51
|
TGF-beta1 modulates focal adhesion kinase expression in rat intestinal epithelial IEC-6 cells via stimulatory and inhibitory Smad binding elements. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:88-98. [PMID: 19059368 DOI: 10.1016/j.bbagrm.2008.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 10/30/2008] [Accepted: 11/06/2008] [Indexed: 12/21/2022]
Abstract
TGF-beta and FAK modulate cell migration, differentiation, proliferation and apoptosis, and TGF-beta promotes FAK transcription in intestinal epithelial cells via Smad-dependent and independent pathways. We utilized a 1320 bp FAK promoter-luciferase construct to characterize basal and TGF-beta-mediated FAK gene transcription in IEC-6 cells. Inhibiting JNK or Akt negated TGF-beta-stimulated promoter activity; ERK inhibition did not block the TGF-beta effect but increased basal activity. Co-transfection with Co-Smad4 enhanced the TGF-beta response while the inhibitory Smad7 abolished it. Serial deletions sequentially removing the four Smad binding elements (SBE) in the 5' untranslated region of the promoter revealed that the two most distal SBE's are positive regulators while SBE3 exerts a negative influence. Mutational deletion of two upstream p53 sites enhanced basal but did not affect TGF-beta-stimulated increases in promoter activity. TGF-beta increased DNA binding of Smad4, phospho-Smad2/3 and Runx1/AML1a to the most distal 435 bp containing 3 SBE and 2 AML1a sites by ChIP assay. However, although point mutation of SBE1 ablated the TGF-beta-mediated rise in SV40-promoter activity, mutation of AML1a sites did not. TGF-beta regulation of FAK transcription reflects a complex interplay between positive and negative non-Smad signals and SBE's, the last independent of p53 or AML1a.
Collapse
|
52
|
Leask A, Shi-wen X, Khan K, Chen Y, Holmes A, Eastwood M, Denton CP, Black CM, Abraham DJ. Loss of protein kinase Cϵ results in impaired cutaneous wound closure and myofibroblast function. J Cell Sci 2008; 121:3459-3467. [DOI: 10.1242/jcs.029215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Cutaneous wound repair requires the de novo induction of a specialized form of fibroblast, the α-smooth muscle actin (α-SMA)-expressing myofibroblast, which migrates into the wound where it adheres to and contracts extracellular matrix (ECM), resulting in wound closure. Persistence of the myofibroblast results in scarring and fibrotic disease. In this report, we show that, compared with wild-type littermates, PKCϵ-/- mice display delayed impaired cutaneous wound closure and a reduction in myofibroblasts. Moreover, both in the presence and absence of TGFβ, dermal fibroblasts from PKCϵ-/- mice cultured on fibronectin show impaired abilities to form `supermature' focal adhesions and α-SMA stress fibers, and reduced pro-fibrotic gene expression. Smad3 phosphorylation in response to TGFβ1 was impaired in PKCϵ-/- fibroblasts. PKCϵ-/- fibroblasts show reduced FAK and Rac activation, and adhesive, contractile and migratory abilities. Overexpressing constitutively active Rac1 rescues the defective FAK phosphorylation, cell migration, adhesion and stress fiber formation of these PKCϵ-/- fibroblasts, indicating that Rac1 operates downstream of PKCϵ, yet upstream of FAK. These results suggest that loss of PKCϵ severely impairs myofibroblast formation and function, and that targeting PKCϵ may be beneficial in selectively modulating wound healing and fibrotic responses in vivo.
Collapse
Affiliation(s)
- Andrew Leask
- CIHR Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London ON, Canada N6A 5C1
| | - Xu Shi-wen
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), Rowland Hill Street, London NW3 2PF, UK
| | - Korsa Khan
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), Rowland Hill Street, London NW3 2PF, UK
| | - Yunliang Chen
- Centre for Tissue Engineering Research, Department of Biomedical Sciences, University of Westminster, London W1W 6UW, UK
| | - Alan Holmes
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), Rowland Hill Street, London NW3 2PF, UK
| | - Mark Eastwood
- Centre for Tissue Engineering Research, Department of Biomedical Sciences, University of Westminster, London W1W 6UW, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), Rowland Hill Street, London NW3 2PF, UK
| | - Carol M. Black
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), Rowland Hill Street, London NW3 2PF, UK
| | - David J. Abraham
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
53
|
Zhao T, Wang D, Cheranov SY, Karpurapu M, Chava KR, Kundumani-Sridharan V, Johnson DA, Penn JS, Rao GN. A novel role for activating transcription factor-2 in 15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis. J Lipid Res 2008; 50:521-533. [PMID: 18849464 DOI: 10.1194/jlr.m800388-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the mechanisms underlying 15(S)-HETE-induced angiogenesis, we have studied the role of the small GTPase, Rac1. We find that 15(S)-HETE activated Rac1 in human retinal microvascular endothelial cells (HRMVEC) in a time-dependent manner. Blockade of Rac1 by adenovirus-mediated expression of its dominant negative mutant suppressed HRMVEC migration as well as tube formation and Matrigel plug angiogenesis. 15(S)-HETE stimulated Src in HRMVEC in a time-dependent manner and blockade of its activation inhibited 15(S)-HETE-induced Rac1 stimulation in HRMVEC and the migration and tube formation of these cells as well as Matrigel plug angiogenesis. 15(S)-HETE stimulated JNK1 in Src-Rac1-dependent manner in HRMVEC and adenovirus-mediated expression of its dominant negative mutant suppressed the migration and tube formation of these cells and Matrigel plug angiogenesis. 15(S)-HETE activated ATF-2 in HRMVEC in Src-Rac1-JNK1-dependent manner and interference with its activation via adenovirus-mediated expression of its dominant negative mutant abrogated migration and tube formation of HRMVEC and Matrigel plug angiogenesis. In addition, 15(S)-HETE-induced MEK1 stimulation was found to be dependent on Src-Rac1 activation. Blockade of MEK1 activation inhibited 15(S)-HETE-induced JNK1 activity and ATF-2 phosphorylation. Together, these findings show that 15(S)-HETE activates ATF-2 via the Src-Rac1-MEK1-JNK1 signaling axis in HRMVEC leading to their angiogenic differentiation.
Collapse
Affiliation(s)
- Tieqiang Zhao
- T. Zhao and D. Wang contributed equally to this work; Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Dong Wang
- T. Zhao and D. Wang contributed equally to this work; Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Sergey Y Cheranov
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Manjula Karpurapu
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Koteswara R Chava
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | | | - Dianna A Johnson
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - John S Penn
- Vanderbilt Eye Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163.
| |
Collapse
|
54
|
Riboh J, Chong AKS, Pham H, Longaker M, Jacobs C, Chang J. Optimization of flexor tendon tissue engineering with a cyclic strain bioreactor. J Hand Surg Am 2008; 33:1388-96. [PMID: 18929207 DOI: 10.1016/j.jhsa.2008.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 04/16/2008] [Accepted: 04/23/2008] [Indexed: 02/02/2023]
Abstract
PURPOSE Mechanical manipulation of cultured tendon cells can enhance cell proliferation and matrix production. This study aims to determine the bioreactor strain patterns (amplitude, frequency, and on/off ratio) that favor cellular proliferation, promote collagen production, and maintain morphology in candidate cell lines cultured for flexor tendon tissue engineering, including multipotent stromal cells. METHODS We studied epitenon tenocytes (Es), sheath fibroblasts (Ss), bone marrow-derived mesenchymal stem cells (BMSCs), and adipoderived stem cells (ASCs). We examined the effects of 3 patterns of cyclic uniaxial strain on cell proliferation, collagen I production, and cell morphology. RESULTS Adipoderived stem cells (33% adhesion) and Ss (29%) adhered more strongly to bioreactor membranes than did Es (15%) and BMSCs (7%), p=.04. Continuous cyclic strain (CCS, 8%, 1 Hz) inhibited cell proliferation (p=.01) and increased per-cell collagen production (p=.04) in all cell types. Intermittent cyclic strain (4%, 0.1 Hz, 1 hour on/5 hours off) increased proliferation in ASCs (p=.06) and Ss (p=.04). Intermittent cyclic strain (4%, 0.1 Hz, 1 hour on/2 hours off) increased total collagen production by 25% in ASCs (p=.004) and 20% in Ss (p=.05). Cyclic strain resulted in cell alignment perpendicular to the strain axis, cytoskeletal alignment, and nuclear elongation. These morphological characteristics are similar to those of tenocytes. CONCLUSIONS These results demonstrate that intermittent cyclic strain can increase cell proliferation, promote collagen I production, and maintain tenocyte morphology in vitro. Use of a cell bioreactor might accelerate the in vitro stage of tendon tissue engineering.
Collapse
Affiliation(s)
- Jonathan Riboh
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
55
|
Birukov KG. Small GTPases in mechanosensitive regulation of endothelial barrier. Microvasc Res 2008; 77:46-52. [PMID: 18938185 DOI: 10.1016/j.mvr.2008.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/08/2008] [Indexed: 12/31/2022]
Abstract
Alterations in vascular permeability are defining feature of diverse processes including atherosclerosis, inflammation, ischemia/reperfusion injury, and ventilator-induced lung injury. Clinical observations and experimental studies support an essential role of mechanical forces in pathophysiologic regulation of lung barrier. Accumulating data demonstrate that decreased levels of blood flow and increased cyclic stretch of lung tissues associated with lung mechanical ventilation at high tidal volumes increase vascular permeability, activate inflammatory cytokine production, alveolar flooding, leukocyte infiltration, and hypoxemia, and increase morbidity and mortality. Potential synergism between pathologic mechanical stimulation and inflammatory molecules resulting in vascular leak and lung injury becomes increasingly recognized. This review will discuss a role of Rho family of small GTPases in the mechanochemical regulation of pulmonary endothelial permeability associated with ventilator induced lung injury.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
56
|
Veluthakal R, Madathilparambil SV, McDonald P, Olson LK, Kowluru A. Regulatory roles for Tiam1, a guanine nucleotide exchange factor for Rac1, in glucose-stimulated insulin secretion in pancreatic beta-cells. Biochem Pharmacol 2008; 77:101-13. [PMID: 18930714 DOI: 10.1016/j.bcp.2008.09.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 12/19/2022]
Abstract
Using various biochemical, pharmacological and molecular biological approaches, we have recently reported regulatory roles for Rac1, a small G-protein, in glucose-stimulated insulin secretion (GSIS). However, little is understood with respect to localization of, and regulation by, specific regulatory factors of Rac1 in GSIS. Herein, we investigated regulatory roles for Tiam1, a specific nucleotide exchange factor (GEF) for Rac1, in GSIS in pancreatic beta-cells. Western blot analysis indicated that Tiam1 is predominantly cytosolic in distribution. NSC23766, a specific inhibitor of Tiam1-mediated activation of Rac1, markedly attenuated glucose-induced, but not KCl-induced insulin secretion in INS 832/13 cells and normal rat islets. Further, NSC23766 significantly reduced glucose-induced activation (i.e. GTP-bound form) and membrane association of Rac1 in INS 832/13 cells and rat islets. Moreover, siRNA-mediated knock-down of Tiam1 markedly inhibited glucose-induced membrane trafficking and activation of Rac1 in INS 832/13 cells. Interestingly, however, in contrast to the inhibitory effects of NSC23766, Tiam1 gene depletion potentiated GSIS in these cells; such a potentiation of GSIS was sensitive to extracellular calcium. Together, our studies present the first evidence for a regulatory role for Tiam1/Rac1-sensitive signaling step in GSIS. They also provide evidence for the existence of a potential Rac1/Tiam1-independent, but calcium-sensitive component for GSIS in these cells.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | | | | | | | | |
Collapse
|
57
|
Desai LP, Chapman KE, Waters CM. Mechanical stretch decreases migration of alveolar epithelial cells through mechanisms involving Rac1 and Tiam1. Am J Physiol Lung Cell Mol Physiol 2008; 295:L958-65. [PMID: 18805958 DOI: 10.1152/ajplung.90218.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical ventilation can overdistend the lungs or generate shear forces in them during repetitive opening/closing, contributing to lung injury and inflammation in patients with acute respiratory distress syndrome (ARDS). Repair of the injured lung epithelium is important for restoring normal barrier and lung function. In the current study, we investigated the effects of cyclic mechanical strain (CS), constant distention strain (CD), and simulated positive end-expiratory pressure (PEEP) on activation of Rac1 and wound closure of rat primary alveolar type 2 (AT2) cells. Cyclic stretch inhibited the migration of wounded AT2 cells in a dose-dependent manner with no inhibition occurring with 5% CS, but significant inhibition with 10% and 15% CS. PEEP conditions were investigated by stretching AT2 cells to 15% maximum strain (at a frequency of 10 cycles/min) with relaxation to 10% strain. AT2 cells were also exposed to 20% CD. All three types of mechanical strain inhibited wound closure of AT2 cells compared with static controls. Since lamellipodial extensions in migrating cells at the wound edge were significantly smaller in stretched cells, we measured Rac1 activity and found it to be decreased in stretched cells. We also demonstrate that Tiam1, a Rac1-specific guanine nucleotide exchange factor, was expressed mainly in the cytosol of AT2 cells exposed to mechanical strain compared with membrane localization in static cells. Downregulation of Tiam1 with 100 microM NSC-23766 inhibited activation of Rac1 and migration of AT2 cells, suggesting its involvement in repair mechanisms of AT2 cells subjected to mechanical strain.
Collapse
Affiliation(s)
- Leena P Desai
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | |
Collapse
|
58
|
Kim Y, Lee YS, Choe J, Lee H, Kim YM, Jeoung D. CD44-epidermal growth factor receptor interaction mediates hyaluronic acid-promoted cell motility by activating protein kinase C signaling involving Akt, Rac1, Phox, reactive oxygen species, focal adhesion kinase, and MMP-2. J Biol Chem 2008; 283:22513-28. [PMID: 18577517 DOI: 10.1074/jbc.m708319200] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hyaluronic acid (HA) is known to play an important role in motility of tumor cells. However, the molecular mechanisms associated with HA-promoted melanoma cell motility are not fully understood. Treatment of cells with HA was shown to increase the production of reactive oxygen species (ROS) in a CD44-dependent manner. Antioxidants, such as N-acetyl-l-cysteine and seleno-l-methionine, prevented HA from enhancing cell motility. Protein kinase C (PKC)-alpha and PKCdelta were responsible for increased Rac1 activity, production of ROS, and mediated HA-promoted cell motility. HA increased Rac1 activity via CD44, PKCalpha, and PKCdelta. Transfection with dominant negative and constitutive active Rac1 mutants demonstrated that Rac1 was responsible for the increased production of ROS and cell motility by HA. Inhibition of NADPH oxidase by diphenylene iodonium and down-regulation of p47Phox and p67Phox decreased the ROS level, suggesting that NADPH oxidase is the main source of ROS production. Rac1 increased phosphorylation of FAK. FAK functions downstream of and is necessary for HA-promoted cell motility. Secretion and expression of MMP-2 were increased by treatment with HA via the action of PKCalpha, PKCdelta, and Rac1 and the production of ROS and FAK. Ilomastat, an inhibitor of MMP-2, exerted a negative effect on HA-promoted cell motility. HA increased interaction between CD44 and epidermal growth factor receptor (EGFR). AG1478, an inhibitor of EGFR, decreased phosphorylation of PKCalpha, PKCdelta, and Rac1 activity and suppressed induction of p47Phox and p67Phox. These results suggest that CD44-EGFR interaction is necessary for HA-promoted cell motility by regulating PKC signaling. EGFR-Akt interaction promoted by HA was responsible for the increased production of ROS and HA-promoted cell motility. In summary, HA promotes CD44-EGFR interaction, which in turn activates PKC signaling, involving Akt, Rac1, Phox, and the production of ROS, FAK, and MMP-2, to enhance melanoma cell motility.
Collapse
Affiliation(s)
- Youngmi Kim
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon 200-701, Korea
| | | | | | | | | | | |
Collapse
|
59
|
Hatziapostolou M, Polytarchou C, Panutsopulos D, Covic L, Tsichlis PN. Proteinase-activated receptor-1-triggered activation of tumor progression locus-2 promotes actin cytoskeleton reorganization and cell migration. Cancer Res 2008; 68:1851-61. [PMID: 18339866 DOI: 10.1158/0008-5472.can-07-5793] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor progression locus 2 (Tpl2), a mitogen-activated protein kinase kinase kinase (MAP3K) that is activated by provirus insertion in retrovirus-induced rodent lymphomas and mammary adenocarcinomas, is known to transduce Toll-like receptor, interleukin 1, tumor necrosis factor alpha, and CD40 signals and to play an important role in inflammation. Here we show that Tpl2 is also required for the transduction of cell migration and gene expression signals originating in the G-protein-coupled receptor proteinase-activated receptor 1 (PAR1). PAR1 signals transduced by Tpl2 activate Rac1 and focal adhesion kinase, and they are required for reorganization of the actin cytoskeleton and cell migration. PAR1 expressed in fibroblasts can be triggered by proteinases produced by tumor cells, and PAR1 expressed in tumor cells can be triggered by proteinases produced by fibroblasts. These data suggest that signals that regulate cell migration and gene expression flow between stromal and tumor cells in both directions and that Tpl2 plays a pivotal role in this process.
Collapse
Affiliation(s)
- Maria Hatziapostolou
- Molecular Oncology Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
60
|
Chaturvedi LS, Gayer CP, Marsh HM, Basson MD. Repetitive deformation activates Src-independent FAK-dependent ERK motogenic signals in human Caco-2 intestinal epithelial cells. Am J Physiol Cell Physiol 2008; 294:C1350-61. [PMID: 18400991 DOI: 10.1152/ajpcell.00027.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Repetitive deformation due to villous motility or peristalsis may support the intestinal mucosa, stimulating intestinal epithelial proliferation under normal circumstances and restitution in injured and inflamed mucosa rich in tissue fibronectin. Cyclic strain enhances Caco-2 and IEC-6 intestinal epithelial cell migration across fibronectin via ERK. However, the upstream mediators of ERK activation are unknown. We investigated whether Src and FAK mediate strain-induced ERK phosphorylation and migration in human Caco-2 intestinal epithelial cells on fibronectin. Monolayers on tissue fibronectin-precoated membranes were subjected to an average 10% repetitive deformation at 10 cycles/min. Phosphorylation of Src-Tyr 418, FAK-Tyr 397-Tyr 576-Tyr 925, and ERK were significantly increased by deformation. The stimulation of wound closure by strain was prevented by Src blockade with PP2 (10 micromol/l) or specific short interfering (si)RNA. Src inhibition also prevented strain-induced FAK phosphorylation at Tyr 397 and Tyr 576 but not FAK-Tyr 925 or ERK phosphorylation. Reducing FAK by siRNA inhibited strain-induced ERK phosphorylation. Transfection of NH2-terminal tyrosine phosphorylation-deficient FAK mutants Y397F, Y576F-Y577F, and Y397F-Y576F-Y577F did not prevent the activation of ERK2 by cyclic strain, but a FAK mutant at the COOH terminal (Y925F) prevented the strain-induced activation of ERK2. Although the Y397F-Y576F-Y577F FAK construct exhibited less basal FAK-Tyr 925 phosphorylation under static conditions, it nevertheless exhibited increased FAK-Tyr 925 phosphorylation in response to strain. These results suggest that repetitive deformation stimulates intestinal epithelial motility across fibronectin in a manner that requires both Src activation and a novel Src-independent FAK-Tyr 925-dependent pathway that activates ERK. This pathway may be an important target for interventions to promote mucosal healing in settings of intestinal ileus or fasting.
Collapse
Affiliation(s)
- Lakshmi S Chaturvedi
- Surgical Service, John D Dingell Veterans Affairs Medical Center, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
61
|
Craig DH, Zhang J, Basson MD. Cytoskeletal signaling by way of alpha-actinin-1 mediates ERK1/2 activation by repetitive deformation in human Caco2 intestinal epithelial cells. Am J Surg 2007; 194:618-22. [PMID: 17936423 DOI: 10.1016/j.amjsurg.2007.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 07/30/2007] [Accepted: 08/03/2007] [Indexed: 01/27/2023]
Abstract
BACKGROUND Repetitive deformation stimulates proliferation in human Caco2 intestinal epithelial cells by way of an ERK1/2-dependent pathway. We examined the effects of cytoskeletal perturbation on deformation-induced signaling in Caco2 cells. METHODS The Caco2 cell cytoskeleton was disrupted with either cytochalasin D, phalloidin, colchicine, or paclitaxel. Levels of alpha-actinin-1 and -4 and paxillin were reduced by specific small interfering RNA. Cells on collagen I-precoated membranes were subjected to 10% repetitive deformation at 10 cycles/min. After 1 hour, cells were lysed for Western blot analysis. RESULTS Strain-activated ERK1/2, focal adhesion kinase, and Src phosphorylation in dimethyl sulfoxide- and/or nontargeting small interfering RNA-treated control cell populations. Cytochalasin D and paclitaxel, but not phalloidin and colchicine, blocked ERK1/2 phosphorylation. A decrease in alpha-actinin-1, but not in alpha-actinin-4 or paxillin, inhibited ERK1/2 and focal adhesion kinase phosphorylation, whereas Src activation appears to be independent of these effects. CONCLUSIONS The intestinal epithelial cell cytoskeleton may transduce mechanical signals by way of alpha-actinin-1 into the focal adhesion complex, culminating in ERK1/2 activation and proliferation.
Collapse
Affiliation(s)
- David H Craig
- Department of Surgery, John D. Dingell VA Medical Center and Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
62
|
von Wichert G, Krndija D, Schmid H, von Wichert G, Haerter G, Adler G, Seufferlein T, Sheetz MP. Focal adhesion kinase mediates defects in the force-dependent reinforcement of initial integrin-cytoskeleton linkages in metastatic colon cancer cell lines. Eur J Cell Biol 2007; 87:1-16. [PMID: 17904248 DOI: 10.1016/j.ejcb.2007.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 07/18/2007] [Accepted: 07/20/2007] [Indexed: 12/25/2022] Open
Abstract
Micro-environmental clues, including the biophysical interpretation of the extracellular matrix, are critical to proliferation, apoptosis and migration. Here, we show that metastatic human colon cancer cell lines display altered matrix interaction. Interaction of colon cancer cells with collagen I depends on integrins (mainly alpha(1)/beta(1)) but metastatic cells display delayed spreading and reduced extension of lamellipodia. In addition, cells show defective strengthening of integrin-cytoskeleton linkages upon mechanical stimulation, as determined by laser trapping experiments and binding of large beads to the cell surface. However, adhesion to pliable surfaces is ameliorated in metastatic variants. These changes are caused by constitutive activation of focal adhesion kinase (FAK) and can be modulated by changing expression and/or activity of FAK via RNA-interference or expression of inhibitory constructs, respectively. In addition, consistent with defective strengthening of integrin-cytoskeleton linkages, metastatic cell lines show reduced random motility. Taken together these data suggest that constitutive activation of FAK causes defects in spreading, reinforcement of integrin-cytoskeleton linkages and migration and at the same time could ameliorate the adhesion of metastatic cells to suboptimal surfaces.
Collapse
Affiliation(s)
- Götz von Wichert
- Department of Internal Medicine I, University of Ulm, Robert Koch Strasse 8, D-89081 Ulm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Burnett JC, Opsenica D, Sriraghavan K, Panchal RG, Ruthel G, Hermone AR, Nguyen TL, Kenny TA, Lane DJ, McGrath CF, Schmidt JJ, Vennerstrom JL, Gussio R, Solaja BA, Bavari S. A Refined Pharmacophore Identifies Potent 4-Amino-7-chloroquinoline-Based Inhibitors of the Botulinum Neurotoxin Serotype A Metalloprotease. J Med Chem 2007; 50:2127-36. [PMID: 17417831 DOI: 10.1021/jm061446e] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously identified structurally diverse small molecule (non-peptidic) inhibitors (SMNPIs) of the botulinum neurotoxin serotype A (BoNT/A) light chain (LC). Of these, several (including antimalarial drugs) contained a 4-amino-7-chloroquinoline (ACQ) substructure and a separate positive ionizable amine component. The same antimalarials have also been found to interfere with BoNT/A translocation into neurons, via pH elevation of the toxin-mediated endosome. Thus, this structural class of small molecules may serve as dual-function BoNT/A inhibitors. In this study, we used a refined pharmacophore for BoNT/A LC inhibition to identify four new, potent inhibitors of this structural class (IC50's ranged from 3.2 to 17 muM). Molecular docking indicated that the binding modes for the new SMNPIs are consistent with those of other inhibitors that we have identified, further supporting our structure-based pharmacophore. Finally, structural motifs of the new SMNPIs, as well as two structure-based derivatives, were examined for activity, providing valuable information about pharmacophore component contributions to inhibition.
Collapse
Affiliation(s)
- James C Burnett
- SAIC-Frederick, Inc., Target Structure-Based Drug Discovery Group, Frederick, Frederick, Inc., National Cancer Institute at Frederick, P.O. Box B, F.V.C. 310, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|