51
|
PPARgamma and Apoptosis in Cancer. PPAR Res 2011; 2008:704165. [PMID: 18615184 PMCID: PMC2442903 DOI: 10.1155/2008/704165] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/21/2008] [Accepted: 06/11/2008] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand binding transcription factors which function in many physiological roles including lipid metabolism, cell growth, differentiation, and apoptosis. PPARs and their ligands have been shown to play a role in cancer. In particular, PPARγ ligands including endogenous prostaglandins and the synthetic thiazolidinediones (TZDs) can induce apoptosis of cancer cells with antitumor activity. Thus, PPARγ ligands have a potential in both chemoprevention and therapy of several types of cancer either as single agents or in combination with other antitumor agents. Accordingly, the involvement of PPARγ and its ligands in regulation of apoptosis of cancer cells have been extensively studied. Depending on cell types or ligands, induction of apoptosis in cancer cells by PPARγ ligands can be either PPARγ-dependent or -independent. Through increasing our understanding of the mechanisms of PPARγ ligand-induced apoptosis, we can develop better strategies which may include combining other antitumor agents for PPARγ-targeted cancer chemoprevention and therapy. This review will highlight recent research advances on PPARγ and apoptosis in cancer.
Collapse
|
52
|
The Role of PPAR Ligands in Controlling Growth-Related Gene Expression and their Interaction with Lipoperoxidation Products. PPAR Res 2011; 2008:524671. [PMID: 18615196 PMCID: PMC2443425 DOI: 10.1155/2008/524671] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/05/2008] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferators-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. The three PPAR isoforms (α, γ and β/δ) have been found to play a pleiotropic role in cell fat metabolism. Furthermore, in recent years, evidence has been found regarding the antiproliferative, proapoptotic, and differentiation-promoting activities displayed by PPAR ligands, particularly by PPARγ ligands. PPAR ligands affect the expression of different growth-related genes through both PPAR-dependent and PPAR-independent mechanisms. Moreover, an interaction between PPAR ligands and other molecules which strengthen the effects of PPAR ligands has been described. Here we review the action of PPAR on the control of gene expression with particular regard to the effect of PPAR ligands on the expression of genes involved in the regulation of cell-cycle, differentiation, and apoptosis. Moreover, the interaction between PPAR ligands and 4-hydroxynonenal (HNE), the major product of the lipid peroxidation, has been reviewed.
Collapse
|
53
|
Abstract
Proline is metabolized by its own specialized enzymes with their own tissue and subcellular localizations and mechanisms of regulation. The central enzyme in this metabolic system is proline oxidase, a flavin adenine dinucleotide-containing enzyme which is tightly bound to mitochondrial inner membranes. The electrons from proline can be used to generate ATP or can directly reduce oxygen to form superoxide. Although proline may be derived from the diet and biosynthesized endogenously, an important source in the microenvironment is from degradation of extracellular matrix by matrix metalloproteinases. Previous studies showed that proline oxidase is a p53-induced gene and its overexpression can initiate proline-dependent apoptosis by both intrinsic and extrinsic pathways. Another important factor regulating proline oxidase is peroxisome proliferator activated receptor gamma (PPARγ). Importantly, in several cancer cells, proline oxidase may be an important mediator of the PPARγ-stimulated generation of ROS and induction of apoptosis. Knockdown of proline oxidase expression by antisense RNA markedly decreased these PPARγ-stimulated effects. These findings suggest an important role in the proposed antitumor effects of PPARγ. Moreover, it is possible that proline oxidase may contribute to the other metabolic effects of PPARγ.
Collapse
|
54
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily and ligand-activated transcription factors. PPARγ plays an important role in adipocyte differentiation, lipid storage and energy dissipation in adipose tissue, and is involved in the control of inflammatory reactions as well as in glucose metabolism through the improvement of insulin sensitivity. Growing evidence has demonstrated that activation of PPARγ has an antineoplastic effect in tumors, including colorectal cancer. High expression of PPARγ is detected in human colon cancer cell lines and adenocarcinoma. This review describes the molecular mechanisms by which PPARγ regulates tumorigenesis in colorectal cancer, and examines current clinical trials evaluating PPARγ agonists as therapeutic agents for colorectal cancer.
Collapse
Affiliation(s)
- Yun Dai
- Yun Dai, Wei-Hong Wang, Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | | |
Collapse
|
55
|
Lee OH, Kwon YI, Apostolidis E, Shetty K, Kim YC. Rhodiola
-induced inhibition of adipogenesis involves antioxidant enzyme response associated with pentose phosphate pathway. Phytother Res 2010; 25:106-15. [DOI: 10.1002/ptr.3236] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
56
|
Abstract
Proline, the only proteinogenic secondary amino acid, is metabolized by its own family of enzymes responding to metabolic stress and participating in metabolic signaling. Collagen in extracellular matrix, connective tissue, and bone is an abundant reservoir for proline. Matrix metalloproteinases degrading collagen are activated during stress to make proline available, and proline oxidase, the first enzyme in proline degradation, is induced by p53, peroxisome proliferator-activated receptor gamma (PPARgamma) and its ligands, and by AMP-activated protein kinase downregulating mTOR. Metabolism of proline generates electrons to produce ROS and initiates a variety of downstream effects, including blockade of the cell cycle, autophagy, and apoptosis. The electrons can also enter the electron transport chain to produce adenosine triphosphate for survival under nutrient stress. Pyrroline-5-carboxylate, the product of proline oxidation, is recycled back to proline with redox transfers or is sequentially converted to glutamate and alpha-ketoglutarate. The latter augments the prolyl hydroxylation of hypoxia-inducible factor-1alpha and its proteasomal degradation. These effects of proline oxidase, as well as its decreased levels in tumors, support its role as a tumor suppressor. The mechanism for its decrease is mediated by a specific microRNA. The metabolic signaling by proline oxidase between oxidized low-density lipoproteins and autophagy provides a functional link between obesity and increased cancer risk.
Collapse
Affiliation(s)
- James M Phang
- Metabolism and Cancer Susceptibility Section, Laboratory of Comparative Carcinogenesis, Center for Cancer Research, NCI at Frederick, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|
57
|
Liu W, Zabirnyk O, Wang H, Shiao YH, Nickerson ML, Khalil S, Anderson LM, Perantoni AO, Phang JM. miR-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer. Oncogene 2010; 29:4914-24. [PMID: 20562915 PMCID: PMC4398970 DOI: 10.1038/onc.2010.237] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proline oxidase (POX) is a novel mitochondrial tumor suppressor that can suppress proliferation and induce apoptosis through the generation of reactive oxygen species (ROS) and decreasing hypoxia-inducible factor (HIF) signaling. Recent studies have shown the absence of expression of POX in human cancer tissues, including renal cancer. However, the mechanism for the loss of POX remains obscure. No genetic or epigenetic variation of POX gene was found. In this study, we identified the upregulated miR-23b in renal cancer as an important regulator of POX. Ectopic overexpression of miR-23b in normal renal cells resulted in striking downregulation of POX, whereas POX expression increased markedly when endogenous miR-23b was knocked down by its antagomirs in renal cancer cells. Consistent with the POX-mediated tumor suppression pathway, these antagomirs induced ROS, inhibited HIF signaling and increased apoptosis. Furthermore, we confirmed the regulation of miR-23b on POX and its function in the DLD1 Tet-off POX cell system. Using a luciferase reporter system, we verified the direct binding of miR-23b to the POX mRNA 3'-untranslated region. In addition, pairs of human renal carcinoma and normal tissues showed a negative correlation between miR-23b and POX protein expression, providing its clinical corroboration. Taken together, our results suggested that miR-23b, by targeting POX, could function as an oncogene; decreasing miR-23b expression may prove to be an effective way of inhibiting kidney tumor growth.
Collapse
Affiliation(s)
- W Liu
- Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Dai Y, Wang WH. Peroxisome proliferator-activated receptor γ and colorectal cancer. World J Gastrointest Oncol 2010; 2:159-64. [PMID: 21160824 PMCID: PMC2999174 DOI: 10.4251/wjgo.v2.i3.159] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/07/2009] [Accepted: 07/14/2009] [Indexed: 02/05/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily and ligand-activated transcription factors. PPARγ plays an important role in adipocyte differentiation, lipid storage and energy dissipation in adipose tissue, and is involved in the control of inflammatory reactions as well as in glucose metabolism through the improvement of insulin sensitivity. Growing evidence has demonstrated that activation of PPARγ has an antineoplastic effect in tumors, including colorectal cancer. High expression of PPARγ is detected in human colon cancer cell lines and adenocarcinoma. This review describes the molecular mechanisms by which PPARγ regulates tumorigenesis in colorectal cancer, and examines current clinical trials evaluating PPARγ agonists as therapeutic agents for colorectal cancer.
Collapse
Affiliation(s)
- Yun Dai
- Yun Dai, Wei-Hong Wang, Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | | |
Collapse
|
59
|
Zabirnyk O, Liu W, Khalil S, Sharma A, Phang JM. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy. Carcinogenesis 2009; 31:446-54. [PMID: 19942609 PMCID: PMC2832543 DOI: 10.1093/carcin/bgp299] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy.
Collapse
Affiliation(s)
- Olga Zabirnyk
- Metabolism and Cancer Susceptibility Section, Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
60
|
Toaldo C, Pizzimenti S, Cerbone A, Pettazzoni P, Menegatti E, Daniela B, Minelli R, Giglioni B, Dianzani MU, Ferretti C, Barrera G. PPARgamma ligands inhibit telomerase activity and hTERT expression through modulation of the Myc/Mad/Max network in colon cancer cells. J Cell Mol Med 2009; 14:1347-57. [PMID: 19912441 PMCID: PMC3828851 DOI: 10.1111/j.1582-4934.2009.00966.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In human cells the length of telomeres depends on telomerase activity. This activity and the expression of the catalytic subunit of human telomerase reverse transcriptase (hTERT) is strongly up-regulated in most human cancers. hTERT expression is regulated by different transcription factors, such as c-Myc, Mad1 and Sp1. In this study, we demonstrated that 15d-PG J2 and rosiglitazone (an endogenous and synthetic peroxisome proliferators activated receptor γ (PPARγ) ligand, respectively) inhibited hTERT expression and telomerase activity in CaCo-2 colon cancer cells. Moreover, both ligands inhibited c-Myc protein expression and its E-box DNA binding activity. Additionally, Mad1 protein expression and its E-box DNA binding activity were strongly increased by 15d-PG J2 and, to a lesser extent, by rosiglitazone. Sp1 transcription factor expression and its GC-box DNA binding activity were not affected by both PPARγ ligands. Results obtained by transient transfection of CaCo-2 cells with pmaxFP-Green-PRL plasmid constructs containing the functional hTERT core promoter (including one E-box and five GC-boxes) and its E-box deleted sequences, cloned upstream of the green fluorescent protein reporter gene, demonstrated that 15d-PG J2, and with minor effectiveness, rosiglitazone, strongly reduced hTERT core promoter activity. E-boxes for Myc/Mad/Max binding showed a higher activity than GC-boxes for Sp1. By using GW9662, an antagonist of PPARγ, we demonstrated that the effects of 15d-PG J2 are completely PPARγ independent, whereas the effects of rosiglitazone on hTERT expression seem to be partially PPARγ independent. The regulation of hTERT expression by 15d-PG J2 and rosiglitazone, through the modulation of the Myc/Max/Mad1 network, may represent a new mechanism of action of these substances in inhibiting cell proliferation.
Collapse
Affiliation(s)
- Cristina Toaldo
- Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Moumtzi SS, Roberts ML, Joyce T, Evangelidou M, Probert L, Frillingos S, Fotsis T, Pintzas A. Gene Expression Profile Associated with Oncogenic Ras-induced Senescence, Cell Death, and Transforming Properties in Human Cells. Cancer Invest 2009; 28:563-87. [DOI: 10.3109/07357900903095623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
62
|
Pandhare J, Donald SP, Cooper SK, Phang JM. Regulation and function of proline oxidase under nutrient stress. J Cell Biochem 2009; 107:759-68. [PMID: 19415679 DOI: 10.1002/jcb.22174] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Under conditions of nutrient stress, cells switch to a survival mode catabolizing cellular and tissue constituents for energy. Proline metabolism is especially important in nutrient stress because proline is readily available from the breakdown of extracellular matrix (ECM), and the degradation of proline through the proline cycle initiated by proline oxidase (POX), a mitochondrial inner membrane enzyme, can generate ATP. This degradative pathway generates glutamate and alpha-ketoglutarate, products that can play an anaplerotic role for the TCA cycle. In addition the proline cycle is in a metabolic interlock with the pentose phosphate pathway providing another bioenergetic mechanism. Herein we have investigated the role of proline metabolism in conditions of nutrient stress in the RKO colorectal cancer cell line. The induction of stress either by glucose withdrawal or by treatment with rapamycin, stimulated degradation of proline and increased POX catalytic activity. Under these conditions POX was responsible, at least in part, for maintenance of ATP levels. Activation of AMP-activated protein kinase (AMPK), the cellular energy sensor, by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), also markedly upregulated POX and increased POX-dependent ATP levels, further supporting its role during stress. Glucose deprivation increased intracellular proline levels, and expression of POX activated the pentose phosphate pathway. Together, these results suggest that the induction of proline cycle under conditions of nutrient stress may be a mechanism by which cells switch to a catabolic mode for maintaining cellular energy levels.
Collapse
Affiliation(s)
- Jui Pandhare
- Metabolism & Cancer Susceptibility Section, Laboratory of Comparative, Carcinogenesis, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
63
|
Liu Y, Borchert GL, Donald S, Diwan B, Anver M, Phang JM. Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res 2009; 69:6414-22. [PMID: 19654292 PMCID: PMC4287397 DOI: 10.1158/0008-5472.can-09-1223] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tumor metabolism and bioenergetics have become important topics for cancer research and are promising targets for anticancer therapy. Although glucose serves as the main source of energy, proline, an alternative substrate, is important, especially during nutrient stress. Proline oxidase (POX), catalyzing the first step in proline catabolism, is induced by p53 and can regulate cell survival as well as mediate programmed cell death. In a mouse xenograft tumor model, we found that POX greatly reduced tumor formation by causing G2 cell cycle arrest. Furthermore, immunohistochemical staining showed decreased POX expression in tumor tissues. Importantly, HIF-1alpha signaling was impaired with POX expression due to the increased production of alpha-ketoglutarate, a critical substrate for prolyl hydroxylation and degradation of HIF-1alpha. Combined with previous in vitro findings and reported clinical genetic associations, these new findings lead us to propose POX as a mitochondrial tumor suppressor and a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yongmin Liu
- Basic Science Program, SAIC-Frederick, Inc., Frederick, Maryland
| | | | - Steve Donald
- Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | | | - Miriam Anver
- Pathology/Histotechnology Laboratory, SAIC-Frederick, Inc., Frederick, Maryland
| | - James M. Phang
- Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
64
|
Rosiglitazone prevents high glucose-induced vascular endothelial growth factor and collagen IV expression in cultured mesangial cells. EXPERIMENTAL DIABETES RESEARCH 2009; 2009:910783. [PMID: 19609456 PMCID: PMC2709725 DOI: 10.1155/2009/910783] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/13/2008] [Accepted: 03/27/2009] [Indexed: 11/18/2022]
Abstract
Peroxisome proliferator-activated receptor (PPARγ), a ligand-dependent transcription factor, negatively modulates high glucose effects. We postulated that rosiglitazone (RSG), an activator of PPARγ prevents the upregulation of vascular endothelial growth factor (VEGF) and collagen IV by mesangial cells exposed to high glucose. Primary cultured rat mesangial cells were growth-arrested in 5.6 mM (NG) or 25 mM D-glucose (HG) for up to 48 hours. In HG, PPARγ mRNA and protein were reduced within 3 h, and enhanced ROS generation, expression of p22phox, VEGF and collagen IV, and PKC-ζ membrane association were prevented by RSG. In NG, inhibition of PPARγ caused ROS generation and VEGF expression that were unchanged by RSG. Reduced AMP-activated protein kinase (AMPK) phosphorylation in HG was unchanged with RSG, and VEGF expression was unaffected by AMPK inhibition. Hence, PPARγ is a negative modulator of HG-induced signaling that acts through PKC-ζ but not AMPK and regulates VEGF and collagen IV expression by mesangial cells.
Collapse
|
65
|
Ondrey F. Peroxisome proliferator-activated receptor gamma pathway targeting in carcinogenesis: implications for chemoprevention. Clin Cancer Res 2009; 15:2-8. [PMID: 19118026 DOI: 10.1158/1078-0432.ccr-08-0326] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The peroxisome proliferator-activated receptor (PPAR) gamma is one member of the nuclear receptor superfamily that contains in excess of 80 described receptors. PPARgamma activators are a diverse group of agents that range from endogenous fatty acids or derivatives (linolenic, linoleic, and 15-deoxy-Delta(12,14)-prostaglandin J(2)) to Food and Drug Administration-approved thiazolidinedione drugs [pioglitazone (Actos) and rosiglitazone (Avandia)] for the treatment of diabetes. Once activated, PPARgamma will preferentially bind with retinoid X receptor alpha and signal antiproliferative, antiangiogenic, and prodifferentiation pathways in several tissue types, thus making it a highly useful target for down-regulation of carcinogenesis. Although PPAR-gamma activators show many anticancer effects on cell lines, their advancement into human advanced cancer clinical trials has met with limited success. This article will review translational findings in PPARgamma activation and targeting in carcinogenesis prevention as they relate to the potential use of PPARgamma activators clinically as cancer chemoprevention strategies.
Collapse
Affiliation(s)
- Frank Ondrey
- Department of Otolaryngology and University of Minnesota Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
66
|
Ostrander EL, Larson JD, Schuermann JP, Tanner JJ. A conserved active site tyrosine residue of proline dehydrogenase helps enforce the preference for proline over hydroxyproline as the substrate. Biochemistry 2009; 48:951-9. [PMID: 19140736 DOI: 10.1021/bi802094k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proline dehydrogenase (PRODH) catalyzes the oxidation of l-proline to Delta-1-pyrroline-5-carboxylate. PRODHs exhibit a pronounced preference for proline over hydroxyproline (trans-4-hydroxy-l-proline) as the substrate, but the basis for specificity is unknown. The goal of this study, therefore, is to gain insight into the structural determinants of substrate specificity of this class of enzyme, with a focus on understanding how PRODHs discriminate between the two closely related molecules, proline and hydroxyproline. Two site-directed mutants of the PRODH domain of Escherichia coli PutA were created: Y540A and Y540S. Kinetics measurements were performed with both mutants. Crystal structures of Y540S complexed with hydroxyproline, proline, and the proline analogue l-tetrahydro-2-furoic acid were determined at resolutions of 1.75, 1.90, and 1.85 A, respectively. Mutation of Tyr540 increases the catalytic efficiency for hydroxyproline 3-fold and decreases the specificity for proline by factors of 20 (Y540S) and 50 (Y540A). The structures show that removal of the large phenol side chain increases the volume of the substrate-binding pocket, allowing sufficient room for the 4-hydroxyl of hydroxyproline. Furthermore, the introduced serine residue participates in recognition of hydroxyproline by forming a hydrogen bond with the 4-hydroxyl. This result has implications for understanding the substrate specificity of the related enzyme human hydroxyproline dehydrogenase, which has serine in place of tyrosine at this key active site position. The kinetic and structural results suggest that Tyr540 is an important determinant of specificity. Structurally, it serves as a negative filter for hydroxyproline by clashing with the 4-hydroxyl group of this potential substrate.
Collapse
|
67
|
Paranjpe A, Cacalano NA, Hume WR, Jewett A. N-acetyl cysteine mediates protection from 2-hydroxyethyl methacrylate induced apoptosis via nuclear factor kappa B-dependent and independent pathways: potential involvement of JNK. Toxicol Sci 2009; 108:356-66. [PMID: 19176594 DOI: 10.1093/toxsci/kfp010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mechanisms by which resin based materials induce adverse effects in patients have not been completely elucidated. Here we show that 2-hydroxyethyl methacrylate (HEMA) induces apoptotic cell death in oral keratinocytes. Functional loss and cell death induced by HEMA was significantly inhibited in the presence of N-acetyl cysteine (NAC) treatment. NAC also prevented HEMA mediated decrease in vascular endothelial growth factor secretion. The protective effect of NAC was partly related to its ability to induce NF-kappaB in the cells, since HEMA mediated inhibition of nuclear NF-kappaB expression and function was significantly blocked in the presence of NAC treatment. Moreover, blocking of nuclear translocation of NF-kappaB in oral keratinocytes sensitized these cells to HEMA mediated apoptosis. In addition, since NAC was capable of rescuing close to 50% of NF-kappaB knockdown cells from HEMA mediated cell death, there is, therefore, an NF-kappaB independent pathway of protection from HEMA mediated cell death by NAC. NAC mediated prevention of HEMA induced cell death in NF-kappaB knockdown cells was correlated with a decreased induction of c-Jun N-terminal kinase (JNK) activity since NAC inhibited HEMA mediated increase in JNK levels. Furthermore, the addition of a pharmacologic JNK inhibitor to HEMA treated cells prevented cell death and restored NF-kappaB knockdown cell function significantly. Therefore, NAC protects oral keratinocytes from the toxic effects of HEMA through NF-kappaB dependent and independent pathways. Moreover, our data suggest the potential involvement of JNK pathway in NAC mediated protection.
Collapse
Affiliation(s)
- Avina Paranjpe
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Dental Research Institute, UCLA School of Dentistry and Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
68
|
Ho TC, Chen SL, Yang YC, Lo TH, Hsieh JW, Cheng HC, Tsao YP. Cytosolic phospholipase A2-{alpha} is an early apoptotic activator in PEDF-induced endothelial cell apoptosis. Am J Physiol Cell Physiol 2008; 296:C273-84. [PMID: 19091957 DOI: 10.1152/ajpcell.00432.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is an intrinsic antiangiogenic factor and a potential therapeutic agent. Previously, we discovered the mechanism of PEDF-induced apoptosis of human umbilical vein endothelial cells (HUVECs) as sequential induction/activation of p38 mitogen-activated protein kinase (MAPK), peroxisome proliferator-activated receptor gamma (PPAR-gamma), and p53. In the present study, we investigated the signaling role of cytosolic calcium-dependent phospholipase A(2)-alpha (cPLA(2)-alpha) to bridge p38 MAPK and PPAR-gamma activation. PEDF induced cPLA(2)-alpha activation in HUVECs and in endothelial cells in chemical burn-induced vessels on mouse cornea. The cPLA(2)-alpha activation is evident from the phosphorylation and nuclear translocation of cPLA(2)-alpha as well as arachidonic acid release and the cleavage of PED6, a synthetic PLA(2) substrate. Such activation can be abolished by p38 MAPK inhibitor. The PEDF-induced PPAR-gamma activation, p53 expression, caspase-3 activity, and apoptosis can be abolished by both cPLA(2) inhibitor and small interfering RNA targeting cPLA(2)-alpha. Our observation not only establishes the signaling role of cPLA(2)-alpha but also for the first time demonstrates the sequential activation of p38 MAPK, cPLA(2)-alpha, PPAR-gamma, and p53 as the mechanism of PEDF-induced endothelial cell apoptosis.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Dept. of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Proline, a unique proteogenic secondary amino acid, has its own metabolic system with special features. Recent findings defining the regulation of this system led us to propose that proline is a stress substrate in the microenvironment of inflammation and tumorigenesis. The criteria for proline as a stress substrate are: 1) the enzymes utilizing proline respond to stress signaling; 2) there is a large, mobilizable pool of proline; and 3) the metabolism of proline serves special stress functions. Studies show that the proline-utilizing enzyme, proline oxidase (POX)/proline dehydrogenase (PRODH), responds to genotoxic, inflammatory, and nutrient stress. Proline as substrate is stored as collagen in extracellular matrix, connective tissue, and bone and it is rapidly released from this reservoir by the sequential action of matrix metalloproteinases, peptidases, and prolidase. Special functions include the use of proline by POX/PRODH to generate superoxide radicals that initiate apoptosis by intrinsic and extrinsic pathways. Under conditions of nutrient stress, proline is an energy source. It provides carbons for the tricarboxylic acid cycle and also participates in the proline cycle. The latter, catalyzed by mitochondrial POX and cytosolic pyrroline-5-carboxylate reductase, shuttles reducing potential from the pentose phosphate pathway into mitochondria to generate ATP and oxidizing potential to activate the cytosolic pentose phosphate pathway.
Collapse
Affiliation(s)
- James M Phang
- Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
70
|
Liu Y, Borchert GL, Surazynski A, Phang JM. Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene 2008; 27:6729-37. [PMID: 18794809 DOI: 10.1038/onc.2008.322] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proline oxidase (POX), a flavoenzyme localized at the inner mitochondrial membrane, catalyzes the first step of proline degradation by converting proline to pyrroline-5-carboxylate (P5C). POX is markedly elevated during p53-induced apoptosis and generates proline-dependent reactive oxygen species (ROS), specifically superoxide radicals, to induce apoptosis through both mitochondrial and death receptor pathways. These previous studies also showed suppression of the mitogen-activated protein kinase pathway leading us to broaden our exploration of proliferative signaling. In our current report, we used DLD-1 colorectal cancer cells stably transfected with the POX gene under the control of a tetracycline-inducible promoter and found that three pathways which cross talk with each other were downregulated by POX: the cyclooxygenase-2 (COX-2) pathway, the epidermal growth factor receptor (EGFR) pathway and the Wnt/beta-catenin pathway. First, POX markedly reduced COX-2 expression, suppressed the production of prostaglandin E2 (PGE(2)) and importantly, the growth inhibition by POX was partially reversed by treatment with PGE(2.) Phosphorylation of EGFR was decreased with POX expression and the addition of EGF partially reversed the POX-dependent downregulation of COX-2. Wnt/beta-catenin signaling was decreased by POX in that phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) was decreased on the one hand and phosphorylation of beta-catenin was increased on the other. There changes led to decreased accumulation of beta-catenin and decreased beta-catenin/TCF/LEF-mediated transcription. Our newly described POX-mediated suppression of proliferative signaling together with the previously reported induction of apoptosis suggested that POX could function as a tumor suppressor. Indeed, in human colorectal tissue samples, immunohistochemically-monitored POX was dramatically decreased in tumors compared with normal counterparts. Thus, POX metabolism of substrate proline affects multiple signaling pathways, modulating both apoptosis and tumor growth, and could be an attractive target to metabolically control the cancer phenotypes.
Collapse
Affiliation(s)
- Y Liu
- 1Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
71
|
Segato F, Nozawa SR, Rossi A, Martinez-Rossi NM. Over-expression of genes coding for proline oxidase, riboflavin kinase, cytochrome c oxidase and an MFS transporter induced by acriflavin in Trichophyton rubrum. Med Mycol 2008; 46:135-9. [PMID: 18324492 DOI: 10.1080/13693780701742381] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Acriflavin (3,6-acridinediamine) and other acridine derivatives act in both prokaryotic and eukaryotic cells at the level of DNA-coiling enzymes (topoisomerases) causing the stabilization of the enzyme-DNA cleavable complex. In order to better understand the mode of action of acriflavin, Differential Display RT-PCR was used to isolate transcripts specifically over-expressed during exposure of Trichophyton rubrum mycelia to this drug. Five transcripts, whose differential expressions were confirmed by Northern blotting, revealed genes not previously described in this dermatophyte. Functional grouping identified putative enzymes possibly involved in the mitochondrial respiratory electron-transport chain and in iron transport. These results may be relevant to our understanding of the molecular events involved in the stress response of T. rubrum to acriflavin.
Collapse
|
72
|
Characterization of a Helicobacter hepaticus putA mutant strain in host colonization and oxidative stress. Infect Immun 2008; 76:3037-44. [PMID: 18458068 DOI: 10.1128/iai.01737-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Helicobacter hepaticus is a gram-negative, spiral-shaped microaerophilic bacterium associated with chronic intestinal infection leading to hepatitis and colonic and hepatic carcinomas in susceptible strains of mice. In the closely related human pathogen Helicobacter pylori, L-proline is a preferred respiratory substrate and is found at significantly high levels in the gastric juice of infected patients. A previous study of the proline catabolic PutA flavoenzymes from H. pylori and H. hepaticus revealed that Helicobacter PutA generates reactive oxygen species during proline oxidation by transferring electrons from reduced flavin to molecular oxygen. We further explored the preference for proline as a respiratory substrate and the potential impact of proline metabolism on the redox environment in Helicobacter species during host infection by disrupting the putA gene in H. hepaticus. The resulting putA knockout mutant strain was characterized by oxidative stress analysis and mouse infection studies. The putA mutant strain of H. hepaticus exhibited increased proline levels and resistance to oxidative stress relative to that of the wild-type strain, consistent with proline's role as an antioxidant. The significant increase in stress resistance was attributed to higher proline content, as no upregulation of antioxidant genes was observed for the putA mutant strain. The wild-type and putA mutant H. hepaticus strains displayed similar levels of infection in mice, but in mice challenged with the putA mutant strain, significantly reduced inflammation was observed, suggesting a role for proline metabolism in H. hepaticus pathogenicity in vivo.
Collapse
|
73
|
White TA, Johnson WH, Whitman CP, Tanner JJ. Structural basis for the inactivation of Thermus thermophilus proline dehydrogenase by N-propargylglycine. Biochemistry 2008; 47:5573-80. [PMID: 18426222 DOI: 10.1021/bi800055w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The flavoenzyme proline dehydrogenase catalyzes the first step of proline catabolism, the oxidation of proline to pyrroline-5-carboxylate. Here we report the first crystal structure of an irreversibly inactivated proline dehydrogenase. The 1.9 A resolution structure of Thermus thermophilus proline dehydrogenase inactivated by the mechanism-based inhibitor N-propargylglycine shows that N5 of the flavin cofactor is covalently connected to the -amino group of Lys99 via a three-carbon linkage, consistent with the mass spectral analysis of the inactivated enzyme. The isoalloxazine ring has a butterfly angle of 25 degrees , which suggests that the flavin cofactor is reduced. Two mechanisms can account for these observations. In both, N-propargylglycine is oxidized to N-propargyliminoglycine. In one mechanism, this alpha,beta-unsaturated iminium compound is attacked by the N5 atom of the now reduced flavin to produce a 1,4-addition product. Schiff base formation between Lys99 and the imine of the 1,4-addition product releases glycine and links the enzyme to the modified flavin. In the second mechanism, hydrolysis of N-propargyliminoglycine yields propynal and glycine. A 1,4-addition reaction with propynal coupled with Schiff base formation between Lys99 and the carbonyl group tethers the enzyme to the flavin via a three-carbon chain. The presumed nonenzymatic hydrolysis of N-propargyliminoglycine and the subsequent rebinding of propynal to the enzyme make the latter mechanism less likely.
Collapse
Affiliation(s)
- Tommi A White
- Department of Chemistry , University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
74
|
Phang JM, Donald SP, Pandhare J, Liu Y. The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 2008; 35:681-90. [PMID: 18401543 DOI: 10.1007/s00726-008-0063-4] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/05/2008] [Indexed: 01/14/2023]
Abstract
The resurgence of interest in tumor metabolism has led investigators to emphasize the metabolism of proline as a "stress substrate" and to suggest this pathway as a potential anti-tumor target. Proline oxidase, a.k.a. proline dehydrogenase (POX/PRODH), catalyzes the first step in proline degradation and uses proline to generate ATP for survival or reactive oxygen species for programmed cell death. POX/PRODH is induced by p53 under genotoxic stress and initiates apoptosis by both mitochondrial and death receptor pathways. Furthermore, POX/PRODH is induced by PPARgamma and its pharmacologic ligands, the thiazolidinediones. The anti-tumor effects of PPARgamma may be critically dependent on POX/PRODH. In addition, it is upregulated by nutrient stress through the mTOR pathway to maintain ATP levels. We propose that proline is made available as a stress substrate by the degradation of collagen in the microenvironmental extracellular matrix by matrix metalloproteinases. In a manner analogous to autophagy, this proline-dependent process for bioenergetics from collagen in extracellular matrix can be designated "ecophagy".
Collapse
Affiliation(s)
- James M Phang
- Laboratory of Comparative Carcinogenesis, Center for Cancer Research, Building 538, Room 115, NCI-Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
75
|
Abstract
The proline catabolic enzymes proline dehydrogenase and Delta(1)-pyrroline-5-carboxylate dehydrogenase catalyze the 4-electron oxidation of proline to glutamate. These enzymes play important roles in cellular redox control, superoxide generation, apoptosis and cancer. In some bacteria, the two enzymes are fused into the bifunctional enzyme, proline utilization A. Here we review the three-dimensional structural information that is currently available for proline catabolic enzymes. Crystal structures have been determined for bacterial monofunctional proline dehydrogenase and Delta(1)-pyrroline-5-carboxylate dehydrogenase, as well as the proline dehydrogenase and DNA-binding domains of proline utilization A. Some of the functional insights provided by analyses of these structures are discussed, including substrate recognition, catalytic mechanism, biochemical basis of inherited proline catabolic disorders and DNA recognition by proline utilization A.
Collapse
|
76
|
Cooper SK, Pandhare J, Donald SP, Phang JM. A novel function for hydroxyproline oxidase in apoptosis through generation of reactive oxygen species. J Biol Chem 2008; 283:10485-92. [PMID: 18287100 DOI: 10.1074/jbc.m702181200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Proline and hydroxyproline are metabolized by distinct pathways. Proline is important for protein synthesis, as a source of glutamate, arginine, and tricarboxylic acid cycle intermediates, and for participating in a metabolic cycle that shuttles redox equivalents between mitochondria and cytosol. Hydroxyproline, in contrast, is not reutilized for protein synthesis. The first steps in the degradation of proline and hydroxyproline are catalyzed by proline oxidase (POX) and hydroxyproline oxidase (OH-POX), respectively. Because it is well documented that POX is induced by p53 and plays a role in apoptosis, we considered whether OH-POX also participates in the response to cytotoxic stress. In LoVo and RKO cells, which respond to adriamycin with a p53-mediated induction of POX and generation of reactive oxygen species, we found that adriamycin also induced OH-POX gene expression and markedly increased OH-POX catalytic activity, and this increase in activity was not observed in the cell lines HT29 and HCT15, which do not have a functional p53. We also observed an increase in reactive oxygen species generation and activation of caspase-9 with adriamycin in a hydroxyproline-dependent manner. Therefore, we hypothesize that OH-POX plays a role analogous to POX in growth regulation, ROS generation, and activation of the apoptotic cascade.
Collapse
Affiliation(s)
- Sandra K Cooper
- Basic Research Program, SAIC-Frederick, Inc., NCI Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
77
|
Krishnan N, Dickman MB, Becker DF. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med 2008; 44:671-81. [PMID: 18036351 PMCID: PMC2268104 DOI: 10.1016/j.freeradbiomed.2007.10.054] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/25/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
The potential of proline to suppress reactive oxygen species (ROS) and apoptosis in mammalian cells was tested by manipulating intracellular proline levels exogenously and endogenously by overexpression of proline metabolic enzymes. Proline was observed to protect cells against H(2)O(2), tert-butyl hydroperoxide, and a carcinogenic oxidative stress inducer but was not effective against superoxide generators such as menadione. Oxidative stress protection by proline requires the secondary amine of the pyrrolidine ring and involves preservation of the glutathione redox environment. Overexpression of proline dehydrogenase (PRODH), a mitochondrial flavoenzyme that oxidizes proline, resulted in 6-fold lower intracellular proline content and decreased cell survival relative to control cells. Cells overexpressing PRODH were rescued by pipecolate, an analog that mimics the antioxidant properties of proline, and by tetrahydro-2-furoic acid, a specific inhibitor of PRODH. In contrast, overexpression of the proline biosynthetic enzymes Delta(1)-pyrroline-5-carboxylate (P5C) synthetase (P5CS) and P5C reductase (P5CR) resulted in 2-fold higher proline content, significantly lower ROS levels, and increased cell survival relative to control cells. In different mammalian cell lines exposed to physiological H(2)O(2) levels, increased endogenous P5CS and P5CR expression was observed, indicating that upregulation of proline biosynthesis is an oxidative stress response.
Collapse
Affiliation(s)
- Navasona Krishnan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Martin B. Dickman
- Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843
| | - Donald F. Becker
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588
- Corresponding Author: Department of Biochemistry, University of Nebraska, N258 Beadle Center, Lincoln, NE 68588, Tel. 402-472-9652; Fax. 402-472-7842;
| |
Collapse
|
78
|
Disruption of ERalpha signalling pathway by PPARgamma agonists: evidences of PPARgamma-independent events in two hormone-dependent breast cancer cell lines. Breast Cancer Res Treat 2008; 112:437-51. [PMID: 18204896 DOI: 10.1007/s10549-007-9886-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 12/26/2007] [Indexed: 01/09/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor that can be activated by natural ligands such as 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ(2)) as well as synthetic drugs such as thiazolidinediones. The treatment of human breast cancer cell lines with PPARgamma agonists is known to have antiproliferative effects but the role of PPARgamma activation in the process remains unclear. In the present study, we investigated the effects of four PPARgamma agonists, Rosiglitazone (RGZ), Ciglitazone (CGZ), Troglitazone (TGZ) and the natural agonist 15d-PGJ(2), on estrogen receptor alpha (ERalpha) signalling pathway in two hormone-dependent breast cancer cell lines, MCF-7 and ZR-75-1. In both of them, TGZ, CGZ and 15d-PGJ(2) induced an inhibition of ERalpha signalling associated with the proteasomal degradation of ERalpha. ZR-75-1 cells were more sensitive than MCF-7 cells to these compounds. Treatments that induced ERalpha degradation inhibited cell proliferation after 24 h. In contrast, 24 h exposure to RGZ, the most potent activator of PPARgamma disrupted neither ERalpha signalling nor cell proliferation. 9-cis retinoic acid never potentiated the proteasomal degradation of ERalpha. PPARgamma antagonists (T0070907, BADGE and GW 9662) did not block the proteolysis of ERalpha in MCF-7 and ZR-75-1 cells treated with TGZ. ERalpha proteolysis still occurred in case of PPARgamma silencing as well as in case of treatment with the PPARgamma-inactive compound Delta2-TGZ, demonstrating a PPARgamma-independent mechanism. The use of thiazolidinedione derivatives able to trigger ERalpha degradation by a PPARgamma-independent pathway could be an interesting tool for breast cancer therapy.
Collapse
|
79
|
Kang DW, Choi CH, Park JY, Kang SK, Kim YK. Ciglitazone Induces Caspase-Independent Apoptosis through Down-Regulation of XIAP and Survivin in Human Glioma Cells. Neurochem Res 2007; 33:551-61. [DOI: 10.1007/s11064-007-9475-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 08/15/2007] [Indexed: 12/20/2022]
|
80
|
Nam DH, Ramachandran S, Song DK, Kwon KY, Jeon DS, Shin SJ, Kwon SH, Cha SD, Bae I, Cho CH. Growth inhibition and apoptosis induced in human leiomyoma cells by treatment with the PPAR gamma ligand ciglitizone. Mol Hum Reprod 2007; 13:829-36. [PMID: 17893092 DOI: 10.1093/molehr/gam071] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nuclear receptors PPARs (peroxisome proliferator-activated receptors) are transcription factors that play important roles in multiple disease conditions. The activation of PPARs by specific ligands is associated with growth suppression of several different types of human cancer, but the molecular mechanism responsible for this growth suppressive effect remains elusive. The aim of this study was to determine the distribution of PPARgamma protein/mRNA expression in uterine leiomyomas and to identify the PPARgamma induced signaling pathways responsible for the growth inhibition induced by treatment with ciglitizone, a synthetic ligand of PPARgamma, in view of identifying targets that could possibly affect the viability and proliferation of uterine leiomyoma cells. Dose-response studies on proliferation found that uterine leiomyoma was more sensitive to inhibition by ciglitizone treatments than normal myometrium. We also found that ciglitizone significantly stimulated gene expression driven by a PPAR-responsive element in cultured leiomyoma cells and reduced the survival of leiomyoma cells relative to the control cells. The reduced survival of ciglitizone treated leiomyoma cells resulted from a mechanism that involved the Fas receptor-mediated apoptosis signaling cascade. These results suggest that uterine leiomyomas growth and differentiation might be modulated through PPARgamma receptors and that PPARgamma ligands may be of potential use for uterine leiomyoma treatment.
Collapse
Affiliation(s)
- Dong-Ho Nam
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Ku, Daegu 700-712, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Kim KY, Ahn JH, Cheon HG. Apoptotic action of peroxisome proliferator-activated receptor-gamma activation in human non small-cell lung cancer is mediated via proline oxidase-induced reactive oxygen species formation. Mol Pharmacol 2007; 72:674-85. [PMID: 17535976 DOI: 10.1124/mol.107.035584] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit human lung cancers by inducing apoptosis and differentiation. In the present study, we elucidated the apoptotic mechanism of PPARgamma activation in human lung cancers by using a novel PPARgamma agonist, 1-(trans-methylimino-N-oxy)-6-(2-morpholinoethoxy)-3-phenyl-(1H-indene-2-carboxylic acid ethyl ester (KR-62980), and rosiglitazone. PPARgamma activation selectively inhibited cell viability of non-small-cell lung cancer with little effect on small-cell lung cancer and normal lung cells. The cell death induced by PPARgamma activation presented apoptotic features of oligonucleosomal DNA fragmentation in A549 human non-small-cell lung cancer cell line. Reactive oxygen species (ROS) production was accompanied by increased expression of proline oxidase (POX), a redox enzyme expressed in mitochondria, upon incubation with the agonists. POX RNA interference treatment blocked PPARgamma-induced ROS formation and cytotoxicity, suggesting that POX plays a functional role in apoptosis through ROS formation. The apoptotic effects by the agonists were antagonized by bisphenol A diglycidyl ether, a PPARgamma antagonist, and by knockdown of PPARgamma expression, indicating the involvement of PPARgamma in these actions. The results of the present study suggest that PPARgamma activation induces apoptotic cell death in non-small-cell lung carcinoma mainly through ROS formation via POX induction.
Collapse
Affiliation(s)
- Ki Young Kim
- Center for Metabolic Syndrome Therapeutics, Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | | | | |
Collapse
|
82
|
Nunn AVW, Bell J, Barter P. The integration of lipid-sensing and anti-inflammatory effects: how the PPARs play a role in metabolic balance. NUCLEAR RECEPTOR 2007; 5:1. [PMID: 17531095 PMCID: PMC1899481 DOI: 10.1186/1478-1336-5-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 05/25/2007] [Indexed: 01/10/2023]
Abstract
The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle.
Collapse
Affiliation(s)
- Alistair VW Nunn
- Molecular Imaging Group, Medical Research Council Clinical Sciences Centre, Imperial College, Hammersmith Campus, London W12 0HS, UK
| | - Jimmy Bell
- Molecular Imaging Group, Medical Research Council Clinical Sciences Centre, Imperial College, Hammersmith Campus, London W12 0HS, UK
| | - Philip Barter
- The Heart Research Institute, Camperdown, Sydney, NSW 2050, Australia
| |
Collapse
|
83
|
White TA, Krishnan N, Becker DF, Tanner JJ. Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus. J Biol Chem 2007; 282:14316-27. [PMID: 17344208 PMCID: PMC2708979 DOI: 10.1074/jbc.m700912200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proline dehydrogenase (PRODH) and Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyze the two-step oxidation of proline to glutamate. They are distinct monofunctional enzymes in all eukaryotes and some bacteria but are fused into bifunctional enzymes known as proline utilization A (PutA) in other bacteria. Here we report the first structure and biochemical data for a monofunctional PRODH. The 2.0-A resolution structure of Thermus thermophilus PRODH reveals a distorted (betaalpha)(8) barrel catalytic core domain and a hydrophobic alpha-helical domain located above the carboxyl-terminal ends of the strands of the barrel. Although the catalytic core is similar to that of the PutA PRODH domain, the FAD conformation of T. thermophilus PRODH is remarkably different and likely reflects unique requirements for membrane association and communication with P5CDH. Also, the FAD of T. thermophilus PRODH is highly solvent-exposed compared with PutA due to a 4-A shift of helix 8. Structure-based sequence analysis of the PutA/PRODH family led us to identify nine conserved motifs involved in cofactor and substrate recognition. Biochemical studies show that the midpoint potential of the FAD is -75 mV and the kinetic parameters for proline are K(m) = 27 mm and k(cat) = 13 s(-1). 3,4-Dehydro-l-proline was found to be an efficient substrate, and l-tetrahydro-2-furoic acid is a competitive inhibitor (K(I) = 1.0 mm). Finally, we demonstrate that T. thermophilus PRODH reacts with O(2) producing superoxide. This is significant because superoxide production underlies the role of human PRODH in p53-mediated apoptosis, implying commonalities between eukaryotic and bacterial monofunctional PRODHs.
Collapse
Affiliation(s)
- Tommi A. White
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211
| | - Navasona Krishnan
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, NE 68588
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, NE 68588
| | - John J. Tanner
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211
| |
Collapse
|
84
|
Jarrar MH, Baranova A. PPARgamma activation by thiazolidinediones (TZDs) may modulate breast carcinoma outcome: the importance of interplay with TGFbeta signalling. J Cell Mol Med 2007; 11:71-87. [PMID: 17367502 PMCID: PMC4401221 DOI: 10.1111/j.1582-4934.2007.00003.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The thiazolidinediones (TZDs) are a class of synthetic antidiabetic drugs exerting its action primarily upon acti-vation of the peroxisome proliferator-activated receptor-γ (PPARγ). Given the widespread incidence of diabetes type II and lifelong exposure of these patients to TZDs, there is a possibility that chronic treatment with TZD modifies clinical phenotypes of other common human diseases, for example breast carcinoma. There is evidence that TZDs act as breast carcinoma suppression agents, at least in the in vitro and animal models. Stimulation of the PPARγ by TZDs interferes with oestrogen receptor signalling, STAT5B and NF-κB signalling cascades. On the other hand, TZDs repress TGFβ signalling, a well-known suppressor of the initial stages of breast carcinoma development. Another layer of complexity arises at the later stages of tumour development, when TGFβ acts as a tumour promoter: its overexpression is associated with poor prognosis, higher degree of tumour vascularization and metastasis. Longitudinal studies of breast carcinoma development in chronic TZD users are needed. In this review, we dissect possible interplays between chronic exposure of breast tis-sue to TZDs and TGFβ signalling and predict influence of TZD exposure on cancer-related clinical outcome.
Collapse
Affiliation(s)
- Mohammed H Jarrar
- *Correspondence to: Dr Ancha BARANOVA Assistant Professor, Molecular Biology and Microbiology, George Mason University, David King Hall, MSN 3E1 Fairfax, VA 22030, USA. Tel.: 703-993-4293; Fax: 703-993-4393 E-mail:
| | - Ancha Baranova
- *Correspondence to: Dr Ancha BARANOVA Assistant Professor, Molecular Biology and Microbiology, George Mason University, David King Hall, MSN 3E1 Fairfax, VA 22030, USA. Tel.: 703-993-4293; Fax: 703-993-4393 E-mail:
| |
Collapse
|
85
|
New LS, Saha S, Ong MMK, Boelsterli UA, Chan ECY. Pharmacokinetic study of intraperitoneally administered troglitazone in mice using ultra-performance liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:982-8. [PMID: 17300135 DOI: 10.1002/rcm.2924] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A rapid and sensitive ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method was developed and validated for the determination of troglitazone in mouse plasma. Troglitazone and its internal standard (IS), rosiglitazone, were separated on an ACQUITY UPLC BEH C(18) column (1.7 microm particle size, 50 x 2.1 mm i.d.) by gradient elution with water and methanol at a flow rate of 0.5 mL/min. The cycle time of each analysis was 2.5 min. Rosiglitazone and troglitazone eluted at 1.13 and 1.57 min, respectively, and were chromatographically resolved from the ion suppression and enhancement zones due to the biological matrix effect. Quantitation of the analytes was performed in electrospray negative ionization mode (ESI -ve) using multiple reaction monitoring (MRM) experiments. The weighted (1/x) calibration curve was quadratic over the plasma concentration range 1-2500 ng/mL with a correlation coefficient (r(2)) of 0.9966. The limit of quantitation (LOQ) of troglitazone in mouse plasma was lower than 1 ng/mL. The inter- and intra-day variations of the assay were lower than 12.1%; the overall accuracy ranged from 86.4-110.2% and recovery from spiked plasma was more than 60%. The developed method was successfully applied to determine troglitazone in mouse plasma after intraperitoneal administration.
Collapse
Affiliation(s)
- Lee-Sun New
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | | | | | | | | |
Collapse
|
86
|
Barz T, Hoffmann A, Panhuysen M, Spengler D. Peroxisome proliferator-activated receptor gamma is a Zac target gene mediating Zac antiproliferation. Cancer Res 2006; 66:11975-82. [PMID: 17178896 DOI: 10.1158/0008-5472.can-06-1529] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Zac is a C2H2 zinc finger protein, which regulates apoptosis and cell cycle arrest through DNA binding and transactivation. During tumorigenesis and in response to mitogenic activation, Zac gene expression is down-regulated in a methylation-sensitive manner. As yet, no target genes have been identified that could explain the potent antiproliferative function of Zac. Here, applying genome-wide expression analysis, we identify peroxisome proliferator-activated receptor gamma (PPARgamma) as a new bona fide Zac target gene, which is induced by direct Zac binding to the proximal PPARgamma1 promoter. We show that in human colon carcinoma cells, ZAC activates expression of PPARgamma target genes in a PPARgamma-dependent manner. Moreover, we show that treatment of pituitary tumor cells with octreotide, a somatostatin analogue, leads to Zac induction and subsequent Zac-dependent up-regulation of PPARgamma, which thereupon mediates part of the antiproliferative activity of Zac. Our work provides a first step toward elucidating a functional relationship between Zac and PPARgamma that could be relevant to the understanding of tumorigenesis and diabetes as well.
Collapse
Affiliation(s)
- Thomas Barz
- Molecular Neuroendocrinology, Max-Planck-Institute of Psychiatry, Munich, Germany
| | | | | | | |
Collapse
|
87
|
Ming M, Yu JP, Meng XZ, Zhou YH, Yu HG, Luo HS. Effect of ligand troglitazone on peroxisome proliferator-activated receptor γ expression and cellular growth in human colon cancer cells. World J Gastroenterol 2006; 12:7263-70. [PMID: 17143939 PMCID: PMC4087481 DOI: 10.3748/wjg.v12.i45.7263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of troglitazone on pe-roxisome proliferator-activated receptor γ (PPARγ) expression and cellular growth in human colon cancer HCT-116 and HCT-15 cells and to explore the related molecular mechanism.
METHODS: Human colon cancer HCT-116 and HCT-15 cells cultured in vitro were treated with troglitazone. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were employed to detect the effect of troglitazone on PPARγ expression. The proliferative activity was determined by MTT assay, cell cycle and apoptosis were detected by flow cytometry. Apoptosis-related genes, cell cycle regulatory genes and p53 were examined by RT-PCR and Western blot respectively.
RESULTS: The expression of PPARγ in colon cancer HCT-116 and HCT-15 cells was up-regulated by troglitazone. Troglitazone inhibited proliferation, induced apoptosis and cell cycle G1 arrest in colon cancer cells. Troglitazone induced p53 expression in HCT-116 cells, but not in HCT-15 cells. The down-regulation of survivin and bcl-2 was found in both cell lines and up-regulation of bax was found only in HCT-116 cells, being consistent with growth inhibition in HCT-116 cells but not in HCT-15 cells. Troglitazone increased expression of p21WAF1/CIP1 (p21), p27KIP1 (p27) and reduced cyclin D1 in HCT-116 cells while only a minor decrease of cyclin D1 was found in HCT-15 cells.
CONCLUSION: Troglitazone is an inductor of PPARγ in colon cancer cells and inhibits PPARγ-dependently proliferation, which may attribute to cell cycle G1 arrest and apoptosis in colon cancer cells. Troglitazone may induce p53-independent apoptosis and p53-dependent expression of p21 and p27. Depending on cell background, different activation pathways may exist in colon cancer cells.
Collapse
Affiliation(s)
- Mei Ming
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | | | | | | | | | | |
Collapse
|