51
|
Conner MT, Conner AC, Bland CE, Taylor LHJ, Brown JEP, Parri HR, Bill RM. Rapid aquaporin translocation regulates cellular water flow: mechanism of hypotonicity-induced subcellular localization of aquaporin 1 water channel. J Biol Chem 2012; 287:11516-25. [PMID: 22334691 PMCID: PMC3322852 DOI: 10.1074/jbc.m111.329219] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The control of cellular water flow is mediated by the aquaporin (AQP) family of membrane proteins. The structural features of the family and the mechanism of selective water passage through the AQP pore are established, but there remains a gap in our knowledge of how water transport is regulated. Two broad possibilities exist. One is controlling the passage of water through the AQP pore, but this only has been observed as a phenomenon in some plant and microbial AQPs. An alternative is controlling the number of AQPs in the cell membrane. Here, we describe a novel pathway in mammalian cells whereby a hypotonic stimulus directly induces intracellular calcium elevations through transient receptor potential channels, which trigger AQP1 translocation. This translocation, which has a direct role in cell volume regulation, occurs within 30 s and is dependent on calmodulin activation and phosphorylation of AQP1 at two threonine residues by protein kinase C. This direct mechanism provides a rationale for the changes in water transport that are required in response to constantly changing local cellular water availability. Moreover, because calcium is a pluripotent and ubiquitous second messenger in biological systems, the discovery of its role in the regulation of AQP translocation has ramifications for diverse physiological and pathophysiological processes, as well as providing an explanation for the rapid regulation of water flow that is necessary for cell homeostasis.
Collapse
Affiliation(s)
- Matthew T Conner
- School of Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
52
|
Campbell EM, Birdsell DN, Yool AJ. The activity of human aquaporin 1 as a cGMP-gated cation channel is regulated by tyrosine phosphorylation in the carboxyl-terminal domain. Mol Pharmacol 2011; 81:97-105. [PMID: 22006723 DOI: 10.1124/mol.111.073692] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In addition to a constitutive water channel activity, several studies suggest Aquaporin-1 (AQP1) functions as a nonselective monovalent cation channel activated by intracellular cGMP, although variability in responsiveness between preparations has led to controversy in the field. Data here support the hypothesis that responsiveness of the AQP1 ionic conductance to cGMP is governed by tyrosine phosphorylation. Wild-type and mutant human AQP1 channels expressed in Xenopus laevis oocytes were characterized by two-electrode voltage clamp and optical osmotic swelling analyses. Quadruple mutation by site-directed mutagenesis of barrier hydrophobic residues (Val50, Leu54, Leu170, Leu174) to alanines in the central pore induced inward rectification of the ionic current and shifted reversal potential by approximately +10 mV, indicating increased permeability of tetraethylammonium ion. Introduction of cysteine at lysine 51 in the central pore (K51C) in a cysteine-less template created new sensitivity to block of the conductance by mercuric ion. Mutations of candidate consensus sites and pharmacological manipulation of serine and threonine phosphorylation did not alter cGMP-dependent responses; however, mutation of tyrosine Y253C or pharmacological dephosphorylation prevented ion channel activation. Modification of Y253C by covalent addition of a negatively charged group [2-sulfonatoethyl methanethiosulfonate sodium salt (MTSES)] rescued the cGMP-activated conductance response, an effect reversed by dithiothreitol. Results support the proposal that phosphorylation of tyrosine Tyr253 in the carboxyl terminal domain, confirmed by Western blot, acts as a master switch regulating responsiveness of AQP1 ion channels to cGMP, and the tetrameric central pore is the ion permeation pathway. These findings advance resolution of a standing controversy and expand our understanding of AQP1 as a multifunctional regulated channel.
Collapse
Affiliation(s)
- Ewan M Campbell
- Adelaide Centre for Neuroscience Research and Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | | | | |
Collapse
|
53
|
Fábrega E, Berja A, García-Unzueta MT, Guerra-Ruiz A, Cobo M, López M, Bolado-Carrancio A, Amado JA, Rodríguez-Rey JC, Pons-Romero F. Influence of aquaporin-1 gene polymorphism on water retention in liver cirrhosis. Scand J Gastroenterol 2011; 46:1267-74. [PMID: 21793635 DOI: 10.3109/00365521.2011.603161] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Water retention is a major clinical problem in patients with liver cirrhosis. The factors that predispose to water retention are poorly understood but may involve genetic factors. Recent research suggests that renal aquaporins may be a pathophysiological factor involved in this condition. Aquaporin-1 (AQP1) is expressed in the proximal tubule and aquaporin-2 (AQP2) in the renal collecting duct cells. The aim of our study was to investigate the distribution of single nucleotide polymorphisms (SNPs) of AQP1: rs1049305 (C/G) and AQP2: rs3741559 (A/G) and rs467323 (C/T) in 100 cirrhotic patients with ascites and to analyze their relationship with dilutional hyponatremia. METHODS Genomic DNA was extracted from peripheral blood. Genotyping for the presence of different polymorphisms was performed using the Custom Taqman SNP Genotyping Assays. The possible influence of rs1049305 (C/G) in AQP1 gene expression was evaluated by luciferase assays in vitro. RESULTS The allelic frequencies of the AQP1 gene were the following: CC = 15%; CG = 49%; GG = 36%. Patients with CC genotype had significantly lower plasma sodium concentration than those with CG or GG genotype. Luciferase assays showed that the rs1049305 (C/G) in the AQP1 gene functionally affected the expression level in vitro. In addition, we did not find any relationship between AQP2 SNPs observed and plasma sodium concentration. CONCLUSIONS Our results suggest that the rs1049305 (C/G, UTR3) AQP1 polymorphism could be involved in the genetic susceptibility to develop water retention in patients with liver cirrhosis.
Collapse
Affiliation(s)
- Emilio Fábrega
- Gastroenterology and Hepatology Unit, University Hospital "Marqués de Valdecilla", Faculty of Medicine, Santander, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Liu L, Xie C. Effects of downregulation of aquaporin1 by peptidoglycan and lipopolysaccharide via MAPK pathways in MeT-5A cells. Lung 2011; 189:331-40. [PMID: 21647617 DOI: 10.1007/s00408-011-9288-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 03/11/2011] [Indexed: 12/21/2022]
Abstract
This study was designed to investigate the signaling pathway involved in aquaporin1 (AQP1) expression caused by peptidoglycan (PGN) from Staphylococcus aureus and lipopolysaccharide (LPS) in human pleural mesothelial cell lines (MeT-5A) in vitro. RT-PCR, immunoblot analysis, and immunofluorescence assay were used to determine the relative mRNA and protein levels of AQP1 caused by PGN and LPS in MeT-5A cells. Activation of MAPKs by PGN and LPS was reflected by detecting the phosphorylation constituents of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 using immunoblot. MAPKs inhibitors were used to determine the effects of PGN- and LPS-induced AQP1 expression by immunoblot. AQP1 transcription and protein expression were decreased by PGN and LPS in dose- and time-dependent manners in MeT-5A cells. Both PGN and LPS activated p38/ERK/JNK pathways in MeT-5A cells. Furthermore, downregulation of AQP1 expression by LPS was blocked by SB203580, SP600125, and PD98059, which are inhibitors of p38, JNK, and ERK1/2, respectively. In contrast, downregulation of AQP1 expression by PGN was blocked only by SB203580, not by SP600125 or PD98059, underlying the importance of p38 MAPK in the downregulation of AQP1 expression by PGN in MeT-5A cells. AQP1 expression was decreased by both PGN and LPS in dose- and time-dependent manners in MeT-5A cells. AQP1 expression was down-regulated by PGN via p38 MAPK pathway, while AQP1 expression was down-regulated by LPS via p38/JNK/ERK pathways.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Internal Medicine of Respiratory Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | | |
Collapse
|
55
|
Dietz S, von Bülow J, Beitz E, Nehls U. The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: lessons for symbiotic functions. THE NEW PHYTOLOGIST 2011; 190:927-940. [PMID: 21352231 DOI: 10.1111/j.1469-8137.2011.03651.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Soil humidity and bulk water transport are essential for nutrient mobilization. Ectomycorrhizal fungi, bridging soil and fine roots of woody plants, are capable of modulating both by being integrated into water movement driven by plant transpiration and the nocturnal hydraulic lift. Aquaporins are integral membrane proteins that function as gradient-driven water and/or solute channels. Seven aquaporins were identified in the genome of the ectomycorrhizal basidiomycete Laccaria bicolor and their role in fungal transfer processes was analyzed. Heterologous expression in Xenopus laevis oocytes revealed relevant water permeabilities for three aquaporins. In fungal mycelia, expression of the corresponding genes was high compared with other members of the gene family, indicating the significance of the respective proteins for plasma membrane water permeability. As growth temperature and ectomycorrhiza formation modified gene expression profiles of these water-conducting aquaporins, specific roles in those aspects of fungal physiology are suggested. Two aquaporins, which were highly expressed in ectomycorrhizas, conferred plasma membrane ammonia permeability in yeast. This indicates that these proteins are an integral part of ectomycorrhizal fungus-based plant nitrogen nutrition in symbiosis.
Collapse
Affiliation(s)
- Sandra Dietz
- Interfaculty Institute of Microbiology and Infection Medicine, Physiological Ecology of Plants, University of Tübingen, Tübingen, Germany
| | - Julia von Bülow
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Kiel, Kiel, Germany
| | - Uwe Nehls
- Faculty for Biology and Chemistry, Botany, University of Bremen, Bremen, Germany
| |
Collapse
|
56
|
Edemir B, Pavenstädt H, Schlatter E, Weide T. Mechanisms of cell polarity and aquaporin sorting in the nephron. Pflugers Arch 2011; 461:607-21. [PMID: 21327781 DOI: 10.1007/s00424-011-0928-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/14/2011] [Accepted: 01/16/2011] [Indexed: 01/02/2023]
Abstract
The kidneys participate in whole-body homeostasis, regulating acid-base balance, electrolyte concentrations, extracellular fluid volume, and regulation of blood pressure. Many of the kidney's functions are accomplished by relatively simple mechanisms of filtration, reabsorption, and secretion, which take place in the nephron. The kidneys generate 140-180 l of primary urine per day, while reabsorbing a large percentage, allowing for only the excretion of approximately 2 l of urine. Within the nephron, the majority of the filtered water and solutes are reabsorbed. This is mainly facilitated by specialized transporters and channels which are localized at different segments of the nephron and asymmetrically localized within the polarized epithelial cells. The asymmetric localization of these transporters and channels is essential for the physiological tasks of the renal tissues. One family of these proteins are the water-permeable aquaporins which are selectively expressed in cells along the nephron and localized at different compartments. Here, we discuss potential molecular links between mechanisms involved in the establishment of cell polarity and the members of the aquaporin family. In the first part of this review, we will focus on aspects of apical cell polarity. In the second part, we will review the motifs identified so far that are involved in aquaporin sorting and point out potential molecular links.
Collapse
Affiliation(s)
- Bayram Edemir
- Medizinische Klinik und Poliklinik D, Experimentelle und Molekulare Nephrologie, Universität Münster, Germany.
| | | | | | | |
Collapse
|
57
|
Zelenina M. Regulation of brain aquaporins. Neurochem Int 2010; 57:468-88. [DOI: 10.1016/j.neuint.2010.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/21/2010] [Accepted: 03/31/2010] [Indexed: 01/27/2023]
|
58
|
Hachez C, Chaumont F. Aquaporins: a family of highly regulated multifunctional channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 679:1-17. [PMID: 20666220 DOI: 10.1007/978-1-4419-6315-4_1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aquaporins (AQPs) were discovered as channels facilitatingwater movement across cellular membranes. Whereas much of the research has focused on characterizing AQPs with respect to cell water homeostasis, recent discoveries in terms of the transport selectivity of AQP homologs has shed new light on their physiological roles. In fact, whereas some AQPs behave as "strict" water channels, others can conduct a wide range ofnonpolar solutes, such as urea or glycerol and even more unconventional permeants, such as the nonpolar gases carbon dioxide and nitric oxide, the polar gas ammonia, the reactive oxygen species hydrogen peroxide and the metalloids antimonite, arsenite, boron and silicon. This suggests that AQPs are also key players in various physiological processes not related to water homeostasis. The function, regulation and biological importance of AQPs in the different kingdoms is reviewed in this chapter, with special emphasis on animal and plant AQPs.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Universit4 catholique de Louvain, Croix du Sud 5-15, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
59
|
Madonna R, Montebello E, Lazzerini G, Zurro M, De Caterina R. NA+/H+ Exchanger 1-and Aquaporin-1-Dependent Hyperosmolarity Changes Decrease Nitric Oxide Production and Induce VCAM-1 Expression in Endothelial Cells Exposed to High Glucose. Int J Immunopathol Pharmacol 2010; 23:755-65. [DOI: 10.1177/039463201002300309] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since diabetic hyperglycaemia causes hyperosmolarity, we investigated the contribution of hyperosmolarity in the proinflammatory endothelial effects of hyperglycemia, and sought to unravel the mechanisms involved. Human aortic endothelial cells (HAEC) were incubated for short-term (1–3 days) or long-term (1–2 weeks) exposures to 5.5 mmol/L glucose (normoglycemia, basal), high glucose (25 and 45 mmol/L, HG), or a hyperosmolar control (mannitol 25 and 45 mmol/L, HM), in the presence or absence of the aquaporin-1 (AQP1) inihibitor dimethylsulfoxide (DMSO), the Na+/H+ exchanger 1 (NHE-1) inihibitor cariporide (CA), the protein kinase C (PKC) inihibitor calphostin C or the PKCβ isoform inhibitor LY379196 (LY). Both short- and long-term exposures to HG and HM decreased the expression of the active, phosphorylated form of endothelial nitric oxide synthase (Ser1146-eNOS) and, in parallel, increased vascular cell adhesion molecule(VCAM)-1 protein at immunoblotting. After 24 h incubation with HG/HM, we observed a significant similar and concentration-dependent enhancement of AQP1 expression. DMSO and CA inhibited hyperosmolarity-induced VCAM-1 expressions, while increasing nitrite levels and Ser1146-eNOS expression. Gene silencing by small interfering RNA reduced the expression of AQP1, and suppressed HG- and HM-stimulated VCAM-1 expression. Calphostin C and LY blunted hyperosmolarity-induced VCAM-1 expression, while increasing the expression of Ser1146-eNOS and nitrite production. Thus HG decreases eNOS activation and induces total VCAM-1 expression in HAEC through a hyperosmolar mechanism. These effects are mediated by activation of the water channels AQP1 and NHE-1, and a PKCβ-mediated intracellular signaling pathway. Targeting osmosignaling pathways may represent a novel strategy to reduce vascular effects of hyperglycemia.
Collapse
Affiliation(s)
- R. Madonna
- Cardiology and Center of Excellence on Aging, “G. d'Annunzio” University, Chieti
| | - E. Montebello
- Cardiology and Center of Excellence on Aging, “G. d'Annunzio” University, Chieti
| | - G. Lazzerini
- CNR Institute of Clinical Physiology, Pisa, Italy
| | - M. Zurro
- Cardiology and Center of Excellence on Aging, “G. d'Annunzio” University, Chieti
| | - R. De Caterina
- Cardiology and Center of Excellence on Aging, “G. d'Annunzio” University, Chieti
- CNR Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|
60
|
Devuyst O, Yool AJ. Aquaporin-1: New Developments and Perspectives for Peritoneal Dialysis. Perit Dial Int 2010; 30:135-41. [DOI: 10.3747/pdi.2010.00032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Peritoneal dialysis involves diffusive and convective transport and osmosis through the highly vascularized peritoneal membrane. Several lines of evidence have demonstrated that the water channel aquaporin-1 (AQP1) corresponds to the ultrasmall pore predicted by the model of peritoneal transport. Proof-of-principle studies have shown that upregulation of the expression of AQP1 in peritoneal capillaries results in increased water permeability and ultrafiltration, without affecting the osmotic gradient or small solute permeability. Conversely, studies in Aqp1 mice have shown that haplo-insufficiency for AQP1 results in significant attenuation of water transport. Recent studies have demonstrated that AQP1 is involved in the migration of different cell types, including endothelial cells. In parallel, chemical screening has identified lead compounds that could act as antagonists or agonists of AQPs, with description of putative binding sites and potential mechanisms of gating the water channel. By modulating water transport, these pharmacological agents could have clinically relevant effects in targeting specific tissues or disease states.
Collapse
Affiliation(s)
- Olivier Devuyst
- Division of Nephrology, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Andrea J. Yool
- Université catholique de Louvain Medical School, Brussels, Belgium; Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
61
|
Mathias RT, White TW, Gong X. Lens gap junctions in growth, differentiation, and homeostasis. Physiol Rev 2010; 90:179-206. [PMID: 20086076 DOI: 10.1152/physrev.00034.2009] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The cells of most mammalian organs are connected by groups of cell-to-cell channels called gap junctions. Gap junction channels are made from the connexin (Cx) family of proteins. There are at least 20 isoforms of connexins, and most tissues express more than 1 isoform. The lens is no exception, as it expresses three isoforms: Cx43, Cx46, and Cx50. A common role for all gap junctions, regardless of their Cx composition, is to provide a conduit for ion flow between cells, thus creating a syncytial tissue with regard to intracellular voltage and ion concentrations. Given this rather simple role of gap junctions, a persistent question has been: Why are there so many Cx isoforms and why do tissues express more than one isoform? Recent studies of lens Cx knockout (KO) and knock in (KI) lenses have begun to answer these questions. To understand these roles, one must first understand the physiological requirements of the lens. We therefore first review the development and structure of the lens, its numerous transport systems, how these systems are integrated to generate the lens circulation, the roles of the circulation in lens homeostasis, and finally the roles of lens connexins in growth, development, and the lens circulation.
Collapse
Affiliation(s)
- Richard T Mathias
- Department of Physiology and Biophysics, SUNY at Stony Brook, Stony Brook, New York 11794-8661, USA.
| | | | | |
Collapse
|
62
|
Conner MT, Conner AC, Brown JEP, Bill RM. Membrane Trafficking of Aquaporin 1 Is Mediated by Protein Kinase C via Microtubules and Regulated by Tonicity. Biochemistry 2010; 49:821-3. [DOI: 10.1021/bi902068b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew T. Conner
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, U.K
| | - Alex C. Conner
- Warwick Medical School, Warwick University, Coventry CV4 7AL, U.K
| | - James E. P. Brown
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, U.K
| | - Roslyn M. Bill
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, U.K
| |
Collapse
|
63
|
McCoy ES, Haas BR, Sontheimer H. Water permeability through aquaporin-4 is regulated by protein kinase C and becomes rate-limiting for glioma invasion. Neuroscience 2009; 168:971-81. [PMID: 19761816 DOI: 10.1016/j.neuroscience.2009.09.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 08/21/2009] [Accepted: 09/08/2009] [Indexed: 11/30/2022]
Abstract
Glial-derived tumors, gliomas, are highly invasive cancers that invade normal brain through the extracellular space. To navigate the tortuous extracellular spaces, cells undergo dynamic changes in cell volume, which entails water flux across the membrane through aquaporins (AQPs). Two members of this family, AQP1 and AQP4 are highly expressed in primary brain tumor biopsies and both have a consensus phosphorylation site for protein kinase C (PKC), which is a known regulator of glioma cell invasion. AQP4 colocalizes with PKC to the leading edge of invading processes and clustered with chloride channel (ClC2) and K(+)-Cl(-) cotransporter 1 (KCC1), believed to provide the pathways for Cl(-) and K(+) secretion to accomplish volume changes. Using D54MG glioma cells stably transfected with either AQP1 or AQP4, we show that PKC activity regulates water permeability through phosphorylation of AQP4. Activation of PKC with either phorbol 12-myristate 13-acetate or thrombin enhanced AQP4 phosphorylation, reduced water permeability and significantly decreased cell invasion. Conversely, inhibition of PKC activity with chelerythrine reduced AQP4 phosphorylation, enhanced water permeability and significantly enhanced tumor invasion. PKC regulation of AQP4 was lost after mutational inactivation of the consensus PKC phosphorylation site S180A. Interestingly, AQP1 expressing glioma cells, by contrast, were completely unaffected by changes in PKC activity. To demonstrate a role for AQPs in glioma invasion in vivo, cells selectively expressing AQP1, AQP4 or the mutated S180A-AQP4 were implanted intracranially into SCID mice. AQP4 expressing glioma cells showed significantly reduced invasion compared to AQP1 and S180 expressing tumors as determined by quantitative stereology, consistent with a differential role for AQP1 and AQP4 in this process.
Collapse
Affiliation(s)
- E S McCoy
- Department of Neurobiology and Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
64
|
Yool AJ, Brown EA, Flynn GA. Roles for novel pharmacological blockers of aquaporins in the treatment of brain oedema and cancer. Clin Exp Pharmacol Physiol 2009; 37:403-9. [PMID: 19566827 DOI: 10.1111/j.1440-1681.2009.05244.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
1. Aquaporins (AQPs) are targets for drug discovery for basic research and medicine. Human diseases involving fluid imbalances and oedema are of major concern and involve tissues in which AQPs are expressed. The range of functional properties of AQPs is continuing to expand steadily with ongoing research in the field. 2. Gating domains in AQPs are molecular sites for drug actions. Discovery of the arylsulphonamide AqB013 as an antagonist for AQP1 and AQP4 provided the first pharmacological agent with translational promise for the treatment of diseases in which AQPs have been implicated. The putative binding site for AqB013 in the internal vestibule of the AQP water pore involves amino acid residues that are located in the AQP loop D gating domain. 3. Aquaporins have been proposed as novel targets in cancer and oedema and are associated with a surprising array of important processes in the brain and body, such as angiogenesis, cell migration, development and neuropathological diseases. Functions beyond their simple role as water channels are suggested by the subtype-specific regulation of AQP expression. In both cancer and brain oedema, current therapies are limited and new pharmacological approaches focused on AQPs offer exciting potential for clinical advances.
Collapse
Affiliation(s)
- Andrea J Yool
- Discipline of Physiology, School of Molecular & Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
65
|
Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1213-28. [DOI: 10.1016/j.bbamem.2009.03.009] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 01/09/2023]
|
66
|
Ball A, Campbell EM, Jacob J, Hoppler S, Bowman AS. Identification, functional characterization and expression patterns of a water-specific aquaporin in the brown dog tick, Rhipicephalus sanguineus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:105-112. [PMID: 19000768 DOI: 10.1016/j.ibmb.2008.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/13/2008] [Accepted: 10/13/2008] [Indexed: 05/27/2023]
Abstract
Much is known about the physiology of tick salivation, but nothing is known about the movement of water through the cell membranes of salivary glands, a phenomenon usually associated with water channels or aquaporins (AQPs). An AQP, RsAQP1, was identified in a salivary gland cDNA library of Rhipicephalus sanguineus. In the first functional characterization of an acarine AQP, Xenopus oocytes expressing RsAQP1 became water permeable, whereas RsAQP1 did not transport glycerol or urea. RsAQP1 was inhibited by Hg(2+) but not by triethylammonium. Treatment with a protein kinase A activator (cAMP) had no effect on RsAQP1 transport, whereas treatment with a protein kinase C activator (phorbol 12,13-dibutyrate) reduced water flux by 60%. RsAQP1 transcript was present in unfed larvae, nymphs and adult R. sanguineus, but absent in embryos. Partially fed female R. sanguineus expressed RsAQP1 in gut, Malpighian tubules and was particularly abundant in salivary gland tissue, but absent in ovary and synganglion tissues. Because of the importance of water management in tick biology for both the off-host and on-host phases of the life cycle, our findings on tick AQP1 represent a major advancement in our understanding of tick osmoregulation that could potentially be exploited in tick control.
Collapse
Affiliation(s)
- Andrew Ball
- School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | | | | | | | | |
Collapse
|
67
|
Zhang W, Zitron E, Bloehs R, Müller-Krebs S, Scholz E, Zeier M, Katus H, Karle C, Schwenger V. Dual regulation of renal Kir7.1 potassium channels by protein Kinase A and protein Kinase C. Biochem Biophys Res Commun 2008; 377:981-6. [DOI: 10.1016/j.bbrc.2008.10.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/19/2008] [Indexed: 10/24/2022]
|
68
|
Kadohira I, Abe Y, Nuriya M, Sano K, Tsuji S, Arimitsu T, Yoshimura Y, Yasui M. Phosphorylation in the C-terminal domain of Aquaporin-4 is required for Golgi transition in primary cultured astrocytes. Biochem Biophys Res Commun 2008; 377:463-468. [PMID: 18854171 DOI: 10.1016/j.bbrc.2008.09.155] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 09/30/2008] [Indexed: 12/25/2022]
Abstract
Aquaporin-4 (AQP4) is expressed in the perivascular and subpial astrocytes end-feet in mammalian brain, and plays a critical component of an integrated water and potassium homeostasis. Here we examine whether AQP4 is phosphorylated in primary cultured mouse astrocytes. Astrocytes were metabolically labeled with [(32)P]phosphoric acid, then AQP4 was immunoprecipitated with anti-AQP4 antibody. We observed that AQP4 was constitutively phosphorylated, which is reduced by treatment with protein kinase CK2 inhibitors. To elucidate the phosphorylation of AQP4 by CK2, myc-tagged wild-type or mutant AQP4 was transiently transfected in primary cultured astrocytes. Substitution of Ala residues for four putative CK2 phosphorylation sites in the C terminus abolished the phosphorylation of AQP4. Immunofluorescent microscopy revealed that the quadruple mutant was localized in the Golgi apparatus. These observations indicate that the C-terminal domain of AQP4 is constitutively phosphorylated at least in part by protein kinase CK2 and it is required for Golgi transition.
Collapse
Affiliation(s)
- Ikuko Kadohira
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoichiro Abe
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Mutsuo Nuriya
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazumi Sano
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shoji Tsuji
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeshi Arimitsu
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Pediatrics, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasunori Yoshimura
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|