51
|
Svensson G, Linse S, Mani K. Chemical and Thermal Unfolding of Glypican-1: Protective Effect of Heparan Sulfate against Heat-Induced Irreversible Aggregation. Biochemistry 2009; 48:9994-10004. [DOI: 10.1021/bi901402x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gabriel Svensson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Sara Linse
- Department of Biochemistry, Lund University, Chemical Center, P.O. Box 124, SE-22100 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| |
Collapse
|
52
|
Orgel JPRO, Eid A, Antipova O, Bella J, Scott JE. Decorin core protein (decoron) shape complements collagen fibril surface structure and mediates its binding. PLoS One 2009; 4:e7028. [PMID: 19753304 PMCID: PMC2737631 DOI: 10.1371/journal.pone.0007028] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 08/19/2009] [Indexed: 11/18/2022] Open
Abstract
Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM). With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein) and binding sites in the d and e1 bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e1 bands). This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.
Collapse
Affiliation(s)
- Joseph P R O Orgel
- BioCAT and microCoSM Centres: Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois, USA.
| | | | | | | | | |
Collapse
|
53
|
Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, Bruckner P, Pfeilschifter J, Schaefer RM, Gröne HJ, Schaefer L. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 2009; 284:24035-48. [PMID: 19605353 DOI: 10.1074/jbc.m109.014266] [Citation(s) in RCA: 348] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The role of endogenous inducers of inflammation is poorly understood. To produce the proinflammatory master cytokine interleukin (IL)-1beta, macrophages need double stimulation with ligands to both Toll-like receptors (TLRs) for IL-1beta gene transcription and nucleotide-binding oligomerization domain-like receptors for activation of the inflammasome. It is particularly intriguing to define how this complex regulation is mediated in the absence of an infectious trigger. Biglycan, a ubiquitous leucine-rich repeat proteoglycan of the extracellular matrix, interacts with TLR2/4 on macrophages. The objective of this study was to define the role of biglycan in the synthesis and activation of IL-1beta. Here we show that in macrophages, soluble biglycan induces the NLRP3/ASC inflammasome, activating caspase-1 and releasing mature IL-1beta without the need for additional costimulatory factors. This is brought about by the interaction of biglycan with TLR2/4 and purinergic P2X(4)/P2X(7) receptors, which induces receptor cooperativity. Furthermore, reactive oxygen species formation is involved in biglycan-mediated activation of the inflammasome. By signaling through TLR2/4, biglycan stimulates the expression of NLRP3 and pro-IL-1beta mRNA. Both in a model of non-infectious inflammatory renal injury (unilateral ureteral obstruction) and in lipopolysaccharide-induced sepsis, biglycan-deficient mice displayed lower levels of active caspase-1 and mature IL-1beta in the kidney, lung, and circulation. Our results provide evidence for direct activation of the NLRP3 inflammasome by biglycan and describe a fundamental paradigm of how tissue stress or injury is monitored by innate immune receptors detecting the release of the extracellular matrix components and turning such a signal into a robust inflammatory response.
Collapse
Affiliation(s)
- Andrea Babelova
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Baker SM, Sugars RV, Wendel M, Smith AJ, Waddington RJ, Cooper PR, Sloan AJ. TGF-beta/extracellular matrix interactions in dentin matrix: a role in regulating sequestration and protection of bioactivity. Calcif Tissue Int 2009; 85:66-74. [PMID: 19424740 DOI: 10.1007/s00223-009-9248-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 04/03/2009] [Indexed: 12/17/2022]
Abstract
TGF-beta isoforms sequestrated in dentin matrix potentially provide a reservoir of bioactive molecules that may influence cell behavior in the dentin-pulp complex following tissue injury. The association of these growth factors with dentin matrix and the influence of such associations on the bioactivity of growth factors are still unclear. We used surface plasmon resonance technology in the BIAcore 3000 system to investigate the binding of TGF-beta isoforms 1 and 3 to purified decorin, biglycan, and EDTA soluble dentin matrix components. TGF-beta isoforms 1 and 3 were immobilized on sensorchips CM4 through amine coupling. For kinetic studies of protein binding, purified decorin and biglycan, isolated EDTA soluble dentin matrix, and dentin matrix immunodepleted of decorin and/or biglycan were injected over TGF-beta isoforms and allowed to interact. Programmed kinetic analysis software provided sensorgrams for each concentration of proteoglycan or dentin matrix extract injected. Purified decorin and biglycan and dentin matrix extract bound to the TGF-beta isoforms. However, the association with TGF-beta3 was much weaker than that with TGF-beta1. After immunoaffinity depletion of the dentin matrix extract, the level of interaction between the dentin matrix extract and TGF-beta was significantly reduced. These results suggest isoform-specific interactions between decorin/biglycan and TGF-beta isoforms 1 and 3, which may explain why TGF-beta3 is not detected in the dentin matrix despite being expressed at higher levels than TGF-beta1 in odontoblasts. These proteoglycans appear to play a significant role in TGF-beta/extracellular matrix interactions and may be important in the sequestration of these growth factors in the dentin matrix.
Collapse
Affiliation(s)
- S M Baker
- Tissue Injury and Repair, School of Dentistry, University of Birmingham, Birmingham B4 6NN, UK
| | | | | | | | | | | | | |
Collapse
|
55
|
Augoff K, Grabowski K, Rabczynski J, Kolondra A, Tabola R, Sikorski AF. Expression of decorin in esophageal cancer in relation to the expression of three isoforms of transforming growth factor-beta (TGF-beta1, -beta2, and -beta3) and matrix metalloproteinase-2 activity. Cancer Invest 2009; 27:443-52. [PMID: 19212830 DOI: 10.1080/07357900802527221] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To determine the role of the reactive stroma in cancer progression, we investigated decorin (DCN) and transforming growth factor-beta (TGF-beta expression, and matrix metalloproteinase-2 (MMP-2) activity in the tumorous esophagus. We found statistically insignificantly decreased levels of DCN expression in the pathological tissues. No obvious alterations in TGF-beta expression were noticed. The highly significant increase in MMP-2 activity in cancers did not result in elevated levels of TGF-beta dimers. Therefore, the system of TGF-beta liberation from its complex with DCN by activated MMP-2 does not seem to contribute to esophageal cancerogenesis, although this hypothesis should be reevaluated with a larger study group.
Collapse
Affiliation(s)
- K Augoff
- Department of Gastrointestinal and General Surgery, University of Wroclaw, Poland.
| | | | | | | | | | | |
Collapse
|
56
|
Park H, Huxley-Jones J, Boot-Handford RP, Bishop PN, Attwood TK, Bella J. LRRCE: a leucine-rich repeat cysteine capping motif unique to the chordate lineage. BMC Genomics 2008; 9:599. [PMID: 19077264 PMCID: PMC2637281 DOI: 10.1186/1471-2164-9-599] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 12/12/2008] [Indexed: 01/27/2023] Open
Abstract
Background The small leucine-rich repeat proteins and proteoglycans (SLRPs) form an important family of regulatory molecules that participate in many essential functions. They typically control the correct assembly of collagen fibrils, regulate mineral deposition in bone, and modulate the activity of potent cellular growth factors through many signalling cascades. SLRPs belong to the group of extracellular leucine-rich repeat proteins that are flanked at both ends by disulphide-bonded caps that protect the hydrophobic core of the terminal repeats. A capping motif specific to SLRPs has been recently described in the crystal structures of the core proteins of decorin and biglycan. This motif, designated as LRRCE, differs in both sequence and structure from other, more widespread leucine-rich capping motifs. To investigate if the LRRCE motif is a common structural feature found in other leucine-rich repeat proteins, we have defined characteristic sequence patterns and used them in genome-wide searches. Results The LRRCE motif is a structural element exclusive to the main group of SLRPs. It appears to have evolved during early chordate evolution and is not found in protein sequences from non-chordate genomes. Our search has expanded the family of SLRPs to include new predicted protein sequences, mainly in fishes but with intriguing putative orthologs in mammals. The chromosomal locations of the newly predicted SLRP genes would support the large-scale genome or gene duplications that are thought to have occurred during vertebrate evolution. From this expanded list we describe a new class of SLRP sequences that could be representative of an ancestral SLRP gene. Conclusion Given its exclusivity the LRRCE motif is a useful annotation tool for the identification and classification of new SLRP sequences in genome databases. The expanded list of members of the SLRP family offers interesting insights into early vertebrate evolution and suggests an early chordate evolutionary origin for the LRRCE capping motif.
Collapse
Affiliation(s)
- Hosil Park
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
57
|
Ren R, Hutcheon AEK, Guo XQ, Saeidi N, Melotti SA, Ruberti JW, Zieske JD, Trinkaus-Randall V. Human primary corneal fibroblasts synthesize and deposit proteoglycans in long-term 3-D cultures. Dev Dyn 2008; 237:2705-15. [PMID: 18624285 DOI: 10.1002/dvdy.21606] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our goal was to develop a 3-D multi-cellular construct using primary human corneal fibroblasts cultured on a disorganized collagen substrate in a scaffold-free environment and to use it to determine the regulation of proteoglycans over an extended period of time (11 weeks). Electron micrographs revealed multi-layered constructs with cells present in between alternating parallel and perpendicular arrays of fibrils. Type I collagen increased 2-4-fold. Stromal proteoglycans including lumican, syndecan4, decorin, biglycan, mimecan, and perlecan were expressed. The presence of glycosaminoglycan chains was demonstrated for a subset of the core proteins (lumican, biglycan, and decorin) using lyase digestion. Cuprolinic blue-stained cultures showed that sulfated proteoglycans were present throughout the construct and most prominent in its mid-region. The size of the Cuprolinic-positive filaments resembled those previously reported in a human corneal stroma. Under the current culture conditions, the cells mimic a development or nonfibrotic repair phenotype.
Collapse
Affiliation(s)
- R Ren
- Departments of Biochemistry and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Matteini P, Sbrana F, Tiribilli B, Pini R. Atomic force microscopy and transmission electron microscopy analyses of low-temperature laser welding of the cornea. Lasers Med Sci 2008; 24:667-71. [DOI: 10.1007/s10103-008-0617-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 09/05/2008] [Indexed: 11/29/2022]
|
59
|
Boukpessi T, Menashi S, Camoin L, Tencate JM, Goldberg M, Chaussain-Miller C. The effect of stromelysin-1 (MMP-3) on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins. Biomaterials 2008; 29:4367-73. [PMID: 18760468 DOI: 10.1016/j.biomaterials.2008.07.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 07/26/2008] [Indexed: 10/21/2022]
Abstract
Dentin non-collagenous matrix components (NCPs) are structural proteins involved in the formation, the architecture and the mineralization of the extracellular matrix (ECM). We investigated here how recombinant metalloproteinase stromelysin-1, also termed MMP-3, initiates the release of ECM molecules from artificially demineralized human dentin. Analysis of the supernatants by Western blotting reveals that MMP-3 extracts PGs (decorin, biglycan), and also a series of phosphorylated proteins: dentin sialoprotein (DSP), osteopontin (OPN), bone sialoprotein (BSP) and MEPE, but neither dentin matrix protein-1 (DMP1), another member of the SIBLING family, nor osteocalcin (OC), a non-phosphorylated matrix molecule. After treatment of dentin surfaces by MMP-3, scanning electron microscope (SEM) examination of resin replica shows an increased penetration of the resin into the dentin tubules when compared to surfaces only treated by demineralizing solutions. This preclinical investigation suggests that MMP-3 may be used to improve the adhesive properties of restorative materials.
Collapse
Affiliation(s)
- T Boukpessi
- Groupe Matrice Extracellulaire et Biominéralisation (EA 2496), Faculté de Chirurgie Dentaire, Université Paris Descartes, 1 rue Maurice Arnoux, 92120 Montrouge, France
| | | | | | | | | | | |
Collapse
|
60
|
Pramhed A, Addis L, Tillgren V, Wenglén C, Heinegård D, Logan DT. Purification, crystallization and preliminary X-ray diffraction analysis of human chondroadherin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:516-9. [PMID: 18540064 PMCID: PMC2496858 DOI: 10.1107/s1744309108012141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 04/26/2008] [Indexed: 11/10/2022]
Abstract
Chondroadherin is a cartilage matrix protein that is known to mediate the adhesion of isolated chondrocytes. Its protein core is composed of 11 leucine-rich repeats flanked by cysteine-rich domains at the N- and C-terminal ends. Recombinant human chondroadherin was crystallized using the sitting-drop vapour-diffusion method. The crystals belong to the monoclinic space group P2(1), with unit-cell parameters a = 56.4, b = 111.3, c = 128.5 A, beta = 92.2, and are most likely to contain four molecules in the asymmetric unit. The crystals diffracted to at least 2.3 A using synchrotron radiation, but structure determination using molecular replacement has so far been unsuccessful.
Collapse
Affiliation(s)
- Anna Pramhed
- Department of Molecular Biophysics, Centre for Chemistry and Chemical Engineering, Lund University, S-221 00 Lund, Sweden
| | - Laura Addis
- Department of Cell and Molecular Biology, BMC, Lund University, S-221 84 Lund, Sweden
| | - Viveka Tillgren
- Department of Cell and Molecular Biology, BMC, Lund University, S-221 84 Lund, Sweden
| | - Christina Wenglén
- Department of Cell and Molecular Biology, BMC, Lund University, S-221 84 Lund, Sweden
| | - Dick Heinegård
- Department of Cell and Molecular Biology, BMC, Lund University, S-221 84 Lund, Sweden
| | - Derek T. Logan
- Department of Molecular Biophysics, Centre for Chemistry and Chemical Engineering, Lund University, S-221 00 Lund, Sweden
| |
Collapse
|
61
|
PLAP-1/asporin inhibits activation of BMP receptor via its leucine-rich repeat motif. Biochem Biophys Res Commun 2008; 371:191-6. [DOI: 10.1016/j.bbrc.2008.03.158] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 03/30/2008] [Indexed: 11/18/2022]
|
62
|
Abstract
The fibroblast growth factors (FGFs) are key regulators of cell growth and differentiation during embryogenesis. They deliver both short-range and distant signals assisted by their proteoglycan (PG) coreceptors in the pericellular matrix. The study by Hou et al. (2007) has identified a novel autoinductive loop involving FGF and the secreted serine protease xHtrA1 that leads to the mobilization of latent FGF/PG complexes. These complexes are long-range messages for mesoderm induction and establishment of the embryonic body plan.
Collapse
Affiliation(s)
- John Gallagher
- School of Cancer & Imaging Sciences, University of Manchester, Manchester M20 4BX, United Kingdom.
| |
Collapse
|
63
|
Huyton T, Wolberger C. The crystal structure of the tumor suppressor protein pp32 (Anp32a): structural insights into Anp32 family of proteins. Protein Sci 2007; 16:1308-15. [PMID: 17567741 PMCID: PMC2206682 DOI: 10.1110/ps.072803507] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The tumor suppressor protein pp32 is highly overexpressed in many cancers of the breast and prostate, and has also been implicated in the neurodegenerative disease spinocerebellar ataxias type 1 (SCA1). Pp32 is a multifunctional protein that is involved in the regulation of transcription, apoptosis, phosphorylation, and cell cycle progression, the latter through its association with the hyperphosphorylated form of the retinoblastoma tumor suppressor. We have determined the structure of an N-terminal pp32 fragment comprising a capped leucine-rich repeat (LRR) domain, which provides insight into the structural and biochemical properties of the pp32 (Anp32) family of proteins.
Collapse
Affiliation(s)
- Trevor Huyton
- Department of Biophysics and Biophysical Chemistry, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
64
|
Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics 2007; 8:124. [PMID: 17517123 PMCID: PMC1899181 DOI: 10.1186/1471-2164-8-124] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 05/21/2007] [Indexed: 12/15/2022] Open
Abstract
Background Toll-like receptors (TLRs) play a central role in innate immunity. TLRs are membrane glycoproteins and contain leucine rich repeat (LRR) motif in the ectodomain. TLRs recognize and respond to molecules such as lipopolysaccharide, peptidoglycan, flagellin, and RNA from bacteria or viruses. The LRR domains in TLRs have been inferred to be responsible for molecular recognition. All LRRs include the highly conserved segment, LxxLxLxxNxL, in which "L" is Leu, Ile, Val, or Phe and "N" is Asn, Thr, Ser, or Cys and "x" is any amino acid. There are seven classes of LRRs including "typical" ("T") and "bacterial" ("S"). All known domain structures adopt an arc or horseshoe shape. Vertebrate TLRs form six major families. The repeat numbers of LRRs and their "phasing" in TLRs differ with isoforms and species; they are aligned differently in various databases. We identified and aligned LRRs in TLRs by a new method described here. Results The new method utilizes known LRR structures to recognize and align new LRR motifs in TLRs and incorporates multiple sequence alignments and secondary structure predictions. TLRs from thirty-four vertebrate were analyzed. The repeat numbers of the LRRs ranges from 16 to 28. The LRRs found in TLRs frequently consists of LxxLxLxxNxLxxLxxxxF/LxxLxx ("T") and sometimes short motifs including LxxLxLxxNxLxxLPx(x)LPxx ("S"). The TLR7 family (TLR7, TLR8, and TLR9) contain 27 LRRs. The LRRs at the N-terminal part have a super-motif of STT with about 80 residues. The super-repeat is represented by STTSTTSTT or _TTSTTSTT. The LRRs in TLRs form one or two horseshoe domains and are mostly flanked by two cysteine clusters including two or four cysteine residue. Conclusion Each of the six major TLR families is characterized by their constituent LRR motifs, their repeat numbers, and their patterns of cysteine clusters. The central parts of the TLR1 and TLR7 families and of TLR4 have more irregular or longer LRR motifs. These central parts are inferred to play a key role in the structure and/or function of their TLRs. Furthermore, the super-repeat in the TLR7 family suggests strongly that "bacterial" and "typical" LRRs evolved from a common precursor.
Collapse
Affiliation(s)
- Norio Matsushima
- School of Health Sciences, Sapporo Medical University, Hokkaido 060-8556, Japan
| | - Takanori Tanaka
- RIKEN Genomic Sciences Center, Yokohama, Kanagawa 230-0045, Japan
| | - Purevjav Enkhbayar
- Faculty of Biology, National University of Mongolia, Ulaanbaatar-210646/377, Mongolia
| | - Tomoko Mikami
- School of Health Sciences, Sapporo Medical University, Hokkaido 060-8556, Japan
- Department of Nursing, Sapporo City University, Sapporo, Hokkaido 060-0011, Japan
| | - Masae Taga
- School of Health Sciences, Sapporo Medical University, Hokkaido 060-8556, Japan
- Department of Nursing, Sapporo City University, Sapporo, Hokkaido 060-0011, Japan
| | - Keiko Yamada
- School of Health Sciences, Sapporo Medical University, Hokkaido 060-8556, Japan
| | - Yoshio Kuroki
- Department of Biochemistry, School of Medicine, Sapporo Medical University, Hokkaido 060-8556, Japan
| |
Collapse
|
65
|
Geng Y, McQuillan D, Roughley PJ. SLRP interaction can protect collagen fibrils from cleavage by collagenases. Matrix Biol 2006; 25:484-91. [PMID: 16979885 DOI: 10.1016/j.matbio.2006.08.259] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 08/03/2006] [Accepted: 08/04/2006] [Indexed: 11/21/2022]
Abstract
Decorin, fibromodulin and lumican are small leucine-rich repeat proteoglycans (SLRPs) which interact with the surface of collagen fibrils. Together with other molecules they form a coat on the fibril surface which could impede the access to collagenolytic proteinases. To address this hypothesis, fibrils of type I or type II collagen were formed in vitro and treated with either collagenase-1 (MMP1) or collagenase-3 (MMP13). The fibrils were either treated directly or following incubation in the presence of the recombinant SLRPs. The susceptibility of the uncoated and SLRP-coated fibrils to collagenase cleavage was assessed by SDS/PAGE. Interaction with either recombinant decorin, fibromodulin or lumican results in decreased collagenase cleavage of both fibril types. Thus SLRP interaction can help protect collagen fibrils from cleavage by collagenases.
Collapse
Affiliation(s)
- Yeqing Geng
- Genetics Unit, Shriners Hospital for Children, 1529 Cedar Avenue, Montreal, Quebec, Canada H3G 1A6
| | | | | |
Collapse
|
66
|
McEwan PA, Scott PG, Bishop PN, Bella J. Structural correlations in the family of small leucine-rich repeat proteins and proteoglycans. J Struct Biol 2006; 155:294-305. [PMID: 16884925 DOI: 10.1016/j.jsb.2006.01.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Accepted: 01/29/2006] [Indexed: 11/29/2022]
Abstract
The family of small leucine-rich repeat proteins and proteoglycans (SLRPs) contains several extracellular matrix molecules that are structurally related by a protein core composed of leucine-rich repeats (LRRs) flanked by two conserved cysteine-rich regions. The small proteoglycan decorin is the archetypal SLRP. Decorin is present in a variety of connective tissues, typically "decorating" collagen fibrils, and is involved in important biological functions, including the regulation of the assembly of fibrillar collagens and modulation of cell adhesion. Several SLRPs are known to regulate collagen fibrillogenesis and there is evidence that they may share other biological functions. We have recently determined the crystal structure of the protein core of decorin, the first such determination of a member of the SLRP family. This structure has highlighted several correlations: (1) SLRPs have similar internal repeat structures; (2) SLRP molecules are far less curved than an early model of decorin based on the three-dimensional structure of ribonuclease inhibitor; (3) the N-terminal and C-terminal cysteine-rich regions are conserved capping motifs. Furthermore, the structure shows that decorin dimerizes through the concave surface of its LRR domain, which has been implicated previously in its interaction with collagen. We have established that both decorin and opticin, another SLRP, form stable dimers in solution. Conservation of residues involved in decorin dimerization suggests that the mode of dimerization for other SLRPs will be similar. Taken together these results suggest the need for reevaluation of currently accepted models of SLRP interaction with their ligands.
Collapse
Affiliation(s)
- Paul A McEwan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|