| | - Eleonora Candi
- IDI-IRCCS c/o Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Gerry Melino
- IDI-IRCCS c/o Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Xavier Gidrol
- Service de Génomique Fonctionnelle CEA, Genopole Evry, France
| | - Roberto Mantovani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' di Milano, Milano, Italy
- Department of Biomolecular Sciences and Biotechnologies, University of Milan, Via Celoria, 26, Milan 20133, Italy. Tel.: +39 02 50315005; Fax: +39 02 50315044; E-mail:
| |
Collapse
|
64
|
Valor LM, Grant SGN. Integrating Synapse Proteomics with Transcriptional Regulation. Behav Genet 2006; 37:18-30. [PMID: 16977502 DOI: 10.1007/s10519-006-9114-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 08/18/2006] [Indexed: 01/28/2023]
Abstract
The mammalian postsynaptic proteome (PSP) comprises a highly interconnected set of approximately 1,000 proteins. The PSP is organized into macromolecular complexes that have a modular architecture defined by protein interactions and function. Signals initiated by neurotransmitter receptors are integrated by these complexes and their constituent enzymes to orchestrate multiple downstream cellular changes, including transcriptional regulation of genes at the nucleus. Genome wide transcriptome studies are beginning to map the sets of genes regulated by the synapse proteome. Conversely, understanding the transcriptional regulation of genes encoding the synapse proteome will shed light on synapse formation. Mutations that disrupt synapse signalling complexes result in cognitive impairments in mice and humans, and recent evidence indicates that these mutation change gene expression profiles. We discuss the need for global approaches combining genetics, transcriptomics and proteomics in order to understand cognitive function and disruption in diseases.
Collapse
Affiliation(s)
- L M Valor
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | |
Collapse
|
65
|
Sun H, Palaniswamy SK, Pohar TT, Jin VX, Huang THM, Davuluri RV. MPromDb: an integrated resource for annotation and visualization of mammalian gene promoters and ChIP-chip experimental data. Nucleic Acids Res 2006; 34:D98-103. [PMID: 16381984 PMCID: PMC1347458 DOI: 10.1093/nar/gkj096] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have developed Mammalian Promoter Database (MPromDb), a novel database that integrates gene promoters with experimentally supported annotation of transcription start sites, cis-regulatory elements, CpG islands and chromatin immunoprecipitation microarray (ChIP-chip) experimental results with intuitively designed presentation. Release 1.0 of MPromDb currently contains 36 407 promoters and first exons (19 170 from human, 15 953 from mouse and 1284 from rat), 3739 transcription factor (TF)-binding sites (2027 from human, 1181 mouse and 531 rat) and 224 TFs with links to PubMed and GenBank references. Target promoters of TFs that have been identified by ChIP-chip assay are integrated into the database. MPromDb serves as a portal for genome-wide promoter analysis of data generated by ChIP-chip experimental studies. MPromDb can be accessed from .
Collapse
Affiliation(s)
| | | | | | | | | | - Ramana V. Davuluri
- To whom correspondence should be addressed. Tel: +1 614 688 3088; Fax: +1 614 688 4006;
| |
Collapse
|
66
|
Alabert C, Rogers L, Kahn L, Niellez S, Fafet P, Cerulis S, Blanchard JM, Hipskind RA, Vignais ML. Cell type-dependent control of NF-Y activity by TGF-beta. Oncogene 2006; 25:3387-96. [PMID: 16434965 DOI: 10.1038/sj.onc.1209385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transforming growth factor beta (TGF-beta) is a pluripotent cytokine that regulates cell growth and differentiation in a cell type-dependent fashion. TGF-beta exerts its effects through the activation of several signaling pathways. One involves membrane proximal events that lead to nuclear translocation of members of the Smad family of transcriptional regulators. TGF-beta can also activate MAPK cascades. Here, we show that TGF-beta induces nuclear translocation of the NF-YA subunit of the transcription factor NF-Y by a process that requires activation of the ERK cascade. This results in increased binding of endogenous NF-Y to chromatin and TGF-beta-dependent transcriptional regulation of the NF-Y target gene cyclin A2. Interestingly, the kinetics of NF-YA relocalization differs between epithelial cells and fibroblasts. NIH3T3 fibroblasts show an elevated basal level of phosphorylated p38 and delayed nuclear accumulation of NF-YA after TGF-beta treatment. In contrast, MDCK cells show low basal p38 activation, higher basal ERK phosphorylation and more rapid localization of NF-YA after induction. Thus, NF-Y activation by TGF-beta1 involves ERK1/2 and potentially an interplay between MAPK pathways, thereby opening the possibility for finely tuned transcriptional regulation.
Collapse
Affiliation(s)
- C Alabert
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535-IFR122, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Bannwarth S, Lainé S, Daher A, Grandvaux N, Clerzius G, Leblanc AC, Hiscott J, Gatignol A. Cell-specific regulation of TRBP1 promoter by NF-Y transcription factor in lymphocytes and astrocytes. J Mol Biol 2005; 355:898-910. [PMID: 16343534 DOI: 10.1016/j.jmb.2005.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 10/28/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
HIV-1 viral production is restricted intracellularly in astrocytes compared with lymphocytes due to the limited expression of viral structural proteins. The poor translation of HIV-1 mRNA and consequent limited virion production can be restored by overexpression of TRBP proteins in the astrocytoma U251MG cells. TRBP1 and TRBP2 are double-stranded RNA binding proteins that increase HIV-1 gene expression. Both proteins are produced from a single gene that possesses two independent promoters and an alternative first exon. Endogenous expression is restricted in astrocytes due to limited TRBP promoter expression compared to lymphocytes. We examined the transcriptional regulation of TRBP1 and TRBP2 by in vivo genomic footprinting in the lymphocytic Jurkat and in the astrocytic U251MG cells. We identified one AP4 and one AP2-binding site that regulate the TRBP2 promoter in both cell types, and one Sp1 and two CCAAT-binding sites that control TRBP1 expression. Mutations in the TRBP1 promoter modulate its expression specifically in Jurkat and in U251MG. The analysis of the CCAAT-390 site by EMSA and by ChIP demonstrates that NF-Y/CBF transcription factor binds specifically to the promoter in vitro and in vivo. Furthermore, each NF-Y subunit was more highly expressed in the lymphocytic cells, compared to astrocytic cells. An NF-YA trans-dominant mutant decreased TRBP1 promoter expression fourfold in Jurkat cells, thus demonstrating the functional importance of NF-Y factors in lymphocytes. These studies suggest that the cell specifity of HIV-1 expression and replication may be regulated, in part, through the control of TRBP1 expression.
Collapse
Affiliation(s)
- Sylvie Bannwarth
- Molecular Oncology Group Lady Davis Institute for Medical Research, Montréal, QC, Canada, H3T 1E2
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Vavouri T, Elgar G. Prediction of cis-regulatory elements using binding site matrices--the successes, the failures and the reasons for both. Curr Opin Genet Dev 2005; 15:395-402. [PMID: 15950456 DOI: 10.1016/j.gde.2005.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 05/23/2005] [Indexed: 01/02/2023]
Abstract
Protein-DNA interactions control many aspects of animal development and cellular responses to the environment. Although profiling of individual transcription factor binding sites is not a reliable guide for predicting the position of cis-regulatory elements in large genomes, modelling the evolution and the organization of regulatory elements has provided enough information to make some successful predictions. For vertebrate genomes, the field is limited by the lack of sufficient experimental data upon which to build reliable models. Nonetheless, a combination of experimental, computational and comparative data is likely to reveal aspects of complex regulatory networks in vertebrates, just as it has already done for simple eukaryotic genomes.
Collapse
Affiliation(s)
- Tanya Vavouri
- Comparative Genomics Group, MRC Rosalind Franklin Centre for Genomics Research, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK
| | | |
Collapse
|
69
|
Heisler LE, Torti D, Boutros PC, Watson J, Chan C, Winegarden N, Takahashi M, Yau P, Huang THM, Farnham PJ, Jurisica I, Woodgett JR, Bremner R, Penn LZ, Der SD. CpG Island microarray probe sequences derived from a physical library are representative of CpG Islands annotated on the human genome. Nucleic Acids Res 2005; 33:2952-61. [PMID: 15911630 PMCID: PMC1137027 DOI: 10.1093/nar/gki582] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
An effective tool for the global analysis of both DNA methylation status and protein-chromatin interactions is a microarray constructed with sequences containing regulatory elements. One type of array suited for this purpose takes advantage of the strong association between CpG Islands (CGIs) and gene regulatory regions. We have obtained 20,736 clones from a CGI Library and used these to construct CGI arrays. The utility of this library requires proper annotation and assessment of the clones, including CpG content, genomic origin and proximity to neighboring genes. Alignment of clone sequences to the human genome (UCSC hg17) identified 9595 distinct genomic loci; 64% were defined by a single clone while the remaining 36% were represented by multiple, redundant clones. Approximately 68% of the loci were located near a transcription start site. The distribution of these loci covered all 23 chromosomes, with 63% overlapping a bioinformatically identified CGI. The high representation of genomic CGI in this rich collection of clones supports the utilization of microarrays produced with this library for the study of global epigenetic mechanisms and protein-chromatin interactions. A browsable database is available on-line to facilitate exploration of the CGIs in this library and their association with annotated genes or promoter elements.
Collapse
Affiliation(s)
- Lawrence E. Heisler
- Department of Laboratory Medicine and Pathobiology, Program in Proteomics and Bioinformatics, University of TorontoToronto, ON M5S 1A8, Canada
| | - Dax Torti
- Department of Laboratory Medicine and Pathobiology, Program in Proteomics and Bioinformatics, University of TorontoToronto, ON M5S 1A8, Canada
| | - Paul C. Boutros
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, University Health NetworkToronto, ON M5G 2M9, Canada
- Department of Medical Biophysics, University of TorontoToronto, ON M5G 2M9, Canada
- Division of Signaling Biology, Ontario Cancer InstituteToronto, ON M5G 2M9, Canada
| | - John Watson
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, University Health NetworkToronto, ON M5G 2M9, Canada
- Department of Medical Biophysics, University of TorontoToronto, ON M5G 2M9, Canada
| | - Charles Chan
- Department of Laboratory Medicine and Pathobiology, Program in Proteomics and Bioinformatics, University of TorontoToronto, ON M5S 1A8, Canada
| | - Neil Winegarden
- University Health Network Microarray CentreToronto, ON M5G 2C4, Canada
| | - Mark Takahashi
- University Health Network Microarray CentreToronto, ON M5G 2C4, Canada
| | - Patrick Yau
- University Health Network Microarray CentreToronto, ON M5G 2C4, Canada
| | - Tim H.-M. Huang
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State UniversityColumbus, OH 43210, USA
| | - Peggy J. Farnham
- Department of Medical Pharmacology and Toxicology, University of California-DavisDavis, CA 95616, USA
| | - Igor Jurisica
- Department of Medical Biophysics, University of TorontoToronto, ON M5G 2M9, Canada
- Department of Computer Science, University of TorontoToronto, ON M5S 2M9, Canada
- Division of Signaling Biology, Ontario Cancer InstituteToronto, ON M5G 2M9, Canada
| | - James R. Woodgett
- University Health Network Microarray CentreToronto, ON M5G 2C4, Canada
- Division of Signaling Biology, Ontario Cancer InstituteToronto, ON M5G 2M9, Canada
| | - Rod Bremner
- Department of Laboratory Medicine and Pathobiology, Program in Proteomics and Bioinformatics, University of TorontoToronto, ON M5S 1A8, Canada
- Toronto Western Research InstituteToronto, ON M5T 2S8, Canada
| | - Linda Z. Penn
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, University Health NetworkToronto, ON M5G 2M9, Canada
- Department of Medical Biophysics, University of TorontoToronto, ON M5G 2M9, Canada
| | - Sandy D. Der
- Department of Laboratory Medicine and Pathobiology, Program in Proteomics and Bioinformatics, University of TorontoToronto, ON M5S 1A8, Canada
- To whom correspondence should be addressed. Tel: +1 416 978 8878; Fax: +1 416 978 5959;
| |
Collapse
|