51
|
Mueller S, Jaeschke H, Paschke R. Current standards, variations, and pitfalls for the determination of constitutive TSHR activity in vitro. Methods Enzymol 2010; 485:421-36. [PMID: 21050930 DOI: 10.1016/b978-0-12-381296-4.00023-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Constitutively activating mutations of the TSHR are the major cause for nonautoimmune hyperthyroidism, which is based on ligand independent, permanent receptor activation. Several reports have highlighted the difficulties to determine whether a TSHR mutation is constitutively active or not especially for borderline cases with only a slight increase of the basal cAMP activity. Current methods to precisely classify such mutants as constitutively active or not, are limited. In some cases, in vitro characterization of TSHR mutants has led to false positive conclusions regarding constitutive TSHR activity and subsequently the molecular origin of hyperthyroidism. For characterization of constitutive TSHR activity, a particular point to consider is that basal receptor activity tightly correlates with the receptor number expressed on the cell surface. Therefore, a comparison of the receptors basal activity in relation to the wild type is only possible with determination of the receptor cell surface expression. Thus, the experimental approaches to determine constitutive TSHR activity should consider the receptor's cell surface expression. We here provide a description of three methods for the determination of constitutive TSHR activity: (A) the evaluation of constitutive TSHR activity under conditions of equal receptor expression; (B) computation of the specific constitutive activity; and (C) the linear regression analysis (LRA). To date, LRA is the best experimental approach to characterize the mutant's basal activity as a function of TSHR cell surface expression. This approach utilizes a parallel measurement of basal cAMP values and receptor cell surface expression and therefore provides a more reliable decision with respect to the presence or absence of constitutive activity.
Collapse
Affiliation(s)
- Sandra Mueller
- Department for Internal Medicine, Neurology and Dermatology, Clinic for Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
52
|
Nikiforovich GV, Baranski TJ. Computational Modeling of Constitutively Active Mutants of GPCRs. Methods Enzymol 2010; 485:369-91. [DOI: 10.1016/b978-0-12-381296-4.00021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
53
|
Holst B, Nygaard R, Valentin-Hansen L, Bach A, Engelstoft MS, Petersen PS, Frimurer TM, Schwartz TW. A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors. J Biol Chem 2009; 285:3973-3985. [PMID: 19920139 DOI: 10.1074/jbc.m109.064725] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved tryptophan in position 13 of TM-VI (Trp-VI:13 or Trp-6.48) of the CWXP motif located at the bottom of the main ligand-binding pocket in TM-VI is believed to function as a rotameric microswitch in the activation process of seven-transmembrane (7TM) receptors. Molecular dynamics simulations in rhodopsin demonstrated that rotation around the chi1 torsion angle of Trp-VI:13 brings its side chain close to the equally highly conserved Phe-V:13 (Phe-5.47) in TM-V. In the ghrelin receptor, engineering of high affinity metal-ion sites between these positions confirmed their close spatial proximity. Mutational analysis was performed in the ghrelin receptor with multiple substitutions and with Ala substitutions in GPR119, GPR39, and the beta(2)-adrenergic receptor as well as the NK1 receptor. In all of these cases, it was found that mutation of the Trp-VI:13 rotameric switch itself eliminated the constitutive signaling and strongly impaired agonist-induced signaling without affecting agonist affinity and potency. Ala substitution of Phe-V:13, the presumed interaction partner for Trp-VI:13, also in all cases impaired both the constitutive and the agonist-induced receptor signaling, but not to the same degree as observed in the constructs where Trp-VI:13 itself was mutated, but again without affecting agonist potency. In a proposed active receptor conformation generated by molecular simulations, where the extracellular segment of TM-VI is tilted inwards in the main ligand-binding pocket, Trp-VI:13 could rotate into a position where it obtained an ideal aromatic-aromatic interaction with Phe-V:13. It is concluded that Phe-V:13 can serve as an aromatic lock for the proposed active conformation of the Trp-VI:13 rotameric switch, being involved in the global movement of TM-V and TM-VI in 7TM receptor activation.
Collapse
Affiliation(s)
- Birgitte Holst
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and.
| | - Rie Nygaard
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and; 7TM Pharma A/S, Fremtidsvej 3, DK5700 Hørsholm, Denmark
| | - Louise Valentin-Hansen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | - Anders Bach
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | - Maja S Engelstoft
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | - Pia S Petersen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | | | - Thue W Schwartz
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and; 7TM Pharma A/S, Fremtidsvej 3, DK5700 Hørsholm, Denmark.
| |
Collapse
|
54
|
Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol 2009; 5:688-95. [PMID: 19648932 PMCID: PMC2817978 DOI: 10.1038/nchembio.199] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 04/28/2009] [Indexed: 01/09/2023]
Abstract
A major obstacle to understanding the functional importance of dimerization between Class A G protein-coupled receptors (GPCRs) has been the methodological limitation in achieving control of the identity of the components comprising the signaling unit. We have developed a functional complementation assay that enables such control and illustrate it for the human dopamine D2 receptor. The minimal signaling unit, two receptors and a single G protein, is maximally activated by agonist binding to a single protomer, which suggests an asymmetrical activated dimer. Inverse agonist binding to the second protomer enhances signaling, whereas agonist binding to the second protomer blunts signaling. Ligand-independent constitutive activation of the second protomer also inhibits signaling. Thus, GPCR dimer function can be modulated by the activity state of the second protomer, which for a heterodimer may be altered in pathological states. Our novel methodology also makes possible the characterization of signaling from a defined heterodimer unit.
Collapse
|
55
|
Tiburu EK, Gulla SV, Tiburu M, Janero DR, Budil DE, Makriyannis A. Dynamic conformational responses of a human cannabinoid receptor-1 helix domain to its membrane environment. Biochemistry 2009; 48:4895-904. [PMID: 19485422 DOI: 10.1021/bi802235w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of membrane environment on human cannabinoid 1 (hCB(1)) receptor transmembrane helix (TMH) conformational dynamics was investigated by solid-state NMR and site-directed spin labeling/EPR with a synthetic peptide, hCB(1)(T377-E416), corresponding to the receptor's C-terminal component, i.e., TMH7 and its intracellular alpha-helical extension (H8) (TMH7/H8). Solid-state NMR experiments with mechanically aligned hCB(1)(T377-E416) specifically (2)H- or (15)N-labeled at Ala380 and reconstituted in membrane-mimetic dimyristoylphosphocholine (DMPC) or 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine (POPC) bilayers demonstrate that the conformation of the TMH7/H8 peptide is more heterogeneous in the thinner DMPC bilayer than in the thicker POPC bilayer. As revealed by EPR studies on hCB(1)(T377-E416) spin-labeled at Cys382 and reconstituted into the phospholipid bilayers, the spin label partitions actively between hydrophobic and hydrophilic environments. In the DMPC bilayer, the hydrophobic component dominates, regardless of temperature. Mobility parameters (DeltaH(0)(-1)) are 0.3 and 0.73 G for the peptide in the DMPC or POPC bilayer environment, respectively. Interspin distances of doubly labeled hCB(1)(T377-E416) peptide reconstituted into a TFE/H(2)O mixture or a POPC or DMPC bilayer were estimated to be 10.6 +/- 0.5, 16.8 +/- 1, and 11.6 +/- 0.8 A, respectively. The extent of coupling (>or=50%) between spin labels located at i and i + 4 in a TFE/H(2)O mixture or a POPC bilayer is indicative of an alpha-helical TMH conformation, whereas the much lower coupling (14%) when the peptide is in a DMPC bilayer suggests a high degree of peptide conformational heterogeneity. These data demonstrate that hCB(1)(T377-E416) backbone dynamics as well as spin-label rotameric freedom are sensitive to and altered by the peptide's phospholipid bilayer environment, which exerts a dynamic influence on the conformation of a TMH critical to signal transmission by the hCB(1) receptor.
Collapse
Affiliation(s)
- Elvis K Tiburu
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115-5000, USA
| | | | | | | | | | | |
Collapse
|
56
|
Vanni S, Neri M, Tavernelli I, Rothlisberger U. Observation of "ionic lock" formation in molecular dynamics simulations of wild-type beta 1 and beta 2 adrenergic receptors. Biochemistry 2009; 48:4789-97. [PMID: 19378975 DOI: 10.1021/bi900299f] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
G protein coupled receptors (GPCRs) are a large family of integral membrane proteins involved in signal transduction pathways, making them appealing drug targets for a wide spectrum of diseases. The recently crystallized structures of two engineered adrenergic receptors have opened new avenues for the understanding of the molecular mechanisms of action of GPCRs. Taking the two crystal structures as a starting point, we carried out submicrosecond molecular dynamics simulations of wild-type beta(1) and beta(2) adrenergic receptors in a lipid bilayer under physiological conditions. These simulations give access to structural and dynamic properties of the receptors in pseudo in vivo conditions. For both systems the overall fold properties of the transmembrane region as well as the binding pocket remain close to the crystal structure of the engineered systems, thus suggesting that the ligand binding mode is not affected by the introduced modifications. Both simulations indicate the presence of one or two internal water molecules absent in both crystal structures and essential for the stabilization of the binding pocket at the interface between transmembrane helices III, IV, and V. The different interactions arising from the substitution of Tyr308 in beta(2)AR into Phe325 in beta(1)AR induce different conformations of the homologous Asn(6.55) inside the binding pockets of the two receptors, suggesting a possible origin of receptor specificity in agonist binding. The equilibrated structures of both receptors recover all of the previously suggested features of inactive GPCRs including formation of a salt bridge between the cytoplasmatic moieties of helices III and VI ("ionic lock") that is absent in the crystal structures.
Collapse
Affiliation(s)
- Stefano Vanni
- Laboratory of Computational Chemistry and Biochemistry, Federal Institute of Technology, EPFL, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
57
|
Huynh J, Thomas WG, Aguilar MI, Pattenden LK. Role of helix 8 in G protein-coupled receptors based on structure-function studies on the type 1 angiotensin receptor. Mol Cell Endocrinol 2009; 302:118-27. [PMID: 19418628 DOI: 10.1016/j.mce.2009.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptors that convert extracellular stimuli to intracellular signals. The type 1 angiotensin II receptor is a widely studied GPCR with roles in blood pressure regulation,water and salt balance and cell growth. The complex molecular and structural changes that underpin receptor activation and signaling are the focus of intense research. Increasingly, there is an appreciation that the plasma membrane participates in receptor function via direct, physical interactions that reciprocally modulate both lipid and receptor and provide microdomains for specialized activities. Reversible protein:lipid interactions are commonly mediated by amphipathic -helices in proteins and one such motif - a short helix, referred to as helix VIII/8 (H8), located at the start of the carboxyl (C)-terminus of GPCRs - is gaining recognition for its importance to GPCR function. Here, we review the identification of H8 in GPCRs and examine its capacity to sense and interact with diverse proteins and lipid environment, most notably with acidic lipids that include phosphatidylinositol phosphates.
Collapse
MESH Headings
- Binding Sites
- Humans
- Lipids/chemistry
- Protein Binding
- Protein Structure, Secondary
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction
Collapse
Affiliation(s)
- John Huynh
- School of Biomedical Sciences, The University of Queensland, Brisbane, St Lucia, Queensland, Australia
| | | | | | | |
Collapse
|
58
|
Nygaard R, Frimurer TM, Holst B, Rosenkilde MM, Schwartz TW. Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol Sci 2009; 30:249-59. [PMID: 19375807 DOI: 10.1016/j.tips.2009.02.006] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 01/07/2023]
Abstract
The past couple of years have seen several novel X-ray structures of 7 transmembrane (7TM) receptors in complex with antagonists and even with a peptide fragment of a G protein. These structures demonstrate that the main ligand-binding pocket in 7TM receptors is like a funnel with a partial 'lid' in which extracellular loop 2b, in particular, functions as a gating element. Small-molecule antagonists and inverse agonists bind in very different modes: some very deeply and others more superficially, even reaching out above the transmembranes. Several highly conserved residues seem to function as micro-switches of which ArgIII:26 (Arg3.50) in its active conformation interacts directly with the G protein. These micro-switches together with a hydrogen-bond network between conserved polar residues and structural water molecules are proposed to constitute an extended allosteric interface between the domains (i.e. especially TM-VI), which performs the large, global toggle switch movements connecting ligand binding with intracellular signaling.
Collapse
Affiliation(s)
- Rie Nygaard
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | | | | | | | | |
Collapse
|
59
|
Pellissier LP, Sallander J, Campillo M, Gaven F, Queffeulou E, Pillot M, Dumuis A, Claeysen S, Bockaert J, Pardo L. Conformational Toggle Switches Implicated in Basal Constitutive and Agonist-Induced Activated States of 5-Hydroxytryptamine-4 Receptors. Mol Pharmacol 2009; 75:982-90. [DOI: 10.1124/mol.108.053686] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
60
|
Royer J, Lefevre-Minisini A, Caltabiano G, Lacombe T, Malthiery Y, Savagner F, Pardo L, Rodien P. The cloned equine thyrotropin receptor is hypersensitive to human chorionic gonadotropin; identification of three residues in the extracellular domain involved in ligand specificity. Endocrinology 2008; 149:5088-96. [PMID: 18535103 DOI: 10.1210/en.2008-0423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The receptors for TSH, LH/chorionic gonadotropin (CG), and FSH belong to the same subfamily of G protein-coupled receptors. The specificity of recognition of their cognate hormone involves a limited number of residues in the leucine-rich repeats present in the N-terminal ectodomain of the receptor. It is admitted that receptors of this subfamily coevoluted with their respective ligands. The secretion of CG is restricted to gestation of primates and Equidae. We hypothesized that, facing the challenge of a new hormone, the glycoprotein hormone receptors would have evolved differently in Equidae and human so that distinct residues are involved in hormone specificity. In particular, it is known that equine CG has a dual (FSH and LH) activity when administered to other species. In the present work, we cloned and characterized functionally the equine TSH receptor (TSHR), which shares 89% homology with the human TSHR. The equine TSHR is not responsive to equine CG but is more sensitive to human CG than the human TSHR. Three residues, at positions 60, 229, and 235 of the ectodomain, are responsible for this difference in sensitivity as shown by modelization and targeted mutagenesis, followed by in vitro functional characterization. The phylogenetic approach is a suitable approach to identify determinants of specificity of receptors.
Collapse
Affiliation(s)
- Julien Royer
- Institut National de la Santé et de la Recherche Médicale, Unité 694, Equipe AVenir, Université d'Angers, Centre Hospitalier Universitaire d'Angers, 4 rue Larrey, 49933 Angers cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Cordomí A, Ramon E, Garriga P, Perez JJ. Molecular Dynamics Simulations of Rhodopsin Point Mutants at the Cytoplasmic Side of Helices 3 and 6. J Biomol Struct Dyn 2008; 25:573-87. [DOI: 10.1080/07391102.2008.10507204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
62
|
Proulx CD, Holleran BJ, Boucard AA, Escher E, Guillemette G, Leduc R. Mutational analysis of the conserved Asp2.50 and ERY motif reveals signaling bias of the urotensin II receptor. Mol Pharmacol 2008; 74:552-61. [PMID: 18509066 DOI: 10.1124/mol.108.045054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Class A (rhodopsin-like) G protein-coupled receptors possess conserved residues and motifs that are important for their specific activity. In the present study, we examined the role of residue Asp97(2.50) as well as residues Glu147(3.49), Arg148(3.50), and Tyr149(3.51) of the ERY motif on the functionality of the urotensin II receptor (UT). Mutations D97(2.50)A, R148(3.50)A, and R148(3.50)H abolished the ability of UT to activate phospholipase C, whereas mutations E147(3.49)A and Y149(3.51)A reduced the ability to activate PLC by 50%. None of the mutants exhibited constitutive activity. However, R148(3.50)A and R148(3.50)H promoted ERK1/2 activation, which was abolished by 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478), an inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase activity. Both these mutants were capable of directly activating EGFR, which confirmed that they activated the mitogen-activated protein kinase (MAPK) pathway by a Galpha(q/11)-independent transactivation of EGFR. The D97(2.50)A, R148(3.50)A, and R148(3.50)H mutants did not readily internalize and did not promote translocation or colocalize with beta-arrestin2-GFP. Finally, the agonist-induced internalization of the E147(3.49)A mutant receptor was significantly increased compared with wild-type receptor. This study highlights the major contribution of the conserved Asp(2.50) residue to the functionality of the UT receptor. The Arg residue in the ERY motif of UT is an important structural element in signaling crossroads that determine whether Galpha(q/11)-dependent and -independent events can occur.
Collapse
Affiliation(s)
- Christophe D Proulx
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4 ON, Canada
| | | | | | | | | | | |
Collapse
|
63
|
de Graaf C, Foata N, Engkvist O, Rognan D. Molecular modeling of the second extracellular loop of G-protein coupled receptors and its implication on structure-based virtual screening. Proteins 2008; 71:599-620. [PMID: 17972285 DOI: 10.1002/prot.21724] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The current study describes the validation of high-throughput modeling procedures for the construction of the second extracellular loop (ecl2) of all nonolfactory human G Protein-coupled receptors. Our modeling flowchart is based on the alignment of essential residues determining the particular ecl2 fold observed in the bovine rhodopsin (bRho) crystal structure. For a set of GPCR targets, the dopamine D2 receptor (DRD2), adenosine A3 receptor (AA3R), and the thromboxane A2 receptor (TA2R), the implications of including ecl2 atomic coordinates is evaluated in terms of structure-based virtual screening accuracy: the suitability of the 3D models to distinguish between known antagonists and randomly chosen decoys using automated docking approaches. The virtual screening results of different models describing increasingly exhaustive receptor representations (seven helices only, seven helices and ecl2 loop, full model) have been compared. Explicit modeling of the ecl2 loop was found to be important in only one of three test cases whereas a loopless model was shown to be accurate enough in the two other receptors. An exhaustive comparison of ecl2 loops of 365 receptors to that of bRho suggests that explicit ecl2 loop modeling should be reserved to receptors where loop building can be guided by experimental restraints.
Collapse
Affiliation(s)
- Chris de Graaf
- Bioinformatics of the Drug, CNRS UMR 7175-LC1, Université Louis Pasteur Strasbourg I, Illkirch F-67401, France
| | | | | | | |
Collapse
|
64
|
Murakami M, Kouyama T. Crystal structure of squid rhodopsin. Nature 2008; 453:363-7. [PMID: 18480818 DOI: 10.1038/nature06925] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
|
65
|
Feng X, Müller T, Mizrachi D, Fanelli F, Segaloff DL. An intracellular loop (IL2) residue confers different basal constitutive activities to the human lutropin receptor and human thyrotropin receptor through structural communication between IL2 and helix 6, via helix 3. Endocrinology 2008; 149:1705-17. [PMID: 18162522 PMCID: PMC2276707 DOI: 10.1210/en.2007-1341] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human lutropin receptor (hLHR) and human TSH receptor (hTSHR) are G protein-coupled receptors that play key roles in reproductive and thyroid physiology, respectively. We show using a quantitative assessment of cAMP production as a function of cell surface receptor expression that the hTSHR possesses greater basal constitutive activity than the hLHR. Further studies were undertaken to test the hypothesis that different potential Gs-coupling motifs identified in IL2 of the hTSHR and hLHR contribute to their different basal constitutive activities. Although mutating the receptors to interchange their potential Gs-coupling motifs reversed their relative activities, we show this to be due to the swapping of one IL2 residue (Q476 in the hLHR; R531 in the hTSHR). Molecular dynamics simulations show that the effect of the hLHR(Q476R) mutation, switching the structural features of the hLHR toward those of the hTSHR, is greater than the switching effect of the hTSHR(R531Q) mutant toward the hLHR. The structural model of the hLHR(Q476R) mutant can be considered as a hybrid of wild-type (wt) hTSHR and constitutively active mutant hLHR forms. In this hLHR(Q476R) mutant, IL2 adopts a structure similar to IL2 of the wt hTSHR, but it shares with the hLHR constitutively active mutant the solvent exposure and the reciprocal arrangement of helices 3, 5, and 6, including the weakening of the wt native R3.50-D6.30 interaction. Our results suggest a H3-mediated structural connection between IL2 and the cytosolic extension of H6. Thus, IL2 contributes significantly to the inactive and active state ensembles of these G protein-coupled receptors.
Collapse
Affiliation(s)
- Xiuyan Feng
- Department of Molecular Physiology and Biophysics, The Roy J. and Lucille R. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
66
|
Agonist binding, agonist affinity and agonist efficacy at G protein-coupled receptors. Br J Pharmacol 2008; 153:1353-63. [PMID: 18223670 DOI: 10.1038/sj.bjp.0707672] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Measurements of affinity and efficacy are fundamental for work on agonists both in drug discovery and in basic studies on receptors. In this review I wish to consider methods for measuring affinity and efficacy at G protein coupled receptors (GPCRs). Agonist affinity may be estimated in terms of the dissociation constant for agonist binding to a receptor using ligand binding or functional assays. It has, however, been suggested that measurements of affinity are always contaminated by efficacy so that it is impossible to separate the two parameters. Here I show that for many GPCRs, if receptor/G protein coupling is suppressed, experimental measurements of agonist affinity using ligand binding (K(obs)) provide quite accurate measures of the agonist microscopic dissociation constant (KA). Also in pharmacological functional studies, good estimates of agonist dissociation constants are possible. Efficacy can be quantitated in several ways based on functional data (maximal effect of the agonist (E(max)), ratio of agonist dissociation constant to concentration of agonist giving half maximal effect in functional assay (K(obs)/EC50), a combined parameter E(max)K(obs)/EC50). Here I show that E(max)K(obs)/EC50 provides the best assessment of efficacy for a range of agonists across the full range of efficacy for full to partial agonists. Considerable evidence now suggests that ligand efficacy may be dependent on the pathway used to assess it. The efficacy of a ligand may, therefore, be multidimensional. It is still, however, necessary to have accurate measures of efficacy in different pathways.
Collapse
|
67
|
Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors. Br J Pharmacol 2008; 153 Suppl 1:S154-66. [PMID: 18204488 DOI: 10.1038/sj.bjp.0707660] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments-most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue targeting, and possibly for cell entry. In addition, many virally-encoded chemokine 7TM receptors have been suggested to be causally involved in pathogenic phenotypes like Kaposi sarcoma, atherosclerosis, HIV-infection and tumour development. The role of these receptors during the viral life cycle and in viral pathogenesis is still poorly understood. Here we focus on the current knowledge of structure, function and trafficking patterns of virally encoded chemokine receptors and further address the putative roles of these receptors in virus survival and host -cell and/or -immune system modulation. Finally, we highlight the emerging impact of these receptor on virus-mediated diseases.
Collapse
|
68
|
Tarnow P, Rediger A, Brumm H, Ambrugger P, Rettenbacher E, Widhalm K, Hinney A, Kleinau G, Schaefer M, Hebebrand J, Krause G, Grüters A, Biebermann H. A heterozygous mutation in the third transmembrane domain causes a dominant-negative effect on signalling capability of the MC4R. Obes Facts 2008; 1:155-62. [PMID: 20054175 PMCID: PMC6452123 DOI: 10.1159/000138251] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Heterozygous MC4R mutation is the most frequent cause of monogenic obesity. For most MC4R mutations a gene dosage effect seems to be the underlying mechanism. However, a dominant negative effect of a heterozygous MC4R mutation was recently identified, pointing to an additional mechanism of MC4R inactivation. METHODS The complete loss-of-function mutation (Ser136Phe), identified in a cohort of obese Austrian patients, was characterized for cell surface expression, signal transduction and ligand binding properties. Co-transfection studies tested for a dominant negative effect. Dimerization was investigated by a sandwich ELISA and by fluorescence resonance energy transfer (FRET) approach. Potential intramolecular interactions of Ser136 were studied by homologous receptor modelling based on the crystal structure of the beta2-adrenergic receptor. RESULTS The Ser136Phe mutation showed a dominant negative effect. The sandwich ELISA and FRET approach demonstrated dimerization of mutant and wild type receptor. Receptor modelling revealed an essential function of Ser136 at transmembrane helix 3 (TMH3) for establishing H-bonds between TMH2, TMH3, and TMH7. The mutation Ser136Phe most likely disrupts this network and leads to an incompetent helix-helix arrangement in the mutated receptor. CONCLUSION Identification of dominant negative MC4R mutations is important to fully understand receptor function and to determine receptor regions that are involved in MC4R dimer activation.
Collapse
Affiliation(s)
- Patrick Tarnow
- Department of Pediatric Endocrinology, Charité, Campus Virchow-Klinikum – Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Rediger
- Department of Pediatric Endocrinology, Charité, Campus Virchow-Klinikum – Universitätsmedizin Berlin, Berlin, Germany
| | - Harald Brumm
- Department of Pediatric Endocrinology, Charité, Campus Virchow-Klinikum – Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Ambrugger
- Department of Pediatric Endocrinology, Charité, Campus Virchow-Klinikum – Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Rettenbacher
- Division of Nutrition and Metabolism, Department of Pediatrics, Medical University of Vienna, Austria
| | - Kurt Widhalm
- Division of Nutrition and Metabolism, Department of Pediatrics, Medical University of Vienna, Austria
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen, Germany
| | - Gunnar Kleinau
- Leibniz-Institut für molekulare Pharmakologie (FMP), Berlin, Germany
| | - Michael Schaefer
- Neurowissenschaftliches Forschungszentrum, Bereich Molekulare Pharmakologie und Zellbiologie, Charité, Campus Benjamin Franklin – Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen, Germany
| | - Gerd Krause
- Leibniz-Institut für molekulare Pharmakologie (FMP), Berlin, Germany
| | - Annette Grüters
- Department of Pediatric Endocrinology, Charité, Campus Virchow-Klinikum – Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Biebermann
- Department of Pediatric Endocrinology, Charité, Campus Virchow-Klinikum – Universitätsmedizin Berlin, Berlin, Germany
- *Heike Biebermann, Ph.D., Institut für Experimentelle Pädiatrische Endokrinologie, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany, Tel. +49 30 4505–59828, Fax -66926, E-mail
| |
Collapse
|
69
|
Bakker RA, Jongejan A, Sansuk K, Hacksell U, Timmerman H, Brann MR, Weiner DM, Pardo L, Leurs R. Constitutively active mutants of the histamine H1 receptor suggest a conserved hydrophobic asparagine-cage that constrains the activation of class A G protein-coupled receptors. Mol Pharmacol 2007; 73:94-103. [PMID: 17959710 DOI: 10.1124/mol.107.038547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to create and characterize constitutively active mutant (CAM) histamine H(1) receptors (H(1)R) using random mutagenesis methods to further investigate the activation process of the rhodopsin-like family of G protein-coupled receptors (GPCRs). This approach identified position 6.40 in TM 6 as a "hot spot" because mutation of Ile6.40(420) either to Glu, Gly, Ala, Arg, Lys, or Ser resulted in highly active CAM H(1)Rs, for which almost no histamine-induced receptor activation response could be detected. The highly conserved hydrophobic amino acid at position 6.40 defines, in a computational model of the H(1)R, the asparagine cage motif that restrains the side chain of Asn7.49 of the NPxxY motif toward transmembrane domain (TM 6) in the inactive state of the receptor. Mutation of the asparagine cage into Ala or Gly, removing the interfering bulky constraints, increases the constitutive activity of the receptor. The fact that the Ile6.40(420)Arg/Lys/Glu mutant receptors are highly active CAM H(1)Rs leads us to suggest that a positively charged residue, presumably the highly conserved Arg3.50 from the DRY motif, interacts in a direct or an indirect (through other side chains or/and internal water molecules) manner with the acidic Asp2.50..Asn7.49 pair for receptor activation.
Collapse
Affiliation(s)
- Remko A Bakker
- Leiden/Amsterdam Center for Drug Research, Department of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Bee MS, Hulme EC. Functional analysis of transmembrane domain 2 of the M1 muscarinic acetylcholine receptor. J Biol Chem 2007; 282:32471-9. [PMID: 17823120 DOI: 10.1074/jbc.m703909200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ala substitution scanning mutagenesis has been used to probe the functional role of amino acids in transmembrane (TM) domain 2 of the M1 muscarinic acetylcholine receptor, and of the highly conserved Asn43 in TM1. The mutation of Asn43, Asn61, and Leu64 caused an enhanced ACh affinity phenotype. Interpreted using a rhodopsin-based homology model, these results suggest the presence of a network of specific contacts between this group of residues and Pro415 and Tyr418 in the highly conserved NPXXY motif in TM7 that exhibit a similar mutagenic phenotype. These contacts may be rearranged or broken when ACh binds. D71A, like N414A, was devoid of signaling activity. We suggest that formation of a direct hydrogen bond between the highly conserved side chains of Asp71 and Asn414 may be a critical feature stabilizing the activated state of the M1 receptor. Mutation of Leu67, Ala70, and Ile74 also reduced the signaling efficacy of the ACh-receptor complex. The side chains of these residues are modeled as an extended surface that may help to orient and insulate the proposed hydrogen bond between Asp71 and Asn414. Mutation of Leu72, Gly75, and Met79 in the outer half of TM2 primarily reduced the expression of functional receptor binding sites. These residues may mediate contacts with TM1 and TM7 that are preserved throughout the receptor activation cycle. Thermal inactivation measurements confirmed that a reduction in structural stability followed the mutation of Met79 as well as Asp71.
Collapse
Affiliation(s)
- Mark S Bee
- Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | |
Collapse
|
71
|
Strasser A, Wittmann HJ. Analysis of the activation mechanism of the guinea-pig Histamine H1-receptor. J Comput Aided Mol Des 2007; 21:499-509. [PMID: 17712599 DOI: 10.1007/s10822-007-9131-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 08/06/2007] [Indexed: 01/09/2023]
Abstract
The Histamine H(1)-receptor (H1R), belonging to the amine receptor-class of family A of the G-protein coupled receptors (GPCRs) gets activated by agonists. The consequence is a conformational change of the receptor, which may involve the binding-pocket. So, for a good prediction of the binding-mode of an agonist, it is necessary to have knowledge about these conformational changes. Meanwhile some experimental data about the structural changes of GPCRs during activation exist. Based on homology modeling of the guinea-pig H1R (gpH1R), using the crystal structure of bovine rhodopsin as template, we performed several MD simulations with distance restraints in order to get an inactive and an active structure of the gpH1R. The calculations led to a Phe6.44/Trp6.48/Phe6.52-switch and linearization of the proline kinked transmembrane helix VI during receptor activation. Our calculations showed that the Trp6.48/Phe6.52-switch induces a conformational change in Phe6.44, which slides between transmembrane helices III and VI. Additionally we observed a hydrogen bond interaction of Ser3.39 with Asn7.45 in the inactive gpH1R, but because of a counterclockwise rotation of transmembrane helix III Ser3.39 establishes a water-mediated hydrogen bond to Asp2.50 in the active gpH1R. Additionally we simulated a possible mechanism for receptor activation with a modified LigPath-algorithm.
Collapse
Affiliation(s)
- Andrea Strasser
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
72
|
Dölker N, Deupi X, Pardo L, Campillo M. Charge-charge and cation-π interactions in ligand binding to G protein-coupled receptors. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0341-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
73
|
Pardo L, Deupi X, Dölker N, López-Rodríguez ML, Campillo M. The role of internal water molecules in the structure and function of the rhodopsin family of G protein-coupled receptors. Chembiochem 2007; 8:19-24. [PMID: 17173267 DOI: 10.1002/cbic.200600429] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
74
|
Oliveira L, Costa-Neto CM, Nakaie CR, Schreier S, Shimuta SI, Paiva ACM. The Angiotensin II AT1 Receptor Structure-Activity Correlations in the Light of Rhodopsin Structure. Physiol Rev 2007; 87:565-92. [PMID: 17429042 DOI: 10.1152/physrev.00040.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The most prevalent physiological effects of ANG II, the main product of the renin-angiotensin system, are mediated by the AT1 receptor, a rhodopsin-like AGPCR. Numerous studies of the cardiovascular effects of synthetic peptide analogs allowed a detailed mapping of ANG II's structural requirements for receptor binding and activation, which were complemented by site-directed mutagenesis studies on the AT1 receptor to investigate the role of its structure in ligand binding, signal transduction, phosphorylation, binding to arrestins, internalization, desensitization, tachyphylaxis, and other properties. The knowledge of the high-resolution structure of rhodopsin allowed homology modeling of the AT1 receptor. The models thus built and mutagenesis data indicate that physiological (agonist binding) or constitutive (mutated receptor) activation may involve different degrees of expansion of the receptor's central cavity. Residues in ANG II structure seem to control these conformational changes and to dictate the type of cytosolic event elicited during the activation. 1) Agonist aromatic residues (Phe8 and Tyr4) favor the coupling to G protein, and 2) absence of these residues can favor a mechanism leading directly to receptor internalization via phosphorylation by specific kinases of the receptor's COOH-terminal Ser and Thr residues, arrestin binding, and clathrin-dependent coated-pit vesicles. On the other hand, the NH2-terminal residues of the agonists ANG II and [Sar1]-ANG II were found to bind by two distinct modes to the AT1 receptor extracellular site flanked by the COOH-terminal segments of the EC-3 loop and the NH2-terminal domain. Since the [Sar1]-ligand is the most potent molecule to trigger tachyphylaxis in AT1 receptors, it was suggested that its corresponding binding mode might be associated with this special condition of receptors.
Collapse
Affiliation(s)
- Laerte Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
75
|
Smit MJ, Vischer HF, Bakker RA, Jongejan A, Timmerman H, Pardo L, Leurs R. Pharmacogenomic and Structural Analysis of Constitutive G Protein–Coupled Receptor Activity. Annu Rev Pharmacol Toxicol 2007; 47:53-87. [PMID: 17029567 DOI: 10.1146/annurev.pharmtox.47.120505.105126] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) respond to a chemically diverse plethora of signal transduction molecules. The notion that GPCRs also signal without an external chemical trigger, i.e., in a constitutive or spontaneous manner, resulted in a paradigm shift in the field of GPCR pharmacology. The discovery of constitutive GPCR activity and the fact that GPCR binding and signaling can be strongly affected by a single point mutation drew attention to the evolving area of GPCR pharmacogenomics. For a variety of GPCRs, point mutations have been convincingly linked to human disease. Mutations within conserved motifs, known to be involved in GPCR activation, might explain the properties of some naturally occurring, constitutively active GPCR variants linked to disease. In this review, we provide a brief historical introduction to the concept of constitutive receptor activity and the pharmacogenomic and structural aspects of constitutive receptor activity.
Collapse
Affiliation(s)
- Martine J Smit
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Vrije Universiteit, Faculty of Sciences, Department of Chemistry, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
76
|
Basu S, Jala VR, Mathis S, Rajagopal ST, Del Prete A, Maturu P, Trent JO, Haribabu B. Critical role for polar residues in coupling leukotriene B4 binding to signal transduction in BLT1. J Biol Chem 2007; 282:10005-10017. [PMID: 17237498 DOI: 10.1074/jbc.m609552200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukotriene B(4) (LTB(4)) mediates a variety of inflammatory diseases such as asthma, arthritis, atherosclerosis, and cancer through activation of the G-protein-coupled receptor, BLT1. Using in silico molecular dynamics simulations combined with site-directed mutagenesis we characterized the ligand binding site and activation mechanism for BLT1. Mutation of residues predicted as potential ligand contact points in transmembrane domains (TMs) III (H94A and Y102A), V (E185A), and VI (N241A) resulted in reduced binding affinity. Analysis of arginines in extracellular loop 2 revealed that mutating arginine 156 but not arginine 171 or 178 to alanine resulted in complete loss of LTB(4) binding to BLT1. Structural models for the ligand-free and ligand-bound states of BLT1 revealed an activation core formed around Asp-64, displaying multiple dynamic interactions with Asn-36, Ser-100, and Asn-281 and a triad of serines, Ser-276, Ser-277, and Ser-278. Mutagenesis of many of these residues in BLT1 resulted in loss of signaling capacity while retaining normal LTB(4) binding function. Thus, polar residues within TMs III, V, and VI and extracellular loop 2 are critical for ligand binding, whereas polar residues in TMs II, III, and VII play a central role in transducing the ligand-induced conformational change to activation. The delineation of a validated binding site and activation mechanism should facilitate structure-based design of inhibitors targeting BLT1.
Collapse
Affiliation(s)
- Sudeep Basu
- Tumor Immunobiology Program, James Graham Brown Cancer Center, Louisville, Kentucky 40202; Departments of Microbiology and Immunology, Louisville, Kentucky 40202
| | - Venkatakrishna R Jala
- Tumor Immunobiology Program, James Graham Brown Cancer Center, Louisville, Kentucky 40202
| | - Steven Mathis
- Tumor Immunobiology Program, James Graham Brown Cancer Center, Louisville, Kentucky 40202; Departments of Microbiology and Immunology, Louisville, Kentucky 40202
| | | | - Annalisa Del Prete
- Tumor Immunobiology Program, James Graham Brown Cancer Center, Louisville, Kentucky 40202
| | - Paramahamsa Maturu
- Tumor Immunobiology Program, James Graham Brown Cancer Center, Louisville, Kentucky 40202
| | - John O Trent
- Tumor Immunobiology Program, James Graham Brown Cancer Center, Louisville, Kentucky 40202; Department of Medicine, University of Louisville Health Sciences, Louisville, Kentucky 40202.
| | - Bodduluri Haribabu
- Tumor Immunobiology Program, James Graham Brown Cancer Center, Louisville, Kentucky 40202; Departments of Microbiology and Immunology, Louisville, Kentucky 40202.
| |
Collapse
|
77
|
Kleinau G, Claus M, Jaeschke H, Mueller S, Neumann S, Paschke R, Krause G. Contacts between Extracellular Loop Two and Transmembrane Helix Six Determine Basal Activity of the Thyroid-stimulating Hormone Receptor. J Biol Chem 2007; 282:518-25. [PMID: 17079233 DOI: 10.1074/jbc.m606176200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of alanine mutations in extracellular loop two (ECL2) of the thyroid-stimulating hormone receptor (TSHR) were found to increase or decrease basal activity when compared with the wild type receptor. K565A was identified as a mutant with decreased basal activity, and strongly impaired hormone induced signaling activity. To gain insights into how ECL2 mutants affect basal activity, we focused on constitutively activating pathogenic mutant I568V in ECL2, which exhibits elevated basal activity. Because our molecular model suggests that Ile-568 is embedded in an environment of hydrophobic residues provided by transmembrane helix bundle, we tested mutants in this region to identify potential interaction partner(s) for Ile-568. Indeed, the double mutant I568V/I640L (ECL2/TMH6) suppresses the increased basal activity exhibited by I568V alone. We suggest a spatial and functional relationship between ECL2 and TMH6 in which side chain interaction between Ile-568 and Ile-640 constrains the receptor in a conformation with low basal activity. Although the single mutant I640L exhibits basal activity lower than wild type, its differently branched and bulkier side chain complements the reduced side chain bulk in I568V, restoring wild type basal activity to the double mutant. This scenario is confirmed by the reciprocal double mutant I640V/I568L. The combination of basally increased activity of I640V and basally decreased activity of mutant I568L also restores basal activity of wild type TSHR. These and other mutant phenotypes reported here support a dynamic interface between TMH6 and ECL2. Disruption of this critical interface for signaling by introduction of mutations in TSHR can either increase or decrease basal activity.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Leibniz-Institut für molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
78
|
Rosenkilde MM, Andersen MB, Nygaard R, Frimurer TM, Schwartz TW. Activation of the CXCR3 Chemokine Receptor through Anchoring of a Small Molecule Chelator Ligand between TM-III, -IV, and -VI. Mol Pharmacol 2006; 71:930-41. [PMID: 17170198 DOI: 10.1124/mol.106.030031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Seven transmembrane segment (7TM) receptors are activated through a common, still rather unclear molecular mechanism by a variety of chemical messengers ranging from monoamines to large proteins. By introducing a His residue at position III:05 in the CXCR3 receptor a metal ion site was built between the extracellular ends of transmembrane (TM) III and TM-IV to anchor aromatic chelators at a location corresponding to the presumed binding pocket for adrenergic receptor agonists. In this construct, free metal ions had no agonistic effect in accordance with the optimal geometry of the metal ion site in molecular models built over the inactive form of rhodopsin. In contrast, the aromatic chelators bipyridine or phenanthrolene in complex with Zn(II) or Cu(II) acted as potent agonists displaying signaling efficacies similar to or even better than the endogenous chemokine agonists. Molecular modeling and molecular simulations combined with mutational analysis indicated that the metal ion site-anchored chelators act as agonists by establishing an aromatic-aromatic, second-site interaction with TyrVI:16 on the inner face of TM-VI. It is noteworthy that this interaction required that the extracellular segment of TM-VI moves inward in the direction of TM-III, whereby TyrVI:16 together with the chelators complete an "aromatic zipper" also comprising PheIII:08 (corresponding to the monoamine receptor anchoring point) and TyrVII:10 (corresponding to the retinal attachment site in rhodopsin). Chemokine agonism was independent of this aromatic zipper. It is proposed that in rhodopsin-like 7TM receptors, small-molecule compounds in general act as agonists in a similar manner as here demonstrated with the artificial, metal ion site anchored chelators, by holding TM-VI bent inward.
Collapse
Affiliation(s)
- Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Pharmacology, University of Copenhagen, Blegdamsvej 3b, DK-2200, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
79
|
Kleinau G, Brehm M, Wiedemann U, Labudde D, Leser U, Krause G. Implications for molecular mechanisms of glycoprotein hormone receptors using a new sequence-structure-function analysis resource. Mol Endocrinol 2006; 21:574-80. [PMID: 17110401 DOI: 10.1210/me.2006-0309] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Comparison between wild-type and mutated glycoprotein hormone receptors (GPHRs), TSH receptor, FSH receptor, and LH-chorionic gonadotropin receptor is established to identify determinants involved in molecular activation mechanism. The basic aims of the current work are 1) the discrimination of receptor phenotypes according to the differences between activity states they represent, 2) the assignment of classified phenotypes to three-dimensional structural positions to reveal 3) functional-structural hot spots and 4) interrelations between determinants that are responsible for corresponding activity states. Because it is hard to survey the vast amount of pathogenic and site-directed mutations at GPHRs and to improve an almost isolated consideration of individual point mutations, we present a system for systematic and diversified sequence-structure-function analysis (http://www.fmp-berlin.de/ssfa). To combine all mutagenesis data into one set, we converted the functional data into unified scaled values. This at least enables their comparison in a rough classification manner. In this study we describe the compiled data set and a wide spectrum of functions for user-driven searches and classification of receptor functionalities such as cell surface expression, maximum of hormone binding capability, and basal as well as hormone-induced Galphas/Galphaq mediated cAMP/inositol phosphate accumulation. Complementary to known databases, our data set and bioinformatics tools allow functional and biochemical specificities to be linked with spatial features to reveal concealed structure-function relationships by a semiquantitative analysis. A comprehensive discrimination of specificities of pathogenic mutations and in vitro mutant phenotypes and their relation to signaling mechanisms of GPHRs demonstrates the utility of sequence-structure-function analysis. Moreover, new interrelations of determinants important for selective G protein-mediated activation of GPHRs are resumed.
Collapse
MESH Headings
- Animals
- Databases, Protein
- Humans
- Models, Molecular
- Mutation
- Protein Conformation
- Receptors, FSH/chemistry
- Receptors, FSH/genetics
- Receptors, FSH/physiology
- Receptors, LH/chemistry
- Receptors, LH/genetics
- Receptors, LH/physiology
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/genetics
- Receptors, Thyrotropin/physiology
- Signal Transduction
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Gunnar Kleinau
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
80
|
Nikiforovich GV, Zhang M, Yang Q, Jagadeesh G, Chen HC, Hunyady L, Marshall GR, Catt KJ. Interactions between Conserved Residues in Transmembrane Helices 2 and 7 during Angiotensin AT1Receptor Activation. Chem Biol Drug Des 2006; 68:239-49. [PMID: 17177883 DOI: 10.1111/j.1747-0285.2006.00444.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-directed mutagenesis studies and independent molecular modeling studies were combined to investigate the network of inter-residue interactions within the transmembrane region of the angiotensin AT(1a) receptor. Site-directed mutagenesis was focused on residues Tyr292, Asn294, Asn295, and Asn298 in transmembrane helix 7, and the conserved Asp74 in helix 2 and other polar residues. Functional interactions between pairs of residues were evaluated by determining the effects of single and double-reciprocal mutations on agonist-induced AT(1a) receptor activation. Replacement of Tyr292 by aspartate in helix 7 abolished radioligand binding to both Y292D and D74Y/Y292D mutant receptors. Reciprocal mutations of Asp74/Asn294, Ser115/Asn294, Ser252/Asn294, and Asn298/Sen115 caused additive impairment of function, suggesting that these pairs of residues make independent contributions to AT(1a) receptor activation. In contrast, mutations of the Asp74/Tyr298 pair revealed that the D74N/N298D reciprocal mutation substantially increased the impaired inositol phosphate responses of the D74N and N298D receptors. Extensive molecular modeling yielded 3D models of the TM region of the AT(1) receptor and the mutants as well as of their complexes with angiotensin II, which were used to rationalize the possible reasons of impairing of function of some mutants. These data indicate that Asp74 and Asn298 are not optimally positioned for direct strong interaction in the resting conformation of the AT(1a) receptor. Balance of interactions between residues in helix 2 (as D74) and helix 7 (as N294, N295 and N298) in the AT(1) receptors, however, has a crucial role both in determining their functional activity and levels of their expression.
Collapse
Affiliation(s)
- Gregory V Nikiforovich
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Lesniewski M, Das S, Skomorovska-Prokvolit Y, Wang FZ, Pellett PE. Primate cytomegalovirus US12 gene family: a distinct and diverse clade of seven-transmembrane proteins. Virology 2006; 354:286-98. [PMID: 16904149 DOI: 10.1016/j.virol.2006.06.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 04/10/2006] [Accepted: 06/30/2006] [Indexed: 11/27/2022]
Abstract
Human cytomegalovirus (HCMV; Human herpesvirus 5) and the other betaherpesviruses encode a number of distinct gene families, including the US12 family, which is represented only in the cytomegaloviruses of higher primates, and is comprised of a set of 10 contiguous genes (US12 through US21), each encoding a seven-transmembrane (7TM) protein. Nonessential for replication in cell culture but well-conserved among clinical isolates, little is known of possible US12 family member functions, other than a previously identified amino acid sequence similarity between US21 and a group of 7TM proteins that include known inhibitors of apoptosis, and a very limited description of similarity between US12 family members and G-protein-coupled receptors (GPCR). As a prelude to biochemical analysis, we have conducted a detailed analysis of the relationships among US12 family members and between these proteins and other proteins, particularly GPCR and other 7TM molecules. In most cases, the closest relatives of individual genes are their colinear counterparts in the other viruses. Thus, the initial duplication and divergence events that resulted in the current version of the US12 family preceded divergence of the rhesus and hominoid lineages. Our phylogenetic analysis indicates that the US12 family represents a distinct branch of the 7TM superfamily. Although they are distantly related, at least some of the US12 family members may have GPCR-related properties, but they are also likely to embody functions and mechanisms that differ from more conventional GPCRs. Our analyses suggest that the 7TM structure of US12 family members constitutes a functionally flexible structural scaffold that can be readily adapted to diverse functional ends. This strategy may be the driving force in the emergence of the several families of duplicated and diverged betaherpesvirus genes.
Collapse
Affiliation(s)
- Mathew Lesniewski
- Department of Molecular Genetics, Section of Virology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue NN10, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
82
|
Ringkananont U, Van Durme J, Montanelli L, Ugrasbul F, Yu YM, Weiss RE, Refetoff S, Grasberger H. Repulsive Separation of the Cytoplasmic Ends of Transmembrane Helices 3 and 6 Is Linked to Receptor Activation in a Novel Thyrotropin Receptor Mutant (M626I). Mol Endocrinol 2006; 20:893-903. [PMID: 16339276 DOI: 10.1210/me.2005-0339] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractLigand-dependent activation of G protein-coupled receptors (GPCRs) involves repositioning of the juxtacytoplasmic ends of transmembrane helices TM3 and TM6. This concept, inferred from site-directed spin labeling studies, is supported by chemical cross-linking of the cytoplasmic ends of TM3 and TM6 blocking GPCR activation. Here we report a novel constitutive active mutation (M626I) in TM6 of the TSH receptor (TSHR), identified in affected members of a family with nonautoimmune hyperthyroidism. The specific constitutive activity of M626I, measured by its basal cAMP generation corrected for cell surface expression, was 13-fold higher than that of wild-type TSHR. Homology modeling of the TSHR serpentine domain based on the rhodopsin crystal structure suggests that M626 faces the side chain of I515 of TM3 near the membrane-cytoplasmic junction. Steric hindrance of the introduced isoleucine by I515 is consistent with the fact that shorter or more flexible side chains at position 626 did not increase constitutivity. Furthermore, a reciprocal mutation at position 515 (I515M), when introduced into the M626I background, acts as revertant mutation by allowing accommodation of the isoleucine sidechain at position 626 and fully restoring the constitutive activity to the level of wild-type TSHR. Thus, repulsive separation of the juxtacytoplasmic TM6 and TM3 in the M626I model conclusively demonstrates a direct link between the opening of this cytoplasmic face of the receptor structure and G protein coupling.
Collapse
Affiliation(s)
- Usanee Ringkananont
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Xu W, Campillo M, Pardo L, de Riel JK, Liu-Chen LY. The seventh transmembrane domains of the delta and kappa opioid receptors have different accessibility patterns and interhelical interactions. Biochemistry 2006; 44:16014-25. [PMID: 16331961 PMCID: PMC2688720 DOI: 10.1021/bi050938a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We applied the substituted cysteine accessibility method (SCAM) to map the residues of the transmembrane helices (TMs) 7 of delta and kappa opioid receptors (deltaOR and kappaOR) that are on the water-accessible surface of the binding-site crevices. A total of 25 consecutive residues (except C7.38) in the TMs 7 were mutated to Cys, one at a time, and each mutant was expressed in HEK 293 cells. Most mutants displayed similar binding affinity for [(3)H]diprenorphine, an antagonist, as the wild types. Pretreatment with (2-aminoethyl)methanethiosulfonate (MTSEA) inhibited [(3)H]diprenorphine binding to eight deltaOR and eight kappaOR mutants. All mutants except deltaOR L7.52(317)C were protected by naloxone from the MTSEA effect, indicating that the side chains of V7.31(296), A7.34(299), I7.39(304), L7.41(306), G7.42(307), P7.50(315), and Y7.53(318) of deltaOR and S7.34(311), F7.37(314), I7.39(316), A7.40(317), L7.41(318), G7.42(319), Y7.43(320), and N7.49(326) of kappaOR are on the water-accessible surface of the binding pockets. Combining the SCAM data with rhodopsin-based molecular models of the receptors led to the following conclusions. (i) The residues of the extracellular portion of TM7 predicted to face TM1 are sensitive to MTSEA in kappaOR but are not in deltaOR. Thus, TM1 may be closer to TM7 in deltaOR than in kappaOR. (ii) MTSEA-sensitive mutants start at position 7.31(296) in deltaOR and at 7.34(311) in kappaOR, suggesting that TM7 in deltaOR may have an additional helical turn (from 7.30 to 7.33). (iii) There is a conserved hydrogen-bond network linking D2.50 of the NLxxxD motif in TM2 with W6.48 of the CWxP motif in TM6. (iv) The NPxxY motif in TM7 interacts with TM2, TM6, and helix 8 to maintain receptors in inactive states. To the best of our knowledge, this represents the first such comparison of the structures of two highly homologous GPCRs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Cattle
- Cell Line
- Cysteine/metabolism
- Humans
- Hydrogen Bonding
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Secondary
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, kappa/genetics
- Sequence Alignment
Collapse
Affiliation(s)
- Wei Xu
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
| | - Mercedes Campillo
- Laboratori de Medicina Computacional, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - J. Kim de Riel
- Fels Institute for Molecular Biology and Cancer Research, Temple University School of Medicine, Philadelphia, PA
| | - Lee-Yuan Liu-Chen
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
- Address correspondence to: Dr. Lee-Yuan Liu-Chen, Department of Pharmacology, Temple University School of Medicine, 3420 N. Broad St., Philadelphia, PA 19140, phone: (215) 707−4188; fax: (215) 707−7068; e-mail:
| |
Collapse
|
84
|
Slusarz MJ, Slusarz R, Ciarkowski J. Investigation of mechanism of desmopressin binding in vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors: Molecular dynamics simulation of the agonist-bound state in the membrane–aqueous system. Biopolymers 2006; 81:321-38. [PMID: 16333859 DOI: 10.1002/bip.20420] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The vasopressin V2 receptor (V2R) belongs to the Class A G protein-coupled receptors (GPCRs). V2R is expressed in the renal collecting duct (CD), where it mediates the antidiuretic action of the neurohypophyseal hormone arginine vasopressin (CYFQNCPRG-NH2, AVP). Desmopressin ([1-deamino, 8-D]AVP, dDAVP) is strong selective V2R agonist with negligible pressor and uterotonic activity. In this paper, the interactions responsible for binding of dDAVP to vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors has been examined. Three-dimensional activated models of the receptors were constructed using the multiple sequence alignment and the complex of activated rhodopsin with Gt(alpha) C-terminal peptide of transducin MII-Gt(alpha) (338-350) prototype (Slusarz, R.; Ciarkowski, J. Acta Biochim Pol 2004 51, 129-136) as a template. The 1-ns unconstrained molecular dynamics (MD) of receptor-dDAVP complexes immersed in the fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) membrane model was conducted in an Amber 7.0 force field. Highly conserved transmembrane residues have been proposed as being responsible for V2R activation and G protein coupling. Molecular mechanism of the dDAVP binding has been suggested. The internal water molecules involved in an intricate network of the hydrogen bonds inside the receptor cavity have been identified and their role in the stabilization of the agonist-bound state proposed.
Collapse
Affiliation(s)
- Magdalena J Slusarz
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18,80-952 Gdańsk,Poland.
| | | | | |
Collapse
|
85
|
Conner AC, Simms J, Howitt SG, Wheatley M, Poyner DR. The second intracellular loop of the calcitonin gene-related peptide receptor provides molecular determinants for signal transduction and cell surface expression. J Biol Chem 2005; 281:1644-51. [PMID: 16293613 DOI: 10.1074/jbc.m510064200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcitonin gene-related peptide (CGRP) receptor is a heterodimer of a family B G-protein-coupled receptor, calcitonin receptor-like receptor (CLR), and the accessory protein receptor activity modifying protein 1. It couples to G(s), but it is not known which intracellular loops mediate this. We have identified the boundaries of this loop based on the relative position and length of the juxtamembrane transmembrane regions 3 and 4. The loop has been analyzed by systematic mutagenesis of all residues to alanine, measuring cAMP accumulation, CGRP affinity, and receptor expression. Unlike rhodopsin, ICL2 of the CGRP receptor plays a part in the conformational switch after agonist interaction. His-216 and Lys-227 were essential for a functional CGRP-induced cAMP response. The effect of (H216A)CLR is due to a disruption to the cell surface transport or surface stability of the mutant receptor. In contrast, (K227A)CLR had wild-type expression and agonist affinity, suggesting a direct disruption to the downstream signal transduction mechanism of the CGRP receptor. Modeling suggests that the loop undergoes a significant shift in position during receptor activation, exposing a potential G-protein binding pocket. Lys-227 changes position to point into the pocket, potentially allowing it to interact with bound G-proteins. His-216 occupies a position similar to that of Tyr-136 in bovine rhodopsin, part of the DRY motif of the latter receptor. This is the first comprehensive analysis of an entire intracellular loop within the calcitonin family of G-protein-coupled receptor. These data help to define the structural and functional characteristics of the CGRP-receptor and of family B G-protein-coupled receptors in general.
Collapse
Affiliation(s)
- Alex C Conner
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | | | | | | | | |
Collapse
|
86
|
Fanelli F, De Benedetti PG. Computational Modeling Approaches to Structure−Function Analysis of G Protein-Coupled Receptors. Chem Rev 2005; 105:3297-351. [PMID: 16159154 DOI: 10.1021/cr000095n] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | |
Collapse
|
87
|
Springael JY, Urizar E, Parmentier M. Dimerization of chemokine receptors and its functional consequences. Cytokine Growth Factor Rev 2005; 16:611-23. [PMID: 15979374 DOI: 10.1016/j.cytogfr.2005.05.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 05/17/2005] [Indexed: 12/15/2022]
Abstract
It became clear over the recent years that most, if not all, G protein-coupled receptors (GPCR) are able to form dimers or higher order oligomers. Chemokine receptors make no exception to this new rule and both homo- and heterodimerization were demonstrated for CC and CXC receptors. Functional analyses demonstrated negative binding cooperativity between the two subunits of a dimer. The consequence is that only one chemokine can bind with high affinity onto a receptor dimer. In the context of receptor activation, this implies that the motions of helical domains triggered by the binding of agonists induce correlated changes in the other protomer. The impact of the chemokine dimerization process in terms of co-receptor function and drug development is discussed.
Collapse
Affiliation(s)
- Jean-Yves Springael
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | | | | |
Collapse
|
88
|
Jongejan A, Bruysters M, Ballesteros JA, Haaksma E, Bakker RA, Pardo L, Leurs R. Linking agonist binding to histamine H1 receptor activation. Nat Chem Biol 2005; 1:98-103. [PMID: 16408006 DOI: 10.1038/nchembio714] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 05/24/2005] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute a large and functionally diverse family of transmembrane proteins. They are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways and are among the most targeted proteins in drug discovery. The detailed molecular mechanism for agonist-induced activation of rhodopsin-like GPCRs has not yet been described. Using a combination of site-directed mutagenesis and molecular modeling, we characterized important steps in the activation of the human histamine H1 receptor. Both Ser3.36 and Asn7.45 are important links between histamine binding and previously proposed conformational changes in helices 6 and 7. Ser3.36 acts as a rotamer toggle switch that, upon agonist binding, initiates the activation of the receptor through Asn7.45. The proposed transduction involves specific residues that are conserved among rhodopsin-like GPCRs.
Collapse
Affiliation(s)
- Aldo Jongejan
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|