51
|
Pal R, Tiwari PC, Nath R, Pant KK. Role of neuroinflammation and latent transcription factors in pathogenesis of Parkinson’s disease. Neurol Res 2016; 38:1111-1122. [DOI: 10.1080/01616412.2016.1249997] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rishi Pal
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | | | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | - Kamlesh Kumar Pant
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| |
Collapse
|
52
|
Chen CH, Chen NF, Feng CW, Cheng SY, Hung HC, Tsui KH, Hsu CH, Sung PJ, Chen WF, Wen ZH. A Coral-Derived Compound Improves Functional Recovery after Spinal Cord Injury through Its Antiapoptotic and Anti-Inflammatory Effects. Mar Drugs 2016; 14:md14090160. [PMID: 27598175 PMCID: PMC5039531 DOI: 10.3390/md14090160] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 12/24/2022] Open
Abstract
Background: Our previous in vitro results demonstrated that 11-dehydrosinulariolide significantly reduced 6-hydroxydopamine-induced cytotoxicity and apoptosis in a human neuroblastoma cell line, SH-SY5Y, and suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 in lipopolysaccharide-stimulated macrophage cells. The neuroprotective and anti-inflammatory effects of 11-dehydrosinulariolide may be suitable for treating spinal cord injury (SCI). Methods: In the present study, Wistar rats were pretreated with 11-dehydrosinulariolide or saline through intrathecal injection after a thoracic spinal cord contusion injury induced using a New York University (NYU) impactor. The apoptotic cells were assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression and localization of proinflammatory, apoptosis-associated and cell survival-related pathway proteins were examined through immunoblotting and immunohistochemistry. Results: 11-Dehydrosinulariolide attenuated SCI-induced cell apoptosis by upregulating the antiapoptotic protein Bcl-2 and cell survival-related pathway proteins p-Akt and p-ERK, 8 h after SCI. Furthermore, the transcription factor p-CREB, which regulates Bcl-2 expression, was upregulated after 11-dehydrosinulariolide treatment. On day 7 after SCI, 11-dehydrosinulariolide exhibited an anti-inflammatory effect, attenuating SCI-induced upregulation of the inflammatory proteins iNOS and tumor necrosis factor-α. 11-Dehydrosinulariolide also induced an increase in the expression of arginase-1 and CD206, markers of M2 microglia, in the injured spinal cord on day 7 after SCI. Thus, the anti-inflammatory effect of 11-dehydrosinulariolide may be related to the promotion of an alternative pathway of microglia activation. Conclusion: The results show that 11-dehydrosinulariolide exerts antiapoptotic effects at 8 h after SCI and anti-inflammatory effects at 7 days after SCI. We consider that this compound may be a promising therapeutic agent for SCI.
Collapse
Affiliation(s)
- Chun-Hong Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Chien-Wei Feng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Shu-Yu Cheng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Han-Chun Hung
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Department of Obstetrics and Gynecology and Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung County 90741, Taiwan.
| | - Chi-Hsin Hsu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 94450, Taiwan.
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan.
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Zhi-Hong Wen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
53
|
Sun J, Nan G. The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway as a Discovery Target in Stroke. J Mol Neurosci 2016; 59:90-8. [PMID: 26842916 DOI: 10.1007/s12031-016-0717-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/12/2016] [Indexed: 01/08/2023]
Abstract
Protein kinases are critical modulators of a variety of intracellular and extracellular signal transduction pathways, and abnormal phosphorylation events can contribute to disease progression in a variety of diseases. As a result, protein kinases have emerged as important new drug targets for small molecule therapeutics. The mitogen-activated protein kinase (MAPK) signaling pathway transmits signals from the cell membrane to the nucleus in response to a variety of different stimuli. Because this pathway controls a broad spectrum of cellular processes, including growth, inflammation, and stress responses, it is accepted as a therapeutic target for cancer and peripheral inflammatory disorders. There is also increasing evidence that MAPK is an important regulator of ischemic and hemorrhagic cerebral vascular disease, raising the possibility that it might be a drug discovery target for stroke. In this review, we discuss the MAPK signaling pathway in association with its activation in stroke-induced brain injury.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, Jilin, China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, Jilin, China.
| |
Collapse
|
54
|
Hogg EL, Müller J, Corrêa SAL. Does the MK2-dependent Production of TNFα Regulate mGluR-dependent Synaptic Plasticity? Curr Neuropharmacol 2016; 14:474-80. [PMID: 27296641 PMCID: PMC4983755 DOI: 10.2174/1570159x13666150624165939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 06/26/2015] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms and signalling cascades that trigger the induction of group I metabotropic glutamate receptor (GI-mGluR)-dependent long-term depression (LTD) have been the subject of intensive investigation for nearly two decades. The generation of genetically modified animals has played a crucial role in elucidating the involvement of key molecules regulating the induction and maintenance of mGluR-LTD. In this review we will discuss the requirement of the newly discovered MAPKAPK-2 (MK2) and MAPKAPK-3 (MK3) signalling cascade in regulating GI-mGluR-LTD. Recently, it has been shown that the absence of MK2 impaired the induction of GI-mGluR-dependent LTD, an effect that is caused by reduced internalization of AMPA receptors (AMPAR). As the MK2 cascade directly regulates tumour necrosis factor alpha (TNFα) production, this review will examine the evidence that the release of TNFα acts to regulate glutamate receptor expression and therefore may play a functional role in the impairment of GI-mGluRdependent LTD and the cognitive deficits observed in MK2/3 double knockout animals. The strong links of increased TNFα production in both aging and neurodegenerative disease could implicate the action of MK2 in these processes.
Collapse
Affiliation(s)
| | | | - Sônia A L Corrêa
- School of Life Sciences, Bradford University, Bradford, BD18 3LX.
| |
Collapse
|
55
|
p38α (MAPK14) critically regulates the immunological response and the production of specific cytokines and chemokines in astrocytes. Sci Rep 2014; 4:7405. [PMID: 25502009 PMCID: PMC4264013 DOI: 10.1038/srep07405] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/19/2014] [Indexed: 02/08/2023] Open
Abstract
In CNS lesions, “reactive astrocytes” form a prominent cellular response. However, the nature of this astrocyte immune activity is not well understood. In order to study astrocytic immune responses to inflammation and injury, we generated mice with conditional deletion of p38α (MAPK14) in GFAP+ astrocytes. We studied the role of p38α signaling in astrocyte immune activation both in vitro and in vivo, and simultaneously examined the effects of astrocyte activation in CNS inflammation. Our results showed that specific subsets of cytokines (TNFα, IL-6) and chemokines (CCL2, CCL4, CXCL1, CXCL2, CXCL10) are critically regulated by p38α signaling in astrocytes. In an in vivo CNS inflammation model of intracerebral injection of LPS, we observed markedly attenuated astrogliosis in conditional GFAPcre p38α−/− mice. However, GFAPcre p38α−/− mice showed marked upregulation of CCL2, CCL3, CCL4, CXCL2, CXCL10, TNFα, and IL-1β compared to p38αfl/fl cohorts, suggesting that in vivo responses to LPS after GFAPcre p38α deletion are complex and involve interactions between multiple cell types. This finding was supported by a prominent increase in macrophage/microglia and neutrophil recruitment in GFAPcre p38α−/− mice compared to p38αfl/fl controls. Together, these studies provide important insights into the critical role of p38α signaling in astrocyte immune activation.
Collapse
|
56
|
Velagapudi R, Aderogba M, Olajide OA. Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-κB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim Biophys Acta Gen Subj 2014; 1840:3311-9. [DOI: 10.1016/j.bbagen.2014.08.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/16/2022]
|
57
|
Toll-like receptors 2, -3 and -4 prime microglia but not astrocytes across central nervous system regions for ATP-dependent interleukin-1β release. Sci Rep 2014; 4:6824. [PMID: 25351234 PMCID: PMC5381369 DOI: 10.1038/srep06824] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022] Open
Abstract
Interleukin-1β (IL-1β) is a crucial mediator in the pathogenesis of inflammatory diseases at the periphery and in the central nervous system (CNS). Produced as an unprocessed and inactive pro-form which accumulates intracellularly, release of the processed cytokine is strongly promoted by ATP acting at the purinergic P2X7 receptor (P2X7R) in cells primed with lipopolysaccharide (LPS), a Toll-like receptor (TLR) 4 ligand. Microglia are central to the inflammatory process and a major source of IL-1β when activated. Here we show that purified (>99%) microglia cultured from rat cortex, spinal cord and cerebellum respond robustly to ATP-dependent IL-1β release, upon priming with a number of TLR isoform ligands (zymosan and Pam3CSK4 for TLR2, poly(I:C) for TLR3). Cytokine release was prevented by a P2X7R antagonist and inhibitors of stress-activated protein kinases. Enriched astrocytes (≤5% microglia) from these CNS regions displayed responses qualitatively similar to microglia but became unresponsive upon eradication of residual microglia with the lysosomotropic agent Leu-Leu-OMe. Activation of multiple TLR isoforms in nervous system pathology, coupled with elevated extracellular ATP levels and subsequent P2X7R activation may represent an important route for microglia-derived IL-1β. This phenomenon may have important consequences for neuroinflammation and its position to the common pathology of CNS diseases.
Collapse
|
58
|
Okorji UP, Olajide OA. A semi-synthetic derivative of artemisinin, artesunate inhibits prostaglandin E2 production in LPS/IFNγ-activated BV2 microglia. Bioorg Med Chem 2014; 22:4726-34. [DOI: 10.1016/j.bmc.2014.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/02/2014] [Accepted: 07/05/2014] [Indexed: 12/13/2022]
|
59
|
Ramesh G. Novel Therapeutic Targets in Neuroinflammation and Neuropathic Pain. INFLAMMATION AND CELL SIGNALING 2014; 1. [PMID: 26052540 DOI: 10.14800/ics.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There is abounding evidence that neuroinflammation plays a major role in the pathogenesis of neurodegeneration and neuropathic pain. Chemokine-induced recruitment of peripheral immune cells is a central feature in inflammatory neurodegenerative disorders. Immune cells, glial cells and neurons constitute an integral network that coordinates the immune response by releasing inflammatory mediators that in turn modulate inflammation, neurodegeneration and the signal transduction of pain, via interaction with neurotransmitters and their receptors. The chemokine monocyte chemoattractant protein-1/ chemokine (C-C motif) ligand (MCP-1/CCL2) and its receptor C-C chemokine receptor (CCR2) play a major role in mediating neuroinflammation and targeting CCL2/CCR2 represents a promising strategy to limit neuroinflammation-induced neuropathy. In addition, the CCL2/CCR2 axis is also involved in mediating the pain response. Key cellular signaling events such as phosphorylation and subsequent activation of mitogen activated protein kinase (MAPK) p38 and its substrate MAPK-activated protein MAPKAP Kinase (MK) MK-2, regulate neuroinflammation, neuronal survival and synaptic activity. Further, MAPKs such as extracellular signal-regulated kinases (ERK), c-jun N-terminal kinase (JNK) and p38 play vital roles in mediating the pain signaling cascade and contribute to the maintenance of peripheral and central neuronal sensitization associated with chronic pain. This review outlines the rationale for developing therapeutic strategies against CCL2/CCR2 and MAPK signaling networks, identifying them as novel therapeutic targets for limiting neuroinflammation and neuropathic pain.
Collapse
Affiliation(s)
- Geeta Ramesh
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA, USA
| |
Collapse
|
60
|
Xu Y, Cao DH, Wu GM, Hou XY. Involvement of P38MAPK activation by NMDA receptors and non-NMDA receptors in amyloid-β peptide-induced neuronal loss in rat hippocampal CA1 and CA3 subfields. Neurosci Res 2014; 85:51-7. [PMID: 24929103 DOI: 10.1016/j.neures.2014.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 01/06/2023]
Abstract
Oligomeric amyloid-β peptide (Aβ) has been found to be associated with the pathogenesis of Alzheimer's disease (AD). Numerous studies have reported Aβ neurotoxicity, but the underlying molecular mechanisms remain to be fully illuminated. In the present study, we investigated the Aβ-induced activation and regulation of P38MAPKs in rat hippocampus in vivo. The results showed that intracerebroventricular injection of oligomeric Aβ25-35 increased the activation (phosphorylation) of P38MAPKs, and the level of cleaved caspase-3, but decreased the number of neurons in rat hippocampal CA1 and CA3 subfields. Downregulation of P38MAPK activity by SB239063 protected against the Aβ neurotoxicity. Pretreatment with NMDA and non-NMDA receptor antagonists respectively suppressed P38MAPK activation induced by Aβ25-35 oligomers and presented neuroprotective effect. Taken together, these data suggest that P38MAPK activation via NMDA and non-NMDA receptors is a key signal cascade in Aβ-induced neuronal death. Inhibition of P38MAPK cascades may be a promising treatment in AD.
Collapse
Affiliation(s)
- Yan Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Jiangsu, China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Jiangsu, China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu, China
| | - Da-Hong Cao
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Jiangsu, China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu, China
| | - Gui-Mei Wu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Jiangsu, China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu, China
| | - Xiao-Yu Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Jiangsu, China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Jiangsu, China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu, China.
| |
Collapse
|
61
|
Olajide OA, Velagapudi R, Okorji UP, Sarker SD, Fiebich BL. Picralima nitida seeds suppress PGE2 production by interfering with multiple signalling pathways in IL-1β-stimulated SK-N-SH neuronal cells. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:377-383. [PMID: 24491645 DOI: 10.1016/j.jep.2014.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/19/2013] [Accepted: 01/24/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried seed of Picralima nitida is used in rheumatic fever and as an antipyretic in West Africa. In this study we have investigated the effects of an extract obtained from the seeds of Picralima nitida (PNE) on PGE2 production in IL-1β-stimulated cells. MATERIALS AND METHODS Prostaglandin E2 (PGE2) was measured in supernatants of IL-1β-stimulated SK-N-SH cells using enzyme immunoassay (EIA) for PGE2. In Cell ELISA and western blot were used to evaluate the effects of PNE on protein expressions of COX-2, mPGES-1, IκB and IKK. To determine the effect of the extract on NF-κB transactivation, a reporter gene assay was carried out in HEK293 cells stimulated with TNFα. An ELISA was used to measure the roles of p38, ERK1/2 and JNK Mitogen Activated Protein Kinases (MAPKs) on anti-neuroinflammatory actions of PNE. RESULTS Results show that PNE significantly inhibited PGE2 production, as well as COX-2 and mPGES-1 protein expressions in IL-1β-stimulated SK-N-SH cells. Molecular targeting experiments showed that PNE interfered with NF-κB signalling pathway through attenuation of TNFα-stimulated NF-κB transcriptional activation in HEK 293 cells. Furthermore, IL-1β-mediated phosphorylation of IκB and IKK were inhibited in SK-N-SH cells. PNE (50-200 μg/ml) also produced significant inhibition of IL-1β-induced p38 MAPK phosphorylation in SK-N-SH cells. However, phosphorylation of ERK1/2 and JNK MAPKs were achieved at 100 and 200 μg/ml of the extract. CONCLUSIONS Taken together, these results clearly demonstrate that Picralima nitida suppresses PGE2 production by targeting multiple pathways involving NF-κB and MAPK signalling in IL-1β-stimulated SK-N-SH neuronal cells.
Collapse
Affiliation(s)
- Olumayokun A Olajide
- Division of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom.
| | - Ravikanth Velagapudi
- Division of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Uchechukwu P Okorji
- Division of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Satyajit D Sarker
- Department of Pharmacy, School of Applied Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, United Kingdom
| | - Bernd L Fiebich
- Neurochemistry Research Laboratory, Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstrasse 5, 79104 Freiburg, Germany; VivaCell Biotechnology GmbH, Ferdinand-Porsche-Street 5, D-79211 Denzlingen, Germany
| |
Collapse
|
62
|
Gurgis FMS, Ziaziaris W, Munoz L. Mitogen-Activated Protein Kinase–Activated Protein Kinase 2 in Neuroinflammation, Heat Shock Protein 27 Phosphorylation, and Cell Cycle: Role and Targeting. Mol Pharmacol 2013; 85:345-56. [DOI: 10.1124/mol.113.090365] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
63
|
Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: the role and consequences. Neurosci Res 2013; 79:1-12. [PMID: 24144733 DOI: 10.1016/j.neures.2013.10.004] [Citation(s) in RCA: 468] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 01/05/2023]
Abstract
Neuroinflammation is central to the common pathology of several acute and chronic brain diseases. This review examines the consequences of excessive and prolonged neuroinflammation, particularly its damaging effects on cellular and/or brain function, as well as its relevance to disease progression and possible interventions. The evidence gathered here indicates that neuroinflammation causes and accelerates long-term neurodegenerative disease, playing a central role in the very early development of chronic conditions including dementia. The wide scope and numerous complexities of neuroinflammation suggest that combinations of different preventative and therapeutic approaches may be efficacious.
Collapse
Affiliation(s)
- Monty Lyman
- Section of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Dafydd G Lloyd
- Section of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Marcela P Vizcaychipi
- Section of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Daqing Ma
- Section of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| |
Collapse
|
64
|
Badía MC, Giraldo E, Dasí F, Alonso D, Lainez JM, Lloret A, Viña J. Reductive stress in young healthy individuals at risk of Alzheimer disease. Free Radic Biol Med 2013; 63:274-9. [PMID: 23665394 DOI: 10.1016/j.freeradbiomed.2013.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/12/2013] [Accepted: 05/01/2013] [Indexed: 11/23/2022]
Abstract
Oxidative stress is a hallmark of Alzheimer disease (AD) but this has not been studied in young healthy persons at risk of the disease. Carrying an Apo ε4 allele is the major genetic risk factor for AD. We have observed that lymphocytes from young, healthy persons carrying at least one Apo ε4 allele suffer from reductive rather than oxidative stress, i.e., lower oxidized glutathione and P-p38 levels and higher expression of enzymes involved in antioxidant defense, such as glutamylcysteinyl ligase and glutathione peroxidase. In contrast, in the full-blown disease, the situation is reversed and oxidative stress occurs, probably because of the exhaustion of the antioxidant mechanisms just mentioned. These results provide insights into the early events of the progression of the disease that may allow us to find biomarkers of AD at its very early stages.
Collapse
Affiliation(s)
- Mari-Carmen Badía
- Department of Physiology, Facultad de Medicina, Universidad de Valencia, and Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia 46010, Spain
| | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Hematopoietic stem and progenitor cells with inactivated Fanconi anemia (FA) genes, FANCA and FANCC, are hypersensitive to inflammatory cytokines. One of these, tumor necrosis factor α (TNF-α), is also overproduced by FA mononuclear phagocytes in response to certain Toll-like receptor (TLR) agonists, creating an autoinhibitory loop that may contribute to the pathogenesis of progressive bone marrow (BM) failure and selection of TNF-α-resistant leukemic stem cell clones. In macrophages, the TNF-α overproduction phenotype depends on p38 mitogen-activated protein kinase (MAPK), an enzyme also known to induce expression of other inflammatory cytokines, including interleukin 1β (IL-1β). Reasoning that IL-1β might be involved in a like autoinhibitory loop, we determined that (1) TLR activation of FANCA- and FANCC-deficient macrophages induced overproduction of both TNF-α and IL-1β in a p38-dependent manner; (2) exposure of Fancc-deficient BM progenitors to IL-1β potently suppressed the expansion of multipotent progenitor cells in vitro; and (3) although TNF-α overexpression in FA cells is controlled posttranscriptionally by the p38 substrate MAPKAPK-2, p38-dependent overproduction of IL-1β is controlled transcriptionally. We suggest that multiple inflammatory cytokines overproduced by FANCA- and FANCC-deficient mononuclear phagocytes may contribute to the progressive BM failure that characterizes FA, and that to achieve suppression of this proinflammatory state, p38 is a more promising molecular therapeutic target than either IL-1β or TNF-α alone.
Collapse
|
66
|
Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 2013; 124:307-21. [DOI: 10.3109/00207454.2013.833510] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
67
|
Intracellular ion channel CLIC1: involvement in microglia-mediated β-amyloid peptide(1-42) neurotoxicity. Neurochem Res 2013; 38:1801-8. [PMID: 23743620 DOI: 10.1007/s11064-013-1084-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/10/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
Microglia can exacerbate central nervous system disorders, including stroke and chronic progressive neurodegenerative diseases such as Alzheimer disease. Mounting evidence points to ion channels expressed by microglia as contributing to these neuropathologies. The Chloride Intracellular Channel (CLIC) family represents a class of chloride intracellular channel proteins, most of which are localized to intracellular membranes. CLICs are unusual in that they possess both soluble and integral membrane forms. Amyloid β-peptide (Aβ) accumulation in plaques is a hallmark of familial Alzheimer disease. The truncated Aβ25-35 species was shown previously to increase the expression of CLIC1 chloride conductance in cortical microglia and to provoke microglial neurotoxicity. However, the highly pathogenic and fibrillogenic full-length Aβ1-42 species was not examined, nor was the potential role of CLIC1 in mediating microglial activation and neurotoxicity by other stimuli (e.g. ligands for the Toll-like receptors). In the present study, we utilized a two chamber Transwell™ cell culture system to allow separate treatment of microglia and neurons while examining the effect of pharmacological blockade of CLIC1 in protecting cortical neurons from toxicity caused by Aβ1-42- and lipopolysaccaride-stimulated microglia. Presentation of Aβ1-42 to the upper, microglia-containing chamber resulted in a progressive loss of neurons over 3 days. Neuronal cell injury was prevented by the CLIC1 ion channel blockers IAA-94 [(R(+)-[(6,7-dichloro-2-cyclopentyl-2,3-dihydro-2-methyl-1-oxo-1H-inden-5yl)-oxy] acetic acid)] and niflumic acid (2-{[3-(trifluoromethyl)phenyl]amino}nicotinic acid) when presented to the upper chamber only. Incubation of microglia with lipopolysaccharide plus interferon-γ led to neuronal cell injury which, however, was insensitive to inhibition by the CLIC1 channel blockers, suggesting a degree of selectivity in agents leading to CLIC1 activation.
Collapse
|
68
|
Travan S, Li F, D'Silva NJ, Slate EH, Kirkwood KL. Differential expression of mitogen activating protein kinases in periodontitis. J Clin Periodontol 2013; 40:757-64. [PMID: 23742695 DOI: 10.1111/jcpe.12123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2013] [Indexed: 02/06/2023]
Abstract
AIM Following toll-like receptor (TLR) engagement, lipopolysaccharide (LPS) can stimulate the expression of pro-inflammatory cytokines thus activating the innate immune response. The production of inflammatory cytokines results, in part, from the activation of kinase-induced signalling cascades and transcriptional factors. Of the four distinct classes of mitogen-activated protein kinases (MAPK) described in mammals, p38, c-Jun N-terminal activated kinases (JNK1-3) and extracellular activated kinases (ERK1,2) are the best studied. Previous data have established that p38 MAPK signalling is required for inflammation and bone loss in periodontal disease pre-clinical animal models. MATERIALS & METHODS In this study, we obtained healthy and diseased periodontal tissues along with clinical parameters and microbiological parameters. Excised fixed tissues were immunostained with total and phospho-specific antibodies against p38, JNK and ERK kinases. RESULTS Intensity scoring from immunostained tissues was correlated with clinical periodontal parameters. Rank correlations with clinical indices were statistically significantly positive (p-value < 0.05) for total p38 (correlations ranging 0.49-0.68), phospho-p38 (range 0.44-0.56), and total ERK (range 0.52-0.59) levels, and correlations with JNK levels also supported association (range 0.42-0.59). Phospho-JNK and phospho-ERK showed no significant positive correlation with clinical parameters of disease. CONCLUSION These data strongly implicate p38 MAPK as a major MAPK involved in human periodontal inflammation and severity.
Collapse
Affiliation(s)
- Suncica Travan
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
69
|
Thomas J, Garg ML, Smith DW. Dietary supplementation with resveratrol and/or docosahexaenoic acid alters hippocampal gene expression in adult C57Bl/6 mice. J Nutr Biochem 2013; 24:1735-40. [PMID: 23746933 DOI: 10.1016/j.jnutbio.2013.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 03/06/2013] [Indexed: 12/27/2022]
Abstract
The hippocampus is an important brain structure for multiple cognitive functions, including memory formation. It is particularly sensitive to insults, such as stress, ischemia, and aging; all of these can affect hippocampal and therefore cognitive function. To understand the potential of diet for the preservation of hippocampal function, we investigated the effects of dietary supplementation with resveratrol (RES) or docosahexaenoic acid (DHA), or their combination, on hippocampal gene expression in adult C57BL/6 mice. Animals in the supplemented group received either 50 mg/kg/day of RES or DHA, while the combination group received 50 mg/kg/day of each supplement. Dietary supplements were mixed with the AIN93G diet, and supplementation lasted 6 weeks. The control group received AIN93G diet alone for the same period. At the end of the experiment, the hippocampi were processed for genome-wide gene expression and pathway analyses. Most of the genes that were significantly altered were associated with inflammatory responses as determined by pathway analysis. RES-supplemented animals showed decreased expression of IL-6 (P=.001), MAPKapk2 (P=.015), and increased expression for PI3KR2 (P=.034) and Wnt7a (P=.004) expression. DHA-supplemented animals showed a decreased IL-6 (P=.003) and an increased Wnt7a (P=.003) expression. Animals on the combination diet showed a decreased IL-6 (P=.005) and Apolipoprotien E (ApoE) (P=.035) expression. Our findings demonstrate that hippocampal gene expression is significantly altered by all three dietary supplementation regimes. Moreover, our analysis indicates that RES and DHA likely exert their beneficial effects through antiinflammatory mechanisms.
Collapse
Affiliation(s)
- Jency Thomas
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia; Nutraceuticals Research Group, University of Newcastle, Callaghan, NSW-2308, Australia
| | | | | |
Collapse
|
70
|
Abstract
Neuropathology after traumatic brain injury (TBI) is the result of both the immediate impact injury and secondary injury mechanisms. Unresolved post-traumatic glial activation is a secondary injury mechanism that contributes to a chronic state of neuroinflammation in both animal models of TBI and human head injury patients. We recently demonstrated, using in vitro models, that p38α MAPK signaling in microglia is a key event in promoting cytokine production in response to diverse disease-relevant stressors and subsequent inflammatory neuronal dysfunction. From these findings, we hypothesized that the p38α signaling pathway in microglia could be contributing to the secondary neuropathologic sequelae after a diffuse TBI. Mice where microglia were p38α-deficient (p38α KO) were protected against TBI-induced motor deficits and synaptic protein loss. In wild-type (WT) mice, diffuse TBI produced microglia morphological activation that lasted for at least 7 d; however, p38α KO mice failed to activate this response. Unexpectedly, we found that the peak of the early, acute phase cytokine and chemokine levels was increased in injured p38α KO mice compared with injured WT mice. The increased cytokine levels in the p38α KO mice could not be accounted for by more infiltration of macrophages or neutrophils, or increased astrogliosis. By 7 d after injury, the cytokine and chemokine levels remained elevated in injured WT mice but not in p38α KO mice. Together, these data suggest that p38α balances the inflammatory response by acutely attenuating the early proinflammatory cytokine surge while perpetuating the chronic microglia activation after TBI.
Collapse
|
71
|
Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:459723. [PMID: 23737832 PMCID: PMC3662116 DOI: 10.1155/2013/459723] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/04/2013] [Accepted: 04/12/2013] [Indexed: 11/20/2022]
Abstract
Cryptolepine, an indoloquinoline alkaloid in Cryptolepis sanguinolenta, has anti-inflammatory property. In this study, we aimed to evaluate the effects of cryptolepine on lipopolysaccharide (LPS)- induced neuroinflammation in rat microglia and its potential mechanisms. Microglial activation was induced by stimulation with LPS, and the effects of cryptolepine pretreatment on microglial activation and production of proinflammatory mediators, PGE2/COX-2, microsomal prostaglandin E2 synthase and nitric oxide/iNOS were investigated. We further elucidated the role of Nuclear Factor-kappa B (NF-κB) and the mitogen-activated protein kinases in the antiinflammatory actions of cryptolepine in LPS-stimulated microglia. Our results showed that cryptolepine significantly inhibited LPS-induced production of tumour necrosis factor-alpha (TNFα), interleukin-6 (IL-6), interleukin-1beta (IL-1β), nitric oxide, and PGE2. Protein and mRNA levels of COX-2 and iNOS were also attenuated by cryptolepine. Further experiments on intracellular signalling mechanisms show that IκB-independent inhibition of NF-κB nuclear translocation contributes to the anti-neuroinflammatory actions of cryptolepine. Results also show that cryptolepine inhibited LPS-induced p38 and MAPKAPK2 phosphorylation in the microglia. Cell viability experiments revealed that cryptolepine (2.5 and 5 μM) did not produce cytotoxicity in microglia. Taken together, our results suggest that cryptolepine inhibits LPS-induced microglial inflammation by partial targeting of NF-κB signalling and attenuation of p38/MAPKAPK2.
Collapse
|
72
|
Ren WK, Yin J, Zhu XP, Liu G, Li NZ, Peng YY, Yin YY. Glutamine on Intestinal Inflammation: A Mechanistic Perspective. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intestinal inflammation is associated with various pathological diseases, such as gastritis from Helicobacter pylori infection, Crohn's and colitis in inflammatory bowel disease, and colorectal cancer. Thus, treatment with anti-inflammatory substances in these inflammation-associated diseases is critical. Increasingly compelling evidence indicates that glutamine is an anti-inflammatory compound candidate because it can influence the long-term outcome of the inflammatory diseases with in a low-risk way. However, before recommending its use in clinical practice, it is important to elucidate the molecular mechanism by which glutamine exerts its roles in modulating intestinal inflammation. In this study, we review the current knowledge on the detailed regulation pathway used by glutamine in its proinflammatory regulation, with a special emphasis on intestinal inflammation. These regulation pathways include nuclear factor kappa B (NF-κB), signal transducer and activator of transcription (STAT), mitogen-activated protein kinases (MAPK), phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt), activating protein-1 (AP-1), nitric oxide synthases (NOS)-nitric oxide (NO), peroxisome proliferator-activated receptor-Γ (PPARγ), heat shock factor-1 (HSF-1)- heat shock proteins (HSP) and glutathione (GSH) - reactive oxygen species (ROS). Although some regulatory pathways, such as PI3K/PI3K-Akt, GSH-ROS and AP-1, need to be further investigated, this review provides useful information to utilize glutamine as an immunonutritional or pharmaconutritional drug, not only for inflammation-associated diseases in the intestine, but also possibly for other inflammatory-associated diseases, i.e. arthritis, asthma, type 2 diabetes, etc.
Collapse
Affiliation(s)
- W-K. Ren
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - J. Yin
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| | - X-P. Zhu
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - G. Liu
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| | - N-Z. Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Y-Y. Peng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Y-Y. Yin
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| |
Collapse
|
73
|
Braun T, Lepper J, Ruiz Heiland G, Hofstetter W, Siegrist M, Lezuo P, Gaestel M, Rumpler M, Thaler R, Klaushofer K, Distler JHW, Schett G, Zwerina J. Mitogen-activated protein kinase 2 regulates physiological and pathological bone turnover. J Bone Miner Res 2013; 28:936-47. [PMID: 23169443 DOI: 10.1002/jbmr.1816] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/30/2012] [Accepted: 10/25/2012] [Indexed: 11/09/2022]
Abstract
The objective of this study was to investigate the role of the serine-threonine kinase mitogen-activated protein kinase 2 (MK2) in bone homeostasis. Primary bone cell cultures from MK2(+/+) and MK2(-/-) mice were assessed for osteoclast and osteoblast differentiation, bone resorption, and gene expression. Bone architecture of MK2(+/+) and MK2(-/-) mice was investigated by micro-computed tomography and histomorphometry. Ovariectomy was performed in MK2(+/+) and MK2(-/-) mice to assess the role of MK2 in postmenopausal bone loss. Osteoclastogenesis, bone resorption, and osteoclast gene expression were significantly impaired in monocytes from MK2(-/-) compared to MK2(+/+) mice. Mechanistically, loss of MK2 causes impaired DNA binding of c-fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) to tartrate-resistant acid phosphatase (TRAP) and the calcitonin receptor gene promoter. In addition, MK2(-/-) mice showed an age-dependent increase in trabecular bone mass and cortical thickness, fewer osteoclasts, and lower markers of bone resorption than MK2(+/+) mice. Furthermore, MK2(-/-) mice were protected from ovariectomy-induced bone loss. Osteoblastogenesis and bone formation were unchanged in MK2(-/-) mice, whereas osteoblast expression of osteoprotegerin (OPG) and serum levels of OPG were higher in MK2(-/-) than in MK2(+/+) mice. Loss of MK2 effectively blocks bone resorption and prevents the development of postmenopausal bone loss. Small-molecule inhibitors of MK2 could thus emerge as highly effective tools to block bone resorption and to treat postmenopausal bone loss.
Collapse
Affiliation(s)
- Tobias Braun
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nurnberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Moens U, Kostenko S, Sveinbjørnsson B. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation. Genes (Basel) 2013; 4:101-33. [PMID: 24705157 PMCID: PMC3899974 DOI: 10.3390/genes4020101] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/18/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, NO-9037 Tromsø, Norway.
| | - Sergiy Kostenko
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, NO-9037 Tromsø, Norway.
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, NO-9037 Tromsø, Norway.
| |
Collapse
|
75
|
Olajide OA, Bhatia HS, de Oliveira ACP, Wright CW, Fiebich BL. Anti-neuroinflammatory properties of synthetic cryptolepine in human neuroblastoma cells: possible involvement of NF-κB and p38 MAPK inhibition. Eur J Med Chem 2013; 63:333-9. [PMID: 23507189 DOI: 10.1016/j.ejmech.2013.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/07/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
Cryptolepis sanguinolenta and its bioactive alkaloid, cryptolepine have shown anti-inflammatory activity. However, the underlying mechanism of anti-inflammatory action in neuronal cells has not been investigated. In the present study we evaluated an extract of C. sanguinolenta (CSE) and cryptolepine (CAS) on neuroinflammation induced with IL-1β in SK-N-SH neuroblastoma cells. We then attempted to elucidate the mechanisms underlying the anti-neuroinflammatory effects of CAS in SK-N-SH cells. Cells were stimulated with 10 U/ml of IL-1β in the presence or absence of different concentrations of CSE (25-200 μg/ml) and CAS (2.5-20 μM). After 24 h incubation, culture media were collected to measure the production of PGE2 and the pro-inflammatory cytokines (TNFα and IL-6). Protein and gene expressions of cyclooxygenase (COX-2) and microsomal prostaglandin synthase-1 (mPGES-1) were studied by immunoblotting and qPCR, respectively. CSE produced significant (p < 0.05) inhibition of TNFα, IL-6 and PGE2 production in SK-N-SH cells. Studies on CAS showed significant and dose-dependent inhibition of TNFα, IL-6 and PGE2 production in IL-1β-stimulated cells without affecting viability. Pre-treatment with CAS (10 and 20 μM) was also found to inhibit IL-1β-induced protein and gene expressions of COX-2 and mPGES-1. Further studies to determine the mechanism of action of CAS showed inhibition of NF-κBp65 nuclear translocation, but not IκB phosphorylation. At 10 and 20 μM, CAS inhibited IL-1β-induced phosphorylation of p38 MAPK. Studies on the downstream substrate of p38, MAPK-activated protein kinase 2 (MAPKAPK2) showed that CAS produced significant (p < 0.05) and dose dependent inhibition of MAPKAPK2 phosphorylation in IL-1β-stimulated SK-N-SH cells. This study clearly shows that cryptolepine (CAS) inhibits neuroinflammation through mechanisms involving inhibition of COX-2 and mPGES-1. It is suggested that these actions are probably mediated through NF-κB and p38 signalling.
Collapse
Affiliation(s)
- Olumayokun A Olajide
- Pharmacy and Pharmaceutical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, West Yorkshire HD1 3DH, United Kingdom.
| | | | | | | | | |
Collapse
|
76
|
Abstract
Late-onset Alzheimer's disease (AD) is the most prevalent cause of dementia among older adults, yet more than a century of research has not determined why this disease develops. One prevailing hypothesis is that late-onset AD is caused by infectious pathogens, an idea widely studied in both humans and experimental animal models. This review examines the infectious AD etiology hypothesis and summarizes existing evidence associating infectious agents with AD in humans. The various mechanisms through which different clinical and subclinical infections could cause or promote the progression of AD are considered, as is the concordance between putative infectious agents and the epidemiology of AD. We searched the PubMed, Web of Science, and EBSCO databases for research articles pertaining to infections and AD and systematically reviewed the evidence linking specific infectious pathogens to AD. The evidence compiled from the literature linking AD to an infectious cause is inconclusive, but the amount of evidence suggestive of an association is too substantial to ignore. Epidemiologic, clinical, and basic science studies that could improve on current understanding of the associations between AD and infections and possibly uncover ways to control this highly prevalent and debilitating disease are suggested.
Collapse
Affiliation(s)
| | - Robert Wallace
- Correspondence to Dr. Robert Wallace, Department of Epidemiology, College of Public Health, The University of Iowa, 105 River St. Iowa City, IA 52242 (e-mail: )
| |
Collapse
|
77
|
Hu ZP, Browne ER, Liu T, Angel TE, Ho PC, Chan ECY. Metabonomic Profiling of TASTPM Transgenic Alzheimer’s Disease Mouse Model. J Proteome Res 2012; 11:5903-13. [DOI: 10.1021/pr300666p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ze-Ping Hu
- Department of Pharmacy, Faculty
of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
99352, United States
| | - Edward R. Browne
- GlaxoSmithKline R&D China, Singapore Research Centre, Biopolis at One-North, 11 Biopolis Way, The Helios #03-01/02, Singapore 138667
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
99352, United States
| | - Thomas E Angel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
99352, United States
| | - Paul C. Ho
- Department of Pharmacy, Faculty
of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty
of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| |
Collapse
|
78
|
Reactive Oxygen Species, SUMOylation, and Endothelial Inflammation. Int J Inflam 2012; 2012:678190. [PMID: 22991685 PMCID: PMC3443607 DOI: 10.1155/2012/678190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/26/2012] [Indexed: 12/14/2022] Open
Abstract
Although the exact mechanism through which NADPH oxidases (Nox's) generate reactive oxygen species (ROS) is still not completely understood, it is widely considered that ROS accumulation is the cause of oxidative stress in endothelial cells. Increasing pieces of evidence strongly indicate the role for ROS in endothelial inflammation and dysfunction and subsequent development of atherosclerotic plaques, which are causes of various pathological cardiac events. An overview for a causative relationship between ROS and endothelial inflammation will be provided in this review. Particularly, a crucial role for specific protein SUMOylation in endothelial inflammation will be presented. Given that SUMOylation of specific proteins leads to increased endothelial inflammation, targeting specific SUMOylated proteins may be an elegant, effective strategy to control inflammation. In addition, the involvement of ROS production in increasing the risk of recurrent coronary events in a sub-group of non-diabetic, post-infarction patients with elevated levels of HDL-cholesterol will be presented with the emphasis that elevated HDL-cholesterol under certain inflammatory conditions can lead to increased incidence of cardiovascular events.
Collapse
|
79
|
Hu Q, Li B, Xu R, Chen D, Mu C, Fei E, Wang G. The protease Omi cleaves the mitogen-activated protein kinase kinase MEK1 to inhibit microglial activation. Sci Signal 2012; 5:ra61. [PMID: 22912494 DOI: 10.1126/scisignal.2002946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Inflammation in Parkinson's disease is closely associated with disease pathogenesis. Mutations in Omi, which encodes the protease Omi, are linked to neurodegeneration and Parkinson's disease in humans and in mouse models. The severe neurodegeneration and neuroinflammation that occur in mnd2 (motor neuron degeneration 2) mice result from loss of the protease activity of Omi by the point mutation S276C; however, the substrates of Omi that induce neurodegeneration are unknown. We showed that Omi was required for the production of inflammatory molecules by microglia, which are the resident macrophages in the central nervous system. Omi suppressed the activation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase 1 and 2 (ERK1/2) by cleaving the upstream kinase MEK1 (mitogen-activated or extracellular signal-regulated protein kinase kinase 1). Knockdown of Omi in microglial cell lines led to activation of ERK1/2 and resulted in degradation of IκBα [α inhibitor of nuclear factor κB (NF-κB)], resulting in NF-κB activation and the expression of genes encoding inflammatory molecules, such as tumor necrosis factor-α and inducible nitric oxide synthase. The production of inflammatory molecules induced by the knockdown of Omi was blocked by the MEK1-specific inhibitor U0126. Furthermore, expression of the protease-deficient S276C Omi mutant in a microglial cell line had no effect on MEK1 cleavage or ERK1/2 activation. In the brains of mnd2 mice, we observed increased transcription of several genes encoding inflammatory molecules, as well as activation of astrocytes and microglia. Therefore, our study demonstrates that Omi is an intrinsic cellular factor that inhibits neuroinflammation.
Collapse
Affiliation(s)
- Qingsong Hu
- Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | | | | | | | | | | | | |
Collapse
|
80
|
The Role of p38 MAPK and Its Substrates in Neuronal Plasticity and Neurodegenerative Disease. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:649079. [PMID: 22792454 PMCID: PMC3389708 DOI: 10.1155/2012/649079] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/10/2012] [Indexed: 11/17/2022]
Abstract
A significant amount of evidence suggests that the p38-mitogen-activated protein kinase (MAPK) signalling cascade plays a crucial role in synaptic plasticity and in neurodegenerative diseases. In this review we will discuss the cellular localisation and activation of p38 MAPK and the recent advances on the molecular and cellular mechanisms of its substrates: MAPKAPK 2 (MK2) and tau protein. In particular we will focus our attention on the understanding of the p38 MAPK-MK2 and p38 MAPK-tau activation axis in controlling neuroinflammation, actin remodelling and tau hyperphosphorylation, processes that are thought to be involved in normal ageing as well as in neurodegenerative diseases. We will also give some insight into how elucidating the precise role of p38 MAPK-MK2 and p38 MAPK-tau signalling cascades may help to identify novel therapeutic targets to slow down the symptoms observed in neurodegenerative diseases such as Alzheimer's and Parkinson's disease.
Collapse
|
81
|
The many faces of p38 mitogen-activated protein kinase in progenitor/stem cell differentiation. Biochem J 2012; 445:1-10. [DOI: 10.1042/bj20120401] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regulation of stem cells is essential for development and adult tissue homoeostasis. The proper control of stem cell self-renewal and differentiation maintains organ physiology, and disruption of such a balance results in disease. There are many mechanisms that have been established as stem cell regulators, such as Wnt or Notch signals. However, the intracellular mechanisms that mediate and integrate these signals are not well understood. A new intracellular pathway that has been reported to be involved in the regulation of many stem cell types is that of p38 MAPK (mitogen-activated protein kinase). In particular, p38α is essential for the proper differentiation of many haematopoietic, mesenchymal and epithelial stem/progenitor cells. Many reports have shown that disruption of this kinase pathway has pathological consequences in many organs. Understanding the extracellular cues and downstream targets of p38α in stem cell regulation may help to tackle some of the pathologies associated with improper differentiation and regulation of stem cell function. In the present review we present a vision of the current knowledge on the roles of the p38α signal as a regulator of stem/progenitor cells in different tissues in physiology and disease.
Collapse
|
82
|
Miglustat improves purkinje cell survival and alters microglial phenotype in feline Niemann-Pick disease type C. J Neuropathol Exp Neurol 2012; 71:434-48. [PMID: 22487861 DOI: 10.1097/nen.0b013e31825414a6] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Niemann-Pick disease type C (NPC disease) is an incurable cellular lipid-trafficking disorder characterized by neurodegeneration and intralysosomal accumulation of cholesterol and glycosphingolipids. Treatment with miglustat, a small imino sugar that reversibly inhibits glucosylceramide synthase, which is necessary for glycosphingolipid synthesis, has been shown to benefit patients with NPC disease. The mechanism(s) and extent of brain cellular changes underlying this benefit are not understood. To investigate the basis of the efficacy of miglustat, cats with disease homologous to the juvenile-onset form of human NPC disease received daily miglustat orally beginning at 3 weeks of age. The plasma half-life of miglustat was 6.6 ± 1.1 hours, with a tmax, Cmax, and area under the plasma concentration-time curve of 1.7 ± 0.6 hours, 20.3 ± 4.6 μg/mL, and 104.1 ± 16.6 μg hours/mL, respectively. Miglustat delayed the onset of neurological signs and increased the lifespan of treated cats and was associated with decreased GM2 ganglioside accumulation in the cerebellum and improved Purkinje cell survival. Ex vivo examination of microglia from the brains of treated cats revealed normalization of CD1c and class II major histocompatibility complex expression, as well as generation of reactive oxygen species. Together, these results suggest that prolonged Purkinje cell survival, reduced glycosphingolipid accumulation, and/or the modulation of microglial immunophenotype and function contribute to miglustat-induced neurological improvement in treated cats.
Collapse
|
83
|
Spencer JPE, Vafeiadou K, Williams RJ, Vauzour D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med 2012; 33:83-97. [PMID: 22107709 DOI: 10.1016/j.mam.2011.10.016] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 10/14/2011] [Indexed: 01/01/2023]
Abstract
Neuroinflammatory processes are known to contribute to the cascade of events culminating in the neuronal damage that underpins neurodegenerative disorders such as Parkinson's and Alzheimer's disease. Recently, there has been much interest in the potential neuroprotective effects of flavonoids, a group of plant secondary metabolites known to have diverse biological activity in vivo. With respect to the brain, flavonoids, such as those found in cocoa, tea, berries and citrus, have been shown to be highly effective in preventing age-related cognitive decline and neurodegeneration in both animals and humans. Evidence suggests that flavonoids may express such ability through a multitude of physiological functions, including an ability to modulate the brains immune system. This review will highlight the evidence for their potential to inhibit neuroinflammation through an attenuation of microglial activation and associated cytokine release, iNOS expression, nitric oxide production and NADPH oxidase activity. We will also detail the current evidence indicting that their regulation of these immune events appear to be mediated by their actions on intracellular signaling pathways, including the nuclear factor-κB (NF-κB) cascade and mitogen-activated protein kinase (MAPK) pathway. As such, flavonoids represent important precursor molecules in the quest to develop of a new generation of drugs capable of counteracting neuroinflammation and neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy P E Spencer
- Molecular Nutrition Group, Centre for Integrative Neuroscience and Neurodynamics, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK.
| | | | | | | |
Collapse
|
84
|
MAPK usage in periodontal disease progression. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:308943. [PMID: 22315682 PMCID: PMC3270463 DOI: 10.1155/2012/308943] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/05/2011] [Indexed: 12/12/2022]
Abstract
In periodontal disease, host recognition of bacterial constituents, including lipopolysaccharide (LPS), induces p38 MAPK activation and subsequent inflammatory cytokine expression, favoring osteoclastogenesis and increased net bone resorption in the local periodontal environment. In this paper, we discuss evidence that the p38/MAPK-activated protein kinase-2 (MK2) signaling axis is needed for periodontal disease progression: an orally administered p38α inhibitor reduced the progression of experimental periodontal bone loss by reducing inflammation and cytokine expression. Subsequently, the significance of p38 signaling was confirmed with RNA interference to attenuate MK2-reduced cytokine expression and LPS-induced alveolar bone loss. MAPK phosphatase-1 (MKP-1), a negative regulator of MAPK activation, was also critical for periodontal disease progression. In MPK-1-deficient mice, p38-sustained activation increased osteoclast formation and bone loss, whereas MKP-1 overexpression dampened p38 signaling and subsequent cytokine expression. Finally, overexpression of the p38/MK2 target RNA-binding tristetraprolin (TTP) decreased mRNA stability of key inflammatory cytokines at the posttranscriptional level, thereby protecting against periodontal inflammation. Collectively, these studies highlight the importance of p38 MAPK signaling in immune cytokine production and periodontal disease progression.
Collapse
|
85
|
p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC- and FANCA-deficient mononuclear phagocytes. Blood 2012; 119:1992-2002. [PMID: 22234699 DOI: 10.1182/blood-2011-06-354647] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fanconi anemia, complementation group C (FANCC)-deficient hematopoietic stem and progenitor cells are hypersensitive to a variety of inhibitory cytokines, one of which, TNFα, can induce BM failure and clonal evolution in Fancc-deficient mice. FANCC-deficient macrophages are also hypersensitive to TLR activation and produce TNFα in an unrestrained fashion. Reasoning that suppression of inhibitory cytokine production might enhance hematopoiesis, we screened small molecules using TLR agonist-stimulated FANCC- and Fanconi anemia, complementation group A (FANCA)-deficient macrophages containing an NF-κB/AP-1-responsive reporter gene (SEAP). Of the 75 small molecules screened, the p38 MAPK inhibitor BIRB 796 and dasatinib potently suppressed TLR8-dependent expression of the reporter gene. Fanconi anemia (FA) macrophages were hypersensitive to the TLR7/8 activator R848, overproducing SEAP and TNFα in response to all doses of the agonist. Low doses (50nM) of both agents inhibited p38 MAPK-dependent activation of MAPKAPK2 (MK2) and suppressed MK2-dependent TNFα production without substantially influencing TNFα gene transcription. Overproduction of TNFα by primary FA cells was likewise suppressed by these agents and involved inhibition of MK2 activation. Because MK2 is also known to influence production and/or sensitivity to 2 other suppressive factors (MIP-1α and IFNγ) to which FA hematopoietic progenitor cells are uniquely vulnerable, targeting of p38 MAPK in FA hematopoietic cells is a rational objective for preclinical evaluation.
Collapse
|
86
|
Abstract
Glial cell activation plays an important role in the pathogenesis of various neurodegenerative disorders. This article presents a protocol for the preparation of cultures consisting of rat embryonic cortical neurons grown in the presence of cortical microglia, in which the glia are present in physical contact with the neurons or separated by a semi-permeable membrane barrier.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmacology and Anesthesiology, University of Padova, Padova, Italy.
| | | |
Collapse
|
87
|
Skaper SD, Argentini C, Barbierato M. Culture of neonatal rodent microglia, astrocytes, and oligodendrocytes from cortex and spinal cord. Methods Mol Biol 2012; 846:67-77. [PMID: 22367802 DOI: 10.1007/978-1-61779-536-7_7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The protocol described in this chapter covers the preparation and culture of enriched populations of microglia, astrocytes, and oligodendrocytes from the cortex and spinal cord of neonatal rat and mouse. The procedure is based on the enzymatic digestion of tissue, followed by the culture of a mixed glial cell population which is then utilized as the starting point for the isolation, via differential attachment, of the different cell types.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmacology and Anesthesiology, University of Padova, Padova, Italy.
| | | | | |
Collapse
|
88
|
Bak JP, Son JH, Kim YM, Jung JH, Leem KH, Lee EY, Kim EH. Suppression Effect of the Inflammatory Response in Macrophages by Paeoniae Radix Rubra Extracts. ACTA ACUST UNITED AC 2011. [DOI: 10.7783/kjmcs.2011.19.5.373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
89
|
Abstract
The p38 pathway has been at the center of interest for anti-inflammatory drug discovery for many years as it is crucial for the biosynthesis of TNF-α, IL-1β and other mediators. Most of the anti-inflammatory effects of p38 inhibition are mediated through MAPK-activated protein kinase-2 (MK2), a direct downstream target of p38, which makes MK2 a very interesting drug target. Within the last 5 years, several classes of low-molecular-weight MK2 inhibitors were disclosed in the patent and primary literature. Advanced compounds could be optimized to nanomolar potencies and inhibit TNF-α release, as well as the phosphorylation of the MK2 substrate heat-shock protein 27 in cellular assays. This article will review the recent progress in this field and will highlight and discuss the most promising compound series disclosed so far.
Collapse
|
90
|
|
91
|
Ward BC, Kavalukas S, Brugnano J, Barbul A, Panitch A. Peptide inhibitors of MK2 show promise for inhibition of abdominal adhesions. J Surg Res 2011; 169:e27-36. [PMID: 21492875 DOI: 10.1016/j.jss.2011.01.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/24/2010] [Accepted: 01/21/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Abdominal adhesions are a common side effect of surgical procedures with complications including infertility, chronic pain, and bowel obstruction, which may lead to the need for surgical lyses of the adhesions. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) has been implicated in several diseases, involving inflammation and fibrosis. Thus, the development of a cell-penetrating peptide (CPP) that modulates MK2 activity may confer therapeutic benefit after abdominal surgery in general and more specifically after bowel anastomosis. METHODS This study evaluated the function of a CPP inhibitor of MK2 in human mesothelial cells and in a rat bowel anastomosis model. To determine IC50 and basic specificity, kinase inhibition was performed using a radiometric assay. Enzyme-linked immunoassay (ELISA) was used to evaluate interleukin-6 (IL-6) expression in response to IL-1β and tumor necrosis factor-α (TNF-α) stimulation in vitro to validate MK2 kinase inhibition. Following bowel anastomosis (10 rats for each control and treatment at 4 and 10 d), the rats were evaluated for weight loss, normal healing (colonic burst strength and hydroxyproline content at the anastomosis), and number and density of adhesions. RESULTS The IC50 of the MK2 inhibitor peptide (22 μM) was similar to that of the nonspecific small molecule rottlerin (IC50 = 5 μM). The MK2 inhibitor peptide was effective at suppressing IL-1β and TNF-α stimulated IL-6 expression in mesothelial cells. In vivo, the MK2 inhibitor peptide was effective at suppressing both the density and number of adhesions formed as a result of bowel an anastamosis. Importantly, the peptide had no negative effect on normal healing. CONCLUSIONS In conclusion, the peptide inhibitor of MK2, MMI-0100, has the potential to significantly reduce inflammation through suppression of inflammatory cytokine expression and showed promise as a therapeutic for abdominal adhesions.
Collapse
Affiliation(s)
- Brian C Ward
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907-2032, USA
| | | | | | | | | |
Collapse
|
92
|
Chlan-Fourney J, Zhao T, Walz W, Mousseau DD. The increased density of p38 mitogen-activated protein kinase-immunoreactive microglia in the sensorimotor cortex of aged TgCRND8 mice is associated predominantly with smaller dense-core amyloid plaques. Eur J Neurosci 2011; 33:1433-44. [DOI: 10.1111/j.1460-9568.2010.07597.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
93
|
Li J, Ye L, Cook DR, Wang X, Liu J, Kolson DL, Persidsky Y, Ho WZ. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages. J Neuroinflammation 2011; 8:15. [PMID: 21324129 PMCID: PMC3046894 DOI: 10.1186/1742-2094-8-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/15/2011] [Indexed: 12/12/2022] Open
Abstract
Background Lipopolysaccharide (LPS), the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS) contributes to neuronal injury. Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS) production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA) oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and of ROS. In contrast, BBI pretreatment (1-100 μg/ml) of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml), had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml) had no effect on N-methyl-D-aspartic acid (NMDA)-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.
Collapse
Affiliation(s)
- Jieliang Li
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Mitogen-activated protein kinase-activated protein kinase 2 (MK2) contributes to secondary damage after spinal cord injury. J Neurosci 2010; 30:13750-9. [PMID: 20943915 DOI: 10.1523/jneurosci.2998-10.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The inflammatory response contributes importantly to secondary tissue damage and functional deficits after spinal cord injury (SCI). In this work, we identified mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MAPKAPK2 or MK2), a downstream substrate of p38 MAPK, as a potential target using microarray analysis of contused spinal cord tissue taken at the peak of the inflammatory response. There was increased expression and phosphorylation of MK2 after SCI, with phospho-MK2 expressed in microglia/macrophages, neurons and astrocytes. We examined the role of MK2 in spinal cord contusion injury using MK2(-/-) mice. These results show that locomotor recovery was significantly improved in MK2(-/-) mice, compared with wild-type controls. MK2(-/-) mice showed reduced neuron and myelin loss, and increased sparing of serotonergic fibers in the ventral horn caudal to the injury site. We also found differential expression of matrix metalloproteinase-2 and 9 in MK2(-/-) and wild-type mice after SCI. Significant reduction was also seen in the expression of proinflammatory cytokines and protein nitrosylation in the injured spinal cord of MK2(-/-) mice. Our previous work has shown that macrophages lacking MK2 have an anti-inflammatory phenotype. We now show that there is no difference in the number of macrophages in the injured spinal cord between the two mouse strains and little if any difference in their phagocytic capacity, suggesting that macrophages lacking MK2 have a beneficial phenotype. These findings suggest that a lack of MK2 can reduce tissue damage after SCI and improve locomotor recovery. MK2 may therefore be a useful target to treat acute SCI.
Collapse
|
95
|
Sharma HS, Sharma A. New perspectives on molecular and cellular mechanisms of neuroprotection and neuroregeneration: part I. Expert Rev Neurother 2010; 10:1039-1043. [DOI: 10.1586/ern.10.79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
96
|
Egea J, García AG, Verges J, Montell E, López MG. Antioxidant, antiinflammatory and neuroprotective actions of chondroitin sulfate and proteoglycans. Osteoarthritis Cartilage 2010; 18 Suppl 1:S24-7. [PMID: 20399898 DOI: 10.1016/j.joca.2010.01.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/23/2009] [Accepted: 01/08/2010] [Indexed: 02/02/2023]
Abstract
The antiinflammatory and antiapoptotic effects of chondroitin sulfate (CS) are being used to treat osteoarthritis. Recent evidence has revealed that those peripheral effects of CS may also have therapeutic interest in diseases of the central nervous system (CNS). We review here such evidence. Perineuronal nets (PNNs) formed by chondroitin sulfate proteoglycans (CSPGs) may have a neuroprotective action against oxidative stress potentially involved in neurodegeneration. On the other hand, in human neuroblastoma SH-SY5Y cells CS has antioxidant and neuroprotective effects by activating the signaling pathway PKC/PI3K/Akt and inducing the antioxidant enzyme hemoxygenase-1. Consistent with this is the observation that protein kinase C (PKC) blockade overcomes inhibition of neurite outgrowth elicited by CSPGs. In addition, CS protects cortical neurons against excytotoxic death by phosphorylation of intracellular signals and the suppression of caspase-3 activation. Of interest is the finding that a disaccharide derived from CSPG degradation (CSGP-DS) protects neurons against toxicity both in vitro and in vivo. Furthermore, CSGP-DS efficiently protects against neuronal loss in experimental autoimmune encephalomyelitis and uveitis, decreases secretion of tumor necrosis factor-alpha (TNF-alpha) and block necrosis factor kappa B (NF-kappaB) translocation. In conclusion, CS may have neuroprotective properties linked to its antioxidant and antiinflammatory effects.
Collapse
Affiliation(s)
- J Egea
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
97
|
Cristóvão AC, Saavedra A, Fonseca CP, Campos F, Duarte EP, Baltazar G. Microglia of rat ventral midbrain recovers its resting state over time in vitro: let microglia rest before work. J Neurosci Res 2010; 88:552-62. [PMID: 19739250 DOI: 10.1002/jnr.22219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cortical or total brain cultures of microglia are commonly used as a model to study the inflammatory processes in Parkinson's disease. Here we characterize microglia cultures from rat ventral midbrain and evaluate their response to zymosan A. We used specific markers of microglia and evaluated the morphology, the phagocytic activity and reactive oxygen species (ROS) levels of the cells. During the first 10 days in vitro (DIV), cultures presented predominantly cells with a round morphology, expressing CD68 and with high phagocytic activity and ROS production. After 13 DIV, this tendency was reversed, with cultures showing higher number of ramified cells and fewer CD68(+) cells along with lower phagocytic and ROS production capability, suggesting that microglia must be kept in vitro for at least 13 days to recover its resting state. The exposure of cultures with less than 10 DIV to zymosan A significantly decreased cell viability. Exposure of cultures with 13 DIV to zymosan A (0.05, 0.5, or 5 microg/ml) increased the total cell number, the percentage of CD68(+) cells, and the phagocytic activity. Concentrations of zymosan A higher than 5 microg/ml were also effective in activating microglia but significantly decreased the number of viable cells. In summary, microglial cells remain in the activated state for several days after the isolation process and, thus, stimulation of microglia recently isolated can compromise interpretation of the results. However, upon 13 DIV, cells achieve properties of nonactivated microglia and present a characteristic response to a proinflammatory agent.
Collapse
Affiliation(s)
- Ana Clara Cristóvão
- Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | | | |
Collapse
|
98
|
Origlia N, Arancio O, Domenici L, Yan SS. MAPK, beta-amyloid and synaptic dysfunction: the role of RAGE. Expert Rev Neurother 2010; 9:1635-45. [PMID: 19903023 DOI: 10.1586/ern.09.107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetic and biological studies provide strong support for the hypothesis that accumulation of beta amyloid peptide (Abeta) contributes to the etiology of Alzheimer's disease (AD). Growing evidence indicates that oligomeric soluble Abeta plays an important role in the development of synaptic dysfunction and the impairment of cognitive function in AD. The receptor for advanced glycation end products (RAGE), a multiligand receptor in the immunoglobulin superfamily, acts as a cell surface binding site for Abeta and mediates alternations in the phosphorylation state of mitogen-activated protein kinase (MAPKs). Recent results have shown that MAPKs are involved in neurodegenerative processes. In particular, changes in the phosphorylation state of various MAPKs by Abeta lead to synaptic dysfunction and cognitive decline, as well as development of inflammatory responses in AD. The present review summarizes the evidence justifying a novel therapeutic approach focused on inhibition of RAGE signaling in order to arrest or halt the development of neuronal dysfunction in AD.
Collapse
|
99
|
CpG-ODNs induces up-regulated expression of chemokine CCL9 in mouse macrophages and microglia. Cell Immunol 2010; 260:113-8. [PMID: 19883904 DOI: 10.1016/j.cellimm.2009.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 10/01/2009] [Accepted: 10/06/2009] [Indexed: 11/24/2022]
Abstract
Unmethylated CpG oligodeoxynucleotides (CpG-ODNs) interact with Toll-like receptor (TLR) 9 to activate macrophage/microglia in central nervous system (CNS). Here, we investigated the potential involvement of the chemokine CCL9 and its receptor CCR1 in the effects of CpG-ODNs on macrophage/microglial cells. CpG-ODNs enhanced the expression of TLR9 mRNA of RAW264.7 macrophage and BV2 microglia cells time dependently. The expression of CCL9 of macrophages/microglia showed different responsiveness upon stimulation with a variety of CpG-ODN sequences. The CpG-ODNs-mediated induction of CCL9 was TLR9/MyD88 dependent and associated with activation of stress kinases, particularly ERK, p38 MAPK and PI3K. The expression of CCR1 was also significantly increased by CpG-ODNs that increased CCL9 expression. These results reveal the potential involvement of CCL9 and CCR1 in regulation of macrophage and microglial cells by CpG-ODNs and may help improving our understanding about the role of the chemokine/chemokine receptor pairs in macrophage/microglia under physiologic and pathologic conditions.
Collapse
|
100
|
Ward B, Seal BL, Brophy CM, Panitch A. Design of a bioactive cell-penetrating peptide: when a transduction domain does more than transduce. J Pept Sci 2009; 15:668-74. [PMID: 19691016 DOI: 10.1002/psc.1168] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The discovery of cell-penetrating peptides (CPPs) has facilitated delivery of peptides into cells to affect cellular behavior. Previously, we were successful at developing a phosphopeptide mimetic of the small heat shock-like protein HSP20 . Building on this success we developed a cell-permeant peptide inhibitor of mitogen-activated protein kinase-activated protein kinase 2 (MK2). It is well documented that inhibition of MK2 may be beneficial for a myriad of human diseases including those involving inflammation and fibrosis. During the optimization of the activity and specificity of the MK2 inhibitor (MK2i) we closely examined the effect of cell-penetrating peptide identity. Surprisingly, the identity of the CPP dictated kinase specificity and functional activity to an extent that rivaled that of the therapeutic peptide. The results reported herein have wide implications for delivering therapeutics with CPPs and indicate that judicious choice of CPP is crucial to the ultimate therapeutic success.
Collapse
Affiliation(s)
- Brian Ward
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-2032, USA
| | | | | | | |
Collapse
|