51
|
Downregulation of Mcl-1 by daunorubicin pretreatment reverses resistance of breast cancer cells to TNF-related apoptosis-inducing ligand. Biochem Biophys Res Commun 2012; 422:42-7. [DOI: 10.1016/j.bbrc.2012.04.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/17/2012] [Indexed: 01/26/2023]
|
52
|
Inhibition of Bcl-2 antiapoptotic members by obatoclax potently enhances sorafenib-induced apoptosis in human myeloid leukemia cells through a Bim-dependent process. Blood 2012; 119:6089-98. [PMID: 22446485 DOI: 10.1182/blood-2011-09-378141] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interactions between the multikinase inhibitor sorafenib and the BH3-mimetic obatoclax (GX15-070) were examined in human acute myeloid leukemia (AML) cells. Treatment with sorafenib/obatoclax induced pronounced apoptosis in and reduced the clonogenic growth of multiple AML lines and primary AML cells but not normal CD34(+) cells. Sorafenib triggered rapid and pronounced Mcl-1 down-regulation accompanied by enhanced binding of Bim to Bcl-2 and Bcl-xL, effects that were abolished by obatoclax coadministration. Notably, shRNA knockdown of Bim, Bak, or Bax, but not Noxa, significantly attenuated obatoclax/sorafenib lethality, whereas ectopic expression of Mcl-1 exerted a protective effect. Furthermore, exposure of leukemia cells to sorafenib and obatoclax markedly induced autophagy, reflected by rapid and pronounced LC3 processing and LC3-green fluorescent protein (GFP) punctate formation. Multiple autophagy inhibitors or VPS34 knockdown, significantly potentiated sorafenib/obatoclax lethality, indicating a cytoprotective role for autophagy in this setting. Finally, studies in a xenograft mouse model revealed that combined sorafenib/obatoclax treatment markedly reduced tumor growth and significantly prolonged survival in association with Mcl-1 down-regulation and apoptosis induction, whereas agents administered individually had only modest effects. These findings suggest that combining sorafenib with agents that inhibit Mcl-1 and Bcl-2/Bcl-xL such as obatoclax may represent a novel and potentially effective strategy in AML.
Collapse
|
53
|
Matsuda Y, Fukumoto M. Sorafenib: complexities of Raf-dependent and Raf-independent signaling are now unveiled. Med Mol Morphol 2011; 44:183-9. [PMID: 22179180 DOI: 10.1007/s00795-011-0558-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/15/2011] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer worldwide. The only current drug available for clinical treatment of HCC is sorafenib, which inhibits multiple signaling kinases including Raf family members, platelet-derived growth factor receptor, vascular endothelial growth factor receptors 1 and 2, c-Kit, and Fms-like tyrosine kinase 3. Many studies have revealed that the mechanism underlying the antitumor effect of sorafenib is complex. Because sorafenib inhibits C-Raf more potently than B-Raf, the therapeutic efficacy of sorafenib is strongly influenced by the relative expression and activity of B-Raf and C-Raf and the complex interactions between these factors. Moreover, Rafindependent signaling mechanisms have recently emerged as important pathways of sorafenib-induced cell death. Basic research studies have suggested that using sorafenib as part of a combination therapy may improve its effect, although this has yet to be confirmed by clinical evidence. Further studies of the functional mechanism of sorafenib are required to advance the development of targeted therapy for HCC. To aid future work on sorafenib, we here review the current literature pertaining to sorafenib signaling and its clinical efficacy in both monotherapy and combination therapy.
Collapse
Affiliation(s)
- Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences, Asahimachi-dori, Niigata, Japan.
| | | |
Collapse
|
54
|
Anthocyanin-rich Mulberry extract inhibit the gastric cancer cell growth in vitro and xenograft mice by inducing signals of p38/p53 and c-jun. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.06.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
55
|
Meng XW, Peterson KL, Dai H, Schneider P, Lee SH, Zhang JS, Koenig A, Bronk S, Billadeau DD, Gores GJ, Kaufmann SH. High cell surface death receptor expression determines type I versus type II signaling. J Biol Chem 2011; 286:35823-35833. [PMID: 21865165 DOI: 10.1074/jbc.m111.240432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression.
Collapse
Affiliation(s)
- Xue Wei Meng
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Department of Molecular Pharmacology, Mayo Clinic, Rochester, Minnesota 55905.
| | - Kevin L Peterson
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905
| | - Haiming Dai
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905
| | - Paula Schneider
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905
| | - Sun-Hee Lee
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905
| | - Jin-San Zhang
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905
| | - Alexander Koenig
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905
| | - Steve Bronk
- Division of Gastroenterology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Daniel D Billadeau
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905
| | - Gregory J Gores
- Division of Gastroenterology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Department of Molecular Pharmacology, Mayo Clinic, Rochester, Minnesota 55905.
| |
Collapse
|
56
|
Albershardt TC, Salerni BL, Soderquist RS, Bates DJP, Pletnev AA, Kisselev AF, Eastman A. Multiple BH3 mimetics antagonize antiapoptotic MCL1 protein by inducing the endoplasmic reticulum stress response and up-regulating BH3-only protein NOXA. J Biol Chem 2011; 286:24882-95. [PMID: 21628457 PMCID: PMC3137063 DOI: 10.1074/jbc.m111.255828] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/27/2011] [Indexed: 12/31/2022] Open
Abstract
BH3 mimetics are small molecules designed or discovered to mimic the binding of BH3-only proteins to the hydrophobic groove of antiapoptotic BCL2 proteins. The selectivity of these molecules for BCL2, BCL-X(L), or MCL1 has been established in vitro; whether they inhibit these proteins in cells has not been rigorously investigated. In this study, we used a panel of leukemia cell lines to assess the ability of seven putative BH3 mimetics to inhibit antiapoptotic proteins in a cell-based system. We show that ABT-737 is the only BH3 mimetic that inhibits BCL2 as assessed by displacement of BAD and BIM from BCL2. The other six BH3 mimetics activate the endoplasmic reticulum stress response inducing ATF4, ATF3, and NOXA, which can then bind to and inhibit MCL1. In most cancer cells, inhibition of one antiapoptotic protein does not acutely induce apoptosis. However, by combining two BH3 mimetics, one that inhibits BCL2 and one that induces NOXA, apoptosis is induced within 6 h in a BAX/BAK-dependent manner. Because MCL1 is a major mechanism of resistance to ABT-737, these results suggest a novel strategy to overcome this resistance. Our findings highlight a novel signaling pathway through which many BH3 mimetics inhibit MCL1 and suggest the potential use of these agents as adjuvants in combination with various chemotherapy strategies.
Collapse
Affiliation(s)
- Tina C. Albershardt
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Lebanon, New Hampshire 03756
| | - Bethany L. Salerni
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Lebanon, New Hampshire 03756
| | - Ryan S. Soderquist
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Lebanon, New Hampshire 03756
| | - Darcy J. P. Bates
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Lebanon, New Hampshire 03756
| | - Alexandre A. Pletnev
- the Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, and
- the Norris Cotton Cancer Center, Lebanon, New Hampshire 03756
| | - Alexei F. Kisselev
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Lebanon, New Hampshire 03756
- the Norris Cotton Cancer Center, Lebanon, New Hampshire 03756
| | - Alan Eastman
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Lebanon, New Hampshire 03756
- the Norris Cotton Cancer Center, Lebanon, New Hampshire 03756
| |
Collapse
|
57
|
Dai H, Smith A, Meng XW, Schneider PA, Pang YP, Kaufmann SH. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. ACTA ACUST UNITED AC 2011; 194:39-48. [PMID: 21727192 PMCID: PMC3135403 DOI: 10.1083/jcb.201102027] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanism by which the proapoptotic Bcl-2 family members Bax and Bak release cytochrome c from mitochondria is incompletely understood. In this paper, we show that activator BH3-only proteins bind tightly but transiently to the Bak hydrophobic BH3-binding groove to induce Bak oligomerization, liposome permeabilization, mitochondrial cytochrome c release, and cell death. Analysis by surface plasmon resonance indicated that the initial binding of BH3-only proteins to Bak occurred with similar kinetics with or without detergent or mitochondrial lipids, but these reagents increase the strength of the Bak-BH3-only protein interaction. Point mutations in Bak and reciprocal mutations in the BH3-only proteins not only confirmed the identity of the interacting residues at the Bak-BH3-only protein interface but also demonstrated specificity of complex formation in vitro and in a cellular context. These observations indicate that transient protein-protein interactions involving the Bak BH3-binding groove initiate Bak oligomerization and activation.
Collapse
Affiliation(s)
- Haiming Dai
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
58
|
Droin N, Guéry L, Benikhlef N, Solary E. Targeting apoptosis proteins in hematological malignancies. Cancer Lett 2011; 332:325-34. [PMID: 21767908 DOI: 10.1016/j.canlet.2011.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 04/30/2011] [Accepted: 06/12/2011] [Indexed: 02/04/2023]
Abstract
The apoptotic machinery plays a key role in hematopoietic cell homeostasis. Terminally differentiated cells are eliminated, at least in part, by apoptosis, whereas part of the apoptotic machinery, including one or several caspases, is required to go through very specific steps of the differentiation pathways. A number of hematological diseases involve a deregulation of this machinery, which in most cases is a decrease in cell sensitivity to pro-apoptotic signals through over-expression of anti-apoptotic molecules. In some situations however, e.g. in the erythroid lineage of low grade myelodysplastic syndromes, cell sensitivity to apoptosis is increased in a death receptor-dependent manner and cell death pathways are inhibited only when these diseases progress into high grade and acute leukemia. Therapeutic strategies targeting the apoptotic machinery specifically block cell death inhibitors that are over-expressed in transformed cells, mainly Bcl-2-related proteins and Inhibitor of Apoptosis Proteins (IAPs). Another strategy is the activation of the extrinsic pathway to apoptosis, mainly through the death receptor agonist Tumor necrosis factor-Related Apoptosis Inducing Ligand (TRAIL) or agonistic antibodies targeting TRAIL receptors. The use of inhibitors of death receptors could make sense when these receptors are involved in excessive cell death or activation of survival pathways. Most of the drugs targeting apoptotic pathways introduced in clinics have demonstrated their tolerability. Their efficacy, either alone or in combination with other drugs such as demethylating agents and histone deacetylase inhibitors, is currently tested in both myeloid and lymphoid hematological diseases.
Collapse
Affiliation(s)
- Nathalie Droin
- Inserm UMR 1009, Institut Gustave Roussy, Université Paris-Sud 11, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | | | | | | |
Collapse
|
59
|
Cytotoxicity of farnesyltransferase inhibitors in lymphoid cells mediated by MAPK pathway inhibition and Bim up-regulation. Blood 2011; 118:4872-81. [PMID: 21673341 DOI: 10.1182/blood-2011-02-334870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mechanism of cytotoxicity of farnesyltransferase inhibitors is incompletely understood and seems to vary depending on the cell type. To identify potential determinants of sensitivity or resistance for study in the accompanying clinical trial (Witzig et al, page 4882), we examined the mechanism of cytotoxicity of tipifarnib in human lymphoid cell lines. Based on initial experiments showing that Jurkat variants lacking Fas-associated death domain or procaspase-8 undergo tipifarnib-induced apoptosis, whereas cells lacking caspase-9 or overexpressing Bcl-2 do not, we examined changes in Bcl-2 family members. Tipifarnib caused dose-dependent up-regulation of Bim in lymphoid cell lines (Jurkat, Molt3, H9, DoHH2, and RL) that undergo tipifarnib-induced apoptosis but not in lines (SKW6.4 and Hs445) that resist tipifarnib-induced apoptosis. Further analysis demonstrated that increased Bim levels reflect inhibition of signaling from c-Raf to MEK1/2 and ERK1/2. Additional experiments showed that down-regulation of the Ras guanine nucleotide exchange factor RasGRP1 diminished tipifarnib sensitivity, suggesting that H-Ras or N-Ras is a critical farnesylation target upstream of c-Raf in lymphoid cells. These results not only trace a pathway through c-Raf to Bim that contributes to tipifarnib cytotoxicity in human lymphoid cells but also identify potential determinants of sensitivity to this agent.
Collapse
|
60
|
Li Y, Zhao Y, Liu Z, Wang R. Automatic Tailoring and Transplanting: A Practical Method that Makes Virtual Screening More Useful. J Chem Inf Model 2011; 51:1474-91. [DOI: 10.1021/ci200036m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Li
- State Key Laboratory of Bioorganic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Yuan Zhao
- State Key Laboratory of Bioorganic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Zhihai Liu
- State Key Laboratory of Bioorganic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
61
|
Zauli G, Bosco R, Secchiero P. Molecular targets for selective killing of TRAIL-resistant leukemic cells. Expert Opin Ther Targets 2011; 15:931-42. [DOI: 10.1517/14728222.2011.580278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
62
|
Protective effects of SP600125 on renal ischemia-reperfusion injury in rats. J Surg Res 2011; 169:e77-84. [PMID: 21492872 DOI: 10.1016/j.jss.2011.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 01/29/2011] [Accepted: 02/14/2011] [Indexed: 01/12/2023]
Abstract
BACKGROUND Ischemia/reperfusion injury (IRI) has a negative effect on renal allograft survival. Using a rat model of kidney IRI in this study, we investigated the overall effect of selective c-Jun N-terminal kinase (JNK) inhibitor SP600125 on renal IRI events. METHODS All 45 Fisher rats were anesthetized and renal IRI model was established by 45 min clamp of bilateral renal pedicles and 24 h reperfusion. Vehicle solution or SP600125 solution was intraperitoneally injected 45 min before ischemia, respectively. Analysis of renal histology, function, reactive oxygen species (ROS) expression, JNK phosphorylation status, as well as intra-renal pro-inflammatory cytokines expression was evaluated in this study. RESULTS After IRI, the levels of blood urea nitrogen, creatinine, tissue malondialdehyde, TNF-α, IL-1β, IL-6 were all elevated significantly, while superoxide dismutase, catalase activity were decreased. Histologic findings showed severe devastating lesions and increased rodent cell apoptosis; SP600125 effectively improved morphologic features, reversed above-mentioned parameters, and significantly attenuated c-Jun phosphorylation, as well as intra-renal pro-inflammatory cytokines expression compared with vehicle-treated group. CONCLUSION These data demonstrate that inhibition of c-Jun with SP600125 is capable of attenuating renal IRI, which might be a novel therapy target.
Collapse
|
63
|
Smith AJ, Dai H, Correia C, Takahashi R, Lee SH, Schmitz I, Kaufmann SH. Noxa/Bcl-2 protein interactions contribute to bortezomib resistance in human lymphoid cells. J Biol Chem 2011; 286:17682-92. [PMID: 21454712 DOI: 10.1074/jbc.m110.189092] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies have suggested that the BH3 domain of the proapoptotic Bcl-2 family member Noxa only interacts with the anti-apoptotic proteins Mcl-1 and A1 but not Bcl-2. In view of the similarity of the BH3 binding domains of these anti-apoptotic proteins as well as recent evidence that studies of isolated BH3 domains can potentially underestimate the binding between full-length Bcl-2 family members, we examined the interaction of full-length human Noxa with anti-apoptotic human Bcl-2 family members. Surface plasmon resonance using bacterially expressed proteins demonstrated that Noxa binds with mean dissociation constants (K(D)) of 3.4 nm for Mcl-1, 70 nm for Bcl-x(L), and 250 nm for wild type human Bcl-2, demonstrating selectivity but not absolute specificity of Noxa for Mcl-1. Further analysis showed that the Noxa/Bcl-2 interaction reflected binding between the Noxa BH3 domain and the Bcl-2 BH3 binding groove. Analysis of proteins expressed in vivo demonstrated that Noxa and Bcl-2 can be pulled down together from a variety of cells. Moreover, when compared with wild type Bcl-2, certain lymphoma-derived Bcl-2 mutants bound Noxa up to 20-fold more tightly in vitro, pulled down more Noxa from cells, and protected cells against killing by transfected Noxa to a greater extent. When killing by bortezomib (an agent whose cytotoxicity in Jurkat T-cell leukemia cells is dependent on Noxa) was examined, apoptosis was enhanced by the Bcl-2/Bcl-x(L) antagonist ABT-737 or by Bcl-2 down-regulation and diminished by Bcl-2 overexpression. Collectively, these observations not only establish the ability of Noxa and Bcl-2 to interact but also identify Bcl-2 overexpression as a potential mechanism of bortezomib resistance.
Collapse
Affiliation(s)
- Alyson J Smith
- Department of Molecular Pharmacology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Hatta Y, Hershberger K, Shinya K, Proll SC, Dubielzig RR, Hatta M, Katze MG, Kawaoka Y, Suresh M. Viral replication rate regulates clinical outcome and CD8 T cell responses during highly pathogenic H5N1 influenza virus infection in mice. PLoS Pathog 2010; 6:e1001139. [PMID: 20949022 PMCID: PMC2951384 DOI: 10.1371/journal.ppat.1001139] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 09/08/2010] [Indexed: 12/22/2022] Open
Abstract
Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans. Outbreaks of avian influenza (AI) viruses have continued in chickens in Southeast Asia, coupled with regular instances of direct bird to human transmission, with extremely high case fatality rates. The mechanisms underlying the disease pathogenesis and high mortality rate in humans are not well understood. In particular, we lack information on the development and/or failure of adaptive immune responses during AI infection. Our studies in mice have linked the pathogenicity of AI viruses to the virus' rate of replication in the lungs. Surprisingly, a strong T cell response was triggered by the infection, but virus-specific T cells were ineffective in controlling the rapidly replicating virus. The extremely high rate of AI virus replication likely outpaces and overwhelms the developing immune response. However, administration of anti-viral drugs, only early in the infection slowed viral replication, enhanced the number of effector CD8 T cells in the lung, and promoted survival and recovery from infection. These findings highlight the role of viral replication rate in pathogenesis and underscore the importance of controlling viral replication as an adjunct to immunotherapies in the treatment of this infection in humans.
Collapse
MESH Headings
- Animals
- CD8 Antigens/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Cells, Cultured
- Dogs
- Humans
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza, Human/diagnosis
- Influenza, Human/drug therapy
- Influenza, Human/genetics
- Influenza, Human/immunology
- Lung Diseases/etiology
- Lung Diseases/immunology
- Lung Diseases/virology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Orthomyxoviridae Infections/diagnosis
- Orthomyxoviridae Infections/drug therapy
- Orthomyxoviridae Infections/genetics
- Orthomyxoviridae Infections/immunology
- Oseltamivir/therapeutic use
- Prognosis
- Virus Replication/immunology
- Virus Replication/physiology
Collapse
Affiliation(s)
- Yasuko Hatta
- Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Karen Hershberger
- Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kyoko Shinya
- Division of Zoonosis, Department of Microbiology and Infectious Disease, Graduate School of Medicine, Kobe University, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, Japan
| | - Sean C. Proll
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Richard R. Dubielzig
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Masato Hatta
- Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael G. Katze
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Yoshihiro Kawaoka
- Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- * E-mail: (MS); (YK)
| | - M. Suresh
- Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (MS); (YK)
| |
Collapse
|
65
|
Chen KF, Tai WT, Liu TH, Huang HP, Lin YC, Shiau CW, Li PK, Chen PJ, Cheng AL. Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin Cancer Res 2010; 16:5189-99. [PMID: 20884624 DOI: 10.1158/1078-0432.ccr-09-3389] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent. However, many hepatocellular carcinoma (HCC) cells show resistance to TRAIL-induced apoptosis. Here, we report that sorafenib improves the antitumor effect of TRAIL-related agents in resistant HCC. EXPERIMENTAL DESIGN HCC cell lines (PLC5, Huh-7, Hep3B, and Sk-Hep1) were treated with sorafenib and/or TRAIL-related agents (TRAIL or LBY135) and analyzed in terms of apoptosis and signal transduction. In vivo efficacy was determined in nude mice with PLC5 xenografts. RESULTS Sorafenib, the only approved drug for HCC, sensitizes resistant HCC cells to an agonistic DR5 antibody (LBY135) and TRAIL-induced apoptosis in TRAIL-resistant HCC cells. We found that STAT3 played a significant role in mediating TRAIL sensitization. Our data showed that sorafenib downregulated phospho-STAT3 (pSTAT3) and subsequently reduced the expression levels of STAT3-related proteins (Mcl-1, survivin, and cyclin D1) in a dose- and time-dependent manner in TRAIL-treated HCC cells. Knockdown of STAT3 by RNA interference overcame apoptotic resistance to TRAIL in HCC cells, and ectopic expression of STAT3 in HCC cells abolished the TRAIL-sensitizing effect of sorafenib. Moreover, SHP-1 inhibitor reversed downregulation of pSTAT3 and apoptosis induced by sorafenib, and silencing of SHP-1 by RNA interference abolished the effects of sorafenib on pSTAT3. Notably, sorafenib increased SHP-1 activity in PLC5 cells. Finally, sorafenib plus LBY135 significantly suppressed PLC5 xenograft tumor growth. CONCLUSIONS Sorafenib sensitizes resistant HCC cells to TRAIL-induced apoptosis at clinical achievable concentrations, and this effect is mediated via the inhibition of STAT3.
Collapse
Affiliation(s)
- Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Pratz KW, Levis MJ. Bench to bedside targeting of FLT3 in acute leukemia. Curr Drug Targets 2010; 11:781-9. [PMID: 20370649 DOI: 10.2174/138945010791320782] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/01/2010] [Indexed: 02/03/2023]
Abstract
FMS-Like-Tyrosine kinase-3 (FLT3) mutations are found in about 30% of cases of acute myeloid leukemia and confer an increased relapse rate and reduced overall survival. Targeting this tyrosine kinase by direction inhibition is the focus of both preclinical and clinical research in AML. Several molecules are in clinical development inhibit FLT3, but thus far clinical responses have been limited. Correlative studies from monotherapy trials have established that responses require sustained, effective FLT3 inhibition in vivo. Studies combining FLT3 inhibitors with chemotherapy have demonstrated increased remission rates to date but have yet to produce a survival advantage. Currently the only approved FLT3 inhibitor available for off-label use is sorafenib, which clearly has clinical activity but does not commonly lead to a complete response. Several FLT3 inhibitors are currently being tested as single agents and in combination with chemotherapy, and it seems likely that a clinically useful drug will eventually emerge.
Collapse
Affiliation(s)
- Keith W Pratz
- Department of Oncology, Division of Hematologic Malignancies, Sidney Kimmel Cancer Center at Johns Hopkins, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | |
Collapse
|
67
|
Fox NL, Humphreys R, Luster TA, Klein J, Gallant G. Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) Receptor-1 and Receptor-2 agonists for cancer therapy. Expert Opin Biol Ther 2010; 10:1-18. [PMID: 19857186 DOI: 10.1517/14712590903319656] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IMPORTANCE OF THE FIELD Agents that activate the TNF-related apoptosis-inducing ligand death receptors, TRAIL-R1 and TRAIL-R2, have attracted substantial attention and investment as potential anti-cancer therapies. Preclinical studies of TRAIL-R agonists indicate that they may be efficacious in a wide range of tumor types, especially when combined with chemotherapeutic agents. AREAS COVERED IN THIS REVIEW The rationale for clinical development of TRAIL-R agonists is described, including the basis for combining these agents with other agents that modulate the 'checks and balances' of the apoptotic pathways. Accruing data that highlight differences between TRAIL-R1 and TRAIL-R2 that could affect the clinical significance of their specific agonists are described. The clinical experience to date with each of the agonists is summarized. WHAT THE READER WILL GAIN The reader will gain an understanding of the rationale for the clinical development of TRAIL-R agonists, as well as the current status of clinical trials of these interesting new agents. TAKE HOME MESSAGE Ongoing clinical trials will provide important information regarding the future development of TRAIL-R agonists.
Collapse
|
68
|
Stewart ML, Fire E, Keating AE, Walensky LD. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol 2010; 6:595-601. [PMID: 20562877 PMCID: PMC3033224 DOI: 10.1038/nchembio.391] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/26/2010] [Indexed: 11/13/2022]
Abstract
The development of selective inhibitors for discrete anti-apoptotic BCL-2 family proteins implicated in pathologic cell survival remains a formidable but pressing challenge. Precisely tailored compounds would serve as molecular probes and targeted therapies to study and treat human diseases driven by specific anti-apoptotic blockades. In particular, MCL-1 has emerged as a major resistance factor in human cancer. By screening a library of Stabilized Alpha-Helix of BCL-2 domains (SAHBs), we determined that the MCL-1 BH3 helix is itself a potent and exclusive MCL-1 inhibitor. X-ray crystallography and mutagenesis studies defined key binding and specificity determinants, including the capacity to harness the hydrocarbon staple to optimize affinity while preserving selectivity. MCL-1 SAHB directly targets MCL-1, neutralizes its inhibitory interaction with pro-apoptotic BAK, and sensitizes cancer cells to caspase-dependent apoptosis. By leveraging nature’s solution to ligand selectivity, we generated an MCL-1-specific agent that defines the structural and functional features of targeted MCL-1 inhibition.
Collapse
Affiliation(s)
- Michelle L Stewart
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
69
|
Abstract
We report the results of a Phase I dose escalation trial of the multikinase inhibitor sorafenib in relapsed/refractory acute leukemias using an intermittent dosing regimen. Fifteen patients with advanced leukemia (Acute myeloid leukemia(AML), 2=Acute lymphoblastic leukemia(ALL), 1 Biphenotypic) and a median age of 63 (range 37–85) years were enrolled and treated on a dose escalation trial. Toxicities ≥grade 3 were present in 55% of cycles and the maximum tolerated dose (MTD) was determined to be 400mg BID × 21days in a 28 day cycle. Plasma inhibitory assays of kinase targets ERK and FLT3-ITD demonstrated excellent target inhibition, with FLT3-ITD silencing occurring below the MTD. The N-oxide metabolite of sorafenib appeared to be a more potent inhibitor of FLT3-ITD than the parent compound. Despite marked ex vivo FLT-3 ITD inhibition, no patients met criteria for complete or partial response in this monotherapy study. Eleven of fifteen patients experienced stable disease as best response. Although sorafenib demonstrated only modest clinical activity as a single agent in this heavily treated population, robust inhibition of FLT3 and ERK suggest there may be a potential important role in combination therapies.
Collapse
|
70
|
Gillissen B, Wendt J, Richter A, Richter A, Müer A, Overkamp T, Gebhardt N, Preissner R, Belka C, Dörken B, Daniel PT. Endogenous Bak inhibitors Mcl-1 and Bcl-xL: differential impact on TRAIL resistance in Bax-deficient carcinoma. ACTA ACUST UNITED AC 2010; 188:851-62. [PMID: 20308427 PMCID: PMC2845080 DOI: 10.1083/jcb.200912070] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although both Mcl-1 and Bcl-xL keep proapoptotic Bak in check, it is the loss of Mcl-1 that sensitizes cells to death receptor–mediated apoptosis. Tumor necrosis factor (α)–related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that preferentially kills tumor cells with limited cytotoxicity to nonmalignant cells. However, signaling from death receptors requires amplification via the mitochondrial apoptosis pathway (type II) in the majority of tumor cells. Thus, TRAIL-induced cell death entirely depends on the proapoptotic Bcl-2 family member Bax, which is often lost as a result of epigenetic inactivation or mutations. Consequently, Bax deficiency confers resistance against TRAIL-induced apoptosis. Despite expression of Bak, Bax-deficient cells are resistant to TRAIL-induced apoptosis. In this study, we show that the Bax dependency of TRAIL-induced apoptosis is determined by Mcl-1 but not Bcl-xL. Both are antiapoptotic Bcl-2 family proteins that keep Bak in check. Nevertheless, knockdown of Mcl-1 but not Bcl-xL overcame resistance to TRAIL, CD95/FasL and tumor necrosis factor (α) death receptor ligation in Bax-deficient cells, and enabled TRAIL to activate Bak, indicating that Mcl-1 rather than Bcl-xL is a major target for sensitization of Bax-deficient tumors for death receptor–induced apoptosis via the Bak pathway.
Collapse
Affiliation(s)
- Bernhard Gillissen
- Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Humboldt University, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Huang S, Sinicrope FA. Sorafenib inhibits STAT3 activation to enhance TRAIL-mediated apoptosis in human pancreatic cancer cells. Mol Cancer Ther 2010. [PMID: 20197401 DOI: 10.1158/1535-7163.mct-09-1004.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signal transducers and activators of transcription 3 (STAT3) is constitutively active in human pancreatic cancer cells and can promote cell growth and apoptosis resistance that contribute to tumorigenesis. We determined if sorafenib, a multikinase inhibitor, can induce apoptosis by targeting STAT3 signaling to enhance apoptosis induction by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Human pancreatic cancer cell lines (PANC-1 and BxPC-3) were preincubated with sorafenib (Nexavar) alone or followed by TRAIL. Apoptosis was determined by Annexin V labeling, caspase cleavage, and Bax/Bak activation. Protein expression was analyzed by immunoblotting. Knockdown of STAT3, Mcl-1, and Bim were achieved by lentiviral small hairpin RNA. Adenoviral dominant-negative or retroviral constitutively active (CA) STAT3 were also used. Sorafenib inhibited constitutive STAT3 phosphorylation (Tyr(705)) and suppressed Mcl-1 and Bcl-x(L) proteins in a dose- and time-dependent manner. CA-STAT3 overexpression was shown to attenuate caspase-3 cleavage and suppression of Mcl-1 by sorafenib. STAT3 knockdown or a DN STAT3 was shown to downregulate Mcl-1 and Bcl-x(L) and to sensitize cells to TRAIL-mediated apoptosis. Treatment with sorafenib enhanced TRAIL-induced Annexin V staining and release of mitochondrial cytochrome c and AIF. Because the BH3-only Bim protein is a potent inducer of mitochondrial apoptosis, Bim knockdown was shown to attenuate caspase-3, caspase-9 cleavage, and Bax/Bak activation by sorafenib plus TRAIL. The suppression of STAT3 by genetic means or using sorafenib was shown to downregulate Mcl-1 and Bcl-x(L) and to sensitize cells to TRAIL-mediated apoptosis. These data indicate that targeting STAT3 may enhance treatment efficacy against pancreatic cancer.
Collapse
Affiliation(s)
- Shengbing Huang
- Divisions of Oncology and Gastroenterology/Hepatology, Mayo Cancer Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
72
|
Huang S, Sinicrope FA. Sorafenib inhibits STAT3 activation to enhance TRAIL-mediated apoptosis in human pancreatic cancer cells. Mol Cancer Ther 2010; 9:742-50. [PMID: 20197401 DOI: 10.1158/1535-7163.mct-09-1004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signal transducers and activators of transcription 3 (STAT3) is constitutively active in human pancreatic cancer cells and can promote cell growth and apoptosis resistance that contribute to tumorigenesis. We determined if sorafenib, a multikinase inhibitor, can induce apoptosis by targeting STAT3 signaling to enhance apoptosis induction by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Human pancreatic cancer cell lines (PANC-1 and BxPC-3) were preincubated with sorafenib (Nexavar) alone or followed by TRAIL. Apoptosis was determined by Annexin V labeling, caspase cleavage, and Bax/Bak activation. Protein expression was analyzed by immunoblotting. Knockdown of STAT3, Mcl-1, and Bim were achieved by lentiviral small hairpin RNA. Adenoviral dominant-negative or retroviral constitutively active (CA) STAT3 were also used. Sorafenib inhibited constitutive STAT3 phosphorylation (Tyr(705)) and suppressed Mcl-1 and Bcl-x(L) proteins in a dose- and time-dependent manner. CA-STAT3 overexpression was shown to attenuate caspase-3 cleavage and suppression of Mcl-1 by sorafenib. STAT3 knockdown or a DN STAT3 was shown to downregulate Mcl-1 and Bcl-x(L) and to sensitize cells to TRAIL-mediated apoptosis. Treatment with sorafenib enhanced TRAIL-induced Annexin V staining and release of mitochondrial cytochrome c and AIF. Because the BH3-only Bim protein is a potent inducer of mitochondrial apoptosis, Bim knockdown was shown to attenuate caspase-3, caspase-9 cleavage, and Bax/Bak activation by sorafenib plus TRAIL. The suppression of STAT3 by genetic means or using sorafenib was shown to downregulate Mcl-1 and Bcl-x(L) and to sensitize cells to TRAIL-mediated apoptosis. These data indicate that targeting STAT3 may enhance treatment efficacy against pancreatic cancer.
Collapse
Affiliation(s)
- Shengbing Huang
- Divisions of Oncology and Gastroenterology/Hepatology, Mayo Cancer Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
73
|
Llobet D, Eritja N, Yeramian A, Pallares J, Sorolla A, Domingo M, Santacana M, Gonzalez-Tallada F, Matias-Guiu X, Dolcet X. The multikinase inhibitor Sorafenib induces apoptosis and sensitises endometrial cancer cells to TRAIL by different mechanisms. Eur J Cancer 2010; 46:836-50. [DOI: 10.1016/j.ejca.2009.12.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/16/2009] [Indexed: 01/07/2023]
|
74
|
Ding W, Cai T, Zhu H, Wu R, Tu C, Yang L, Lu W, He Q, Yang B. Synergistic antitumor effect of TRAIL in combination with sunitinib in vitro and in vivo. Cancer Lett 2010; 293:158-66. [PMID: 20137855 DOI: 10.1016/j.canlet.2010.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 12/25/2009] [Accepted: 01/11/2010] [Indexed: 11/28/2022]
Abstract
The present data showed that sunitinib potentiated the in vitro and in vivo anticancer capabilities of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as Apo2 ligand. Interactions between sunitinib and TRAIL were examined in colon cancer SW620 cells and lung cancer 95-D cells. The average combination index (CI) values of the anti-proliferation abilities on each cancer cell line were less than 1.0, demonstrating the synergism of the combination of sunitinib and TRAIL. Western blot experiments indicated that TRAIL and sunitinib synergistically enhanced apoptosis by simultaneously activating the extrinsic and intrinsic pathways. The decrease in the expression levels of anti-apoptotic proteins cFLIP, XIAP and Mcl-1 were probably involved in this apoptosis enhancement. Furthermore, treatment of colon cancer SW620-bearing nude mice with sunitinib plus TRAIL resulted in more significant tumor growth inhibition (52.8%), comparing with the moderate inhibition in TRAIL-treated (35.3%) or sunitinib-treated groups (26.7%) (p<0.05). These results indicate that the combination of TRAIL with sunitinib seems highly encouraging and warrants further investigation in a clinical setting.
Collapse
Affiliation(s)
- Wanjing Ding
- School of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Crump M, Hedley D, Kamel-Reid S, Leber B, Wells R, Brandwein J, Buckstein R, Kassis J, Minden M, Matthews J, Robinson S, Turner R, Mcintosh L, Eisenhauer E, Seymour L. A randomized phase I clinical and biologic study of two schedules of sorafenib in patients with myelodysplastic syndrome or acute myeloid leukemia: a NCIC (National Cancer Institute of Canada) Clinical Trials Group Study. Leuk Lymphoma 2010; 51:252-60. [DOI: 10.3109/10428190903585286] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
76
|
Chen KF, Yu HC, Liu TH, Lee SS, Chen PJ, Cheng AL. Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation. J Hepatol 2010; 52:88-95. [PMID: 19913321 DOI: 10.1016/j.jhep.2009.10.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/21/2009] [Accepted: 08/05/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Previously we reported that Akt inactivation determines the sensitivity of hepatocellular carcinoma (HCC) cells to bortezomib. Here we report that combined treatment with sorafenib and bortezomib shows synergistic effects in HCC. METHODS HCC cell lines (PLC/PRF/5, Huh-7, and Hep3B) were treated with sorafenib and/or bortezomib and analyzed in terms of apoptosis signal transduction. In vivo efficacy was determined in nude mice with PLC/PRF/5 xenografts. RESULTS Pretreatment with sorafenib enhanced bortezomib-induced apoptotic cell death by restoring bortezomib's ability to inactivate Akt in PLC/PRF/5 cells. Knocking down Akt1 by RNA-interference overcame apoptotic resistance to bortezomib in PLC/PRF/5 cells and ectopic expression of active Akt in HCC cells abolished the bortezomib sensitizing effect of sorafenib, indicating Akt inactivation plays a key role in mediating the combinational effects. Moreover, okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, reversed down-regulation of phospho-Akt (P-Akt) expression induced by co-treatment with sorafenib and bortezomib, and 1, 9 di-deoxy-forskolin, a PP2A agonist, restored bortezomib's effect on P-Akt and apoptosis. Importantly, silencing of PP2A by RNA-interference reduced the apoptotic effect induced by sorafenib-bortezomib co-treatment, indicating that PP2A is indispensable for mediating the effects of these drugs. Notably, sorafenib with bortezomib increased PP2A activity in PLC/PRF/5 cells without altering protein levels of PP2A complex or the interaction between PP2A and Akt proteins. Finally, sorafenib plus bortezomib significantly suppressed PLC/PRF/5 xenograft tumor growth, down-regulated P-Akt expression, and up-regulated PP2A activity. CONCLUSIONS The combination of sorafenib and bortezomib shows synergy in HCC through PP2A-dependent Akt inactivation.
Collapse
Affiliation(s)
- Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taiwan
| | | | | | | | | | | |
Collapse
|
77
|
Mellier G, Huang S, Shenoy K, Pervaiz S. TRAILing death in cancer. Mol Aspects Med 2009; 31:93-112. [PMID: 19995571 DOI: 10.1016/j.mam.2009.12.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/02/2009] [Indexed: 12/13/2022]
Abstract
The observation that certain types of cancer express death receptors on their cell surface has triggered heightened interest in exploring the potential of receptor ligation as a novel anti-cancer modality, and since the expression is somewhat restricted to cancer cells the therapeutic implications are very promising. One such death receptor ligand belonging to the tumor necrosis receptor (TNF) superfamily, TNF-related apoptosis-inducing ligand (TRAIL), has been in the limelight as a tumor selective molecule that transmits death signal via ligation to its receptors (TRAIL-R1 and TRAIL-R2 or death receptors 4 and 5; DR4 and DR5). Interestingly, TRAIL-induced apoptosis exhibits hallmarks of extrinsic as well as intrinsic death pathways, and, therefore, is subject to regulation both at the cell surface receptor level as well as more downstream at the post-mitochondrial level. Despite the remarkable selectivity of DR expression on cancer cell surface, development of resistance to TRAIL-induced apoptosis remains a major challenge. Therefore, unraveling the cellular and molecular mechanisms of TRAIL resistance as well as identifying strategies to overcome this problem for an effective therapeutic response remains the cornerstone of many research endeavors. This review aims at presenting an overview of the biology, function and translational relevance of TRAIL with a specific view to discussing the various regulatory mechanisms and the current trends in reverting TRAIL resistance of cancer cells with the obvious implication of an improved clinical outcome.
Collapse
Affiliation(s)
- Gregory Mellier
- Department of Physiology, Yong Loo Lin School of Medicine, Singapore
| | | | | | | |
Collapse
|
78
|
Sánchez-Pérez T, Ortiz-Ferrón G, López-Rivas A. Mitotic arrest and JNK-induced proteasomal degradation of FLIP and Mcl-1 are key events in the sensitization of breast tumor cells to TRAIL by antimicrotubule agents. Cell Death Differ 2009; 17:883-94. [PMID: 19942932 DOI: 10.1038/cdd.2009.176] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Breast tumor cells are often resistant to tumor necrosis factor-related apoptosis-inducing ligand (tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)/APO-2 L). Here, we describe the sensitization by microtubule-interfering agents (MIAs) to TRAIL-induced apoptosis in breast tumor cells through a mitotic arrest and c-Jun N-terminal kinase (JNK)-dependent mechanism. MIA treatment resulted in BubR1-dependent mitotic arrest leading to the sustained activation of JNK and the proteasome-mediated downregulation of cellular FLICE-inhibitory protein (cFLIP) and myeloid cell leukemia-1 (Mcl-1) expression. The JNK inhibitor SP600125 abrogated MIA-induced mitotic arrest and downregulation of cFLIP and Mcl-1 and reduced the apoptosis caused by the combination of MIAs and TRAIL. Silencing of cFLIP and Mcl-1 expression by RNA interference resulted in a marked sensitization to TRAIL-induced apoptosis. Furthermore, in FLIP-overexpressing cells, MIA-induced sensitization to TRAIL-activated apoptosis was markedly reduced. In summary, our results show that mitotic arrest imposed by MIAs activates JNK and facilitates TRAIL-induced activation of an apoptotic pathway in breast tumor cells by promoting the proteasome-mediated degradation of cFLIP and Mcl-1.
Collapse
Affiliation(s)
- T Sánchez-Pérez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | | | | |
Collapse
|
79
|
Meng XW, Heldebrant MP, Flatten KS, Loegering DA, Dai H, Schneider PA, Gomez TS, Peterson KL, Trushin SA, Hess AD, Smith BD, Karp JE, Billadeau DD, Kaufmann SH. Protein kinase Cbeta modulates ligand-induced cell surface death receptor accumulation: a mechanistic basis for enzastaurin-death ligand synergy. J Biol Chem 2009; 285:888-902. [PMID: 19887445 DOI: 10.1074/jbc.m109.057638] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although treatment with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) is known to protect a subset of cells from induction of apoptosis by death ligands such as Fas ligand and tumor necrosis factor-alpha-related apoptosis-inducing ligand, the mechanism of this protection is unknown. This study demonstrated that protection in short term apoptosis assays and long term proliferation assays was maximal when Jurkat or HL-60 human leukemia cells were treated with 2-5 nm PMA. Immunoblotting demonstrated that multiple PKC isoforms, including PKCalpha, PKCbeta, PKCepsilon, and PKC, translocated from the cytosol to a membrane-bound fraction at these PMA concentrations. When the ability of short hairpin RNA (shRNA) constructs that specifically down-regulated each of these isoforms was examined, PKCbeta shRNA uniquely reversed PMA-induced protection against cell death. The PKCbeta-selective small molecule inhibitor enzastaurin had a similar effect. Although mass spectrometry suggested that Fas is phosphorylated on a number of serines and threonines, mutation of these sites individually or collectively had no effect on Fas-mediated death signaling or PMA protection. Further experiments demonstrated that PMA diminished ligand-induced cell surface accumulation of Fas and DR5, and PKCbeta shRNA or enzastaurin reversed this effect. Moreover, enzastaurin sensitized a variety of human tumor cell lines and clinical acute myelogenous leukemia isolates, which express abundant PKCbeta, to tumor necrosis factor-alpha related apoptosis-inducing ligand-induced death in the absence of PMA. Collectively, these results identify a specific PKC isoform that modulates death receptor-mediated cytotoxicity as well as a small molecule inhibitor that mitigates the inhibitory effects of PKC activation on ligand-induced death receptor trafficking and cell death.
Collapse
Affiliation(s)
- Xue Wei Meng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Vaculová A, Hofmanová J, Zatloukalová J, Kozubík A. Differences in TRAIL-induced changes of Mcl-1 expression among distinct human colon epithelial cell lines. Exp Cell Res 2009; 315:3259-66. [DOI: 10.1016/j.yexcr.2009.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 08/31/2009] [Accepted: 09/19/2009] [Indexed: 12/21/2022]
|
81
|
Schneiders UM, Schyschka L, Rudy A, Vollmar AM. BH3-only proteins Mcl-1 and Bim as well as endonuclease G are targeted in spongistatin 1-induced apoptosis in breast cancer cells. Mol Cancer Ther 2009; 8:2914-25. [PMID: 19808980 DOI: 10.1158/1535-7163.mct-08-1179] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spongistatin 1, a marine experimental substance with chemotherapeutic potential, induces apoptosis and inhibits clonogenic survival of MCF-7 cells. Regarding the apoptotic signaling pathways of spongistatin 1, we present two major facts. Firstly, spongistatin 1-induced cell death, mainly caspase-independent, involves the proapoptotic proteins apoptosis-inducing factor and endonuclease G. Both proteins translocate from mitochondria to the nucleus and contribute to spongistatin 1-mediated apoptosis as shown via gene silencing. Secondly, spongistatin 1 acts as a tubulin depolymerizing agent and is able to free the proapoptotic Bcl-2 family member Bim from its sequestration both by the microtubular complex and by the antiapoptotic protein Mcl-1. Silencing of Bim by small interfering RNA leads to a diminished translocation of apoptosis-inducing factor and endonuclease G to the nucleus and subsequently reduces apoptosis rate. Thus, we identified Bim as an important factor upstream of mitochondria executing a central role in the caspase-independent apoptotic signaling pathway induced by spongistatin 1. Taken together, spongistatin 1 is both a valuable tool for the characterization of apoptotic pathways and a promising experimental anticancer drug.
Collapse
Affiliation(s)
- Uta M Schneiders
- Department of Pharmacy, Center for Drug Research, University of Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
82
|
Masuoka HC, Mott J, Bronk SF, Werneburg NW, Akazawa Y, Kaufmann SH, Gores GJ. Mcl-1 degradation during hepatocyte lipoapoptosis. J Biol Chem 2009; 284:30039-48. [PMID: 19734538 DOI: 10.1074/jbc.m109.039545] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mechanisms of free fatty acid-induced lipoapoptosis are incompletely understood. Here we demonstrate that Mcl-1, an anti-apoptotic member of the Bcl-2 family, was rapidly degraded in hepatocytes in response to palmitate and stearate by a proteasome-dependent pathway. Overexpression of a ubiquitin-resistant Mcl-1 mutant in Huh-7 cells attenuated palmitate-mediated Mcl-1 loss and lipoapoptosis; conversely, short hairpin RNA-targeted knockdown of Mcl-1 sensitized these cells to lipoapoptosis. Palmitate-induced Mcl-1 degradation was attenuated by the novel protein kinase C (PKC) inhibitor rottlerin. Of the two human novel PKC isozymes, PKCdelta and PKC, only activation of PKC was observed by phospho-immunoblot analysis. As compared with Jurkat cells, a smaller PKC polypeptide and mRNA were expressed in hepatocytes consistent with an alternative splice variant. Short hairpin RNA-mediated knockdown of PKC reduced Mcl-1 degradation and lipoapoptosis. Likewise, genetic deletion of Pkc also attenuated Mcl-1 degradation and cytotoxicity by palmitate in primary hepatocytes. During treatment with palmitate, rottlerin inhibited phosphorylation of Mcl-1 at Ser(159), a phosphorylation site previously implicated in Mcl-1 turnover. Consistent with these results, an Mcl-1 S159A mutant was resistant to degradation and improved cell survival during palmitate treatment. Collectively, these results implicate PKC-dependent destabilization of Mcl-1 as a mechanism contributing to hepatocyte lipoapoptosis.
Collapse
Affiliation(s)
- Howard C Masuoka
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Sun HL, Tsai AC, Pan SL, Ding Q, Yamaguchi H, Lin CN, Hung MC, Teng CM. EPOX inhibits angiogenesis by degradation of Mcl-1 through ERK inactivation. Clin Cancer Res 2009; 15:4904-14. [PMID: 19622586 DOI: 10.1158/1078-0432.ccr-09-0269] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Antiangiogenic therapy is considered as an effective strategy for controlling the growth and metastasis of tumors. Among a myriad of biological activities described for xanthone derivatives, the anticancer activity is quite remarkable, but the molecular mechanism is not clearly resolved. In the present study, we investigated the antiangiogenic mechanism of 3,6-di(2,3-epoxypropoxy)xanthone (EPOX), a novel Mcl-1 targeting drug. EXPERIMENTAL DESIGN To evaluate the antiangiogenic activity of EPOX, we did cell viability, cell cycle, tube formation assay in vitro, and Matrigel plug assay in vivo. To evaluate the effect of EPOX on the endothelial signaling pathway, we did immunoblotting, immunoprecipitation, and immunofluorescence analysis. Intracellular glutathione levels were determined with the use of monochlorobimane, a glutathione-specific probe. RESULTS EPOX induced endothelial cell apoptosis in association with proteasome-dependent Mcl-1 degradation. Down-regulation of Mcl-1 resulted in an increase in Mcl-1-free Bim, activation of Bax, and then signaling of mitochondria-mediated apoptosis. Additionally, glutathione depletion and extracellular signal-regulated kinase (ERK) inactivation was observed in EPOX-treated cells. Glutathione supplementation reversed the inhibitory effects of EPOX on ERK, which increases the phosphorylation of Mcl-1 at T(163.) Overexpression of mitogen-activated protein/ERK kinase (MEK) partially reversed the effect of EPOX on Mcl-1 dephosphorylation, ubiquitination, and degradation, further implicating ERK in the regulation of Mcl-1 stability. CONCLUSIONS This study provides evidence that EPOX induces glutathione depletion, ERK inactivation, and Mcl-1 degradation on endothelial cells, which leads to inhibition of angiogenesis. Our results suggest that EPOX is a novel antiangiogenic agent, making it a promising lead compound for further development in the treatment of angiogenesis-related pathologies.
Collapse
Affiliation(s)
- Hui-Lung Sun
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Dai H, Meng XW, Lee SH, Schneider PA, Kaufmann SH. Context-dependent Bcl-2/Bak interactions regulate lymphoid cell apoptosis. J Biol Chem 2009; 284:18311-22. [PMID: 19351886 PMCID: PMC2709361 DOI: 10.1074/jbc.m109.004770] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/06/2009] [Indexed: 11/06/2022] Open
Abstract
The release of cytochrome c from mitochondria, which leads to activation of the intrinsic apoptotic pathway, is regulated by interactions of Bax and Bak with antiapoptotic Bcl-2 family members. The factors that regulate these interactions are, at the present time, incompletely understood. Recent studies showing preferences in binding between synthetic Bcl-2 homology domain 3 and antiapoptotic Bcl-2 family members in vitro have suggested that the antiapoptotic proteins Mcl-1 and Bcl-x(L), but not Bcl-2, restrain proapoptotic Bak from inducing mitochondrial membrane permeabilization and apoptosis. Here we show that Bak protein has a much higher affinity than the 26-amino acid Bak Bcl-2 homology domain 3 for Bcl-2, that some naturally occurring Bcl-2 allelic variants have an affinity for full-length Bak that is only 3-fold lower than that of Mcl-1, and that endogenous levels of these Bcl-2 variants (which are as much as 40-fold more abundant than Mcl-1) restrain part of the Bak in intact lymphoid cells. In addition, we demonstrate that Bcl-2 variants can, depending on their affinity for Bak, substitute for Mcl-1 in protecting cells. Thus, the ability of Bcl-2 to protect cells from activated Bak depends on two important contextual variables, the identity of the Bcl-2 present and the amount expressed.
Collapse
Affiliation(s)
| | - X. Wei Meng
- From the Division of Oncology Research and
- Department of Molecular Pharmacology, Mayo Clinic, Rochester, Minnesota 55905
| | - Sun-Hee Lee
- Department of Molecular Pharmacology, Mayo Clinic, Rochester, Minnesota 55905
| | | | - Scott H. Kaufmann
- From the Division of Oncology Research and
- Department of Molecular Pharmacology, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
85
|
Moretto P, Hotte SJ. Targeting apoptosis: preclinical and early clinical experience with mapatumumab, an agonist monoclonal antibody targeting TRAIL-R1. Expert Opin Investig Drugs 2009; 18:311-25. [DOI: 10.1517/13543780902752463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
86
|
Morioka S, Omori E, Kajino T, Kajino-Sakamoto R, Matsumoto K, Ninomiya-Tsuji J. TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP. Oncogene 2009; 28:2257-65. [PMID: 19421137 PMCID: PMC2796077 DOI: 10.1038/onc.2009.110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a potent inducer of cell death in several cancer cells, but many cells are resistant to TRAIL. The mechanism that determines sensitivity to TRAIL-killing is still elusive. Here we report that deletion of TAK1 kinase greatly increased activation of caspase-3 and induced cell death following TRAIL stimulation in keratinocytes and fibroblasts as well as cancer cells. Although TAK1 kinase is involved in NF-κB pathway, ablation of NF-κB did not alter sensitivity to TRAIL. We found that TRAIL could induce accumulation of reactive oxygen species (ROS) when TAK1 was deleted. Furthermore, we found that TAK1 deletion induces TRAIL-dependent downregulation of cIAP, which enhances activation of caspase-3. These results demonstrate that TAK1 deletion facilitates TRAIL-induced cell death by activating caspase through ROS and downregulation of cIAP. Thus, inhibition of TAK1 can be an effective approach to increase TRAIL sensitivity.
Collapse
Affiliation(s)
- S Morioka
- Department of Molecular Biology, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
87
|
Fulda S. Therapeutic opportunities for counteracting apoptosis resistance in childhood leukaemia. Br J Haematol 2009; 145:441-54. [DOI: 10.1111/j.1365-2141.2009.07603.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
88
|
Ammann JU, Haag C, Kasperczyk H, Debatin KM, Fulda S. Sensitization of neuroblastoma cells for TRAIL-induced apoptosis by NF-kappaB inhibition. Int J Cancer 2009; 124:1301-11. [PMID: 19065652 DOI: 10.1002/ijc.24068] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) plays a central role in stress-induced transcriptional activation and has been implicated in chemoresistance of cancers. In the present study, we investigated the role of NF-kappaB in inducible chemoresistance of neuroblastoma. Doxorubicin, VP16 and the cytotoxic ligand TRAIL trigger NF-kappaB activation, whereas cisplatin and taxol have no impact on NF-kappaB activity. Specific inhibition of NF-kappaB activation by overexpression of dominant-negative mutant IkappaBalpha-super-repressor does not alter cell death upon doxorubicin or VP16 treatment, although it prevents doxorubicin- or VP16-mediated NF-kappaB activation. By comparison, inhibition of TRAIL-stimulated NF-kappaB activation by IkappaBalpha-superrepressor or the small molecule NF-kappaB inhibitor BMS-345541 significantly enhances TRAIL-induced apoptosis, pointing to an antiapoptotic function of NF-kappaB in TRAIL-mediated apoptosis. Analysis of signaling pathways reveals that NF-kappaB inhibition prevents TRAIL-triggered up-regulation of Mcl-1, promoting TRAIL-induced cytochrome c release and activation of caspases. Accordingly, knockdown of Mcl-1 by RNA interference significantly enhances TRAIL-induced apoptosis and also increases sensitivity of neuroblastoma cells to CD95- or chemotherapy-induced apoptosis. In conclusion, NF-kappaB regulates apoptosis in a stimulus-specific manner in neuroblastoma cells and confers protection against TRAIL-induced apoptosis. By demonstrating that NF-kappaB inhibition sensitizes neuroblastoma cells for TRAIL-induced apoptosis, our findings have important implications. Thus, NF-kappaB inhibitors may open new perspectives to potentiate the efficacy of TRAIL-based protocols in the treatment of neuroblastoma.
Collapse
|
89
|
|
90
|
|
91
|
Active oral regimen for elderly adults with newly diagnosed acute myelogenous leukemia: a preclinical and phase 1 trial of the farnesyltransferase inhibitor tipifarnib (R115777, Zarnestra) combined with etoposide. Blood 2008; 113:4841-52. [PMID: 19109557 DOI: 10.1182/blood-2008-08-172726] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The farnesyltransferase inhibitor tipifarnib exhibits modest activity against acute myelogenous leukemia. To build on these results, we examined the effect of combining tipifarnib with other agents. Tipifarnib inhibited signaling downstream of the farnesylated small G protein Rheb and synergistically enhanced etoposide-induced antiproliferative effects in lymphohematopoietic cell lines and acute myelogenous leukemia isolates. We subsequently conducted a phase 1 trial of tipifarnib plus etoposide in adults over 70 years of age who were not candidates for conventional therapy. A total of 84 patients (median age, 77 years) received 224 cycles of oral tipifarnib (300-600 mg twice daily for 14 or 21 days) plus oral etoposide (100-200 mg daily on days 1-3 and 8-10). Dose-limiting toxicities occurred with 21-day tipifarnib. Complete remissions were achieved in 16 of 54 (30%) receiving 14-day tipifarnib versus 5 of 30 (17%) receiving 21-day tipifarnib. Complete remissions occurred in 50% of two 14-day tipifarnib cohorts: 3A (tipifarnib 600, etoposide 100) and 8A (tipifarnib 400, etoposide 200). In vivo, tipifarnib plus etoposide decreased ribosomal S6 protein phosphorylation and increased histone H2AX phosphorylation and apoptosis. Tipifarnib plus etoposide is a promising orally bioavailable regimen that warrants further evaluation in elderly adults who are not candidates for conventional induction chemotherapy. These clinical studies are registered at www.clinicaltrials.gov as #NCT00112853.
Collapse
|
92
|
Ashkenazi A. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 2008; 7:1001-12. [DOI: 10.1038/nrd2637] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
93
|
Wang S. The promise of cancer therapeutics targeting the TNF-related apoptosis-inducing ligand and TRAIL receptor pathway. Oncogene 2008; 27:6207-15. [DOI: 10.1038/onc.2008.298] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
94
|
Callus BA, Moujallad DM, Silke J, Gerl R, Jabbour AM, Ekert PG, Vaux DL. Triggering of apoptosis by Puma is determined by the threshold set by prosurvival Bcl-2 family proteins. J Mol Biol 2008; 384:313-23. [PMID: 18835564 DOI: 10.1016/j.jmb.2008.09.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
Puma (p53 upregulated modulator of apoptosis) belongs to the BH3 (Bcl-2 homology 3)-only protein family of apoptotic regulators. Its expression is induced by various apoptotic stimuli, including irradiation and cytokine withdrawal. Using an inducible system to express Puma, we investigated the nature of Puma-induced apoptosis. In BaF(3) cells, expression of Puma caused rapid caspase-mediated cleavage of ICAD (inhibitor of caspase-activated deoxyribonuclease) and Mcl-1 (myeloid cell leukemia 1), leading to complete loss of cell viability. Surprisingly, Puma protein levels peaked within 2 h of its induction and subsequently declined to basal levels. Maximal Puma abundance coincided with the onset of caspase activity. Subsequent loss of Puma was prevented by the inhibition of caspases, indicating that its degradation was caspase dependent. In cells expressing transfected Bcl-2, induced Puma reached significantly higher levels, but after a delay, caspases became active and cell death occurred. Puma co-immunoprecipitated endogenous Bcl-2 and Mcl-1 but not Bax and Bak, suggesting that Puma did not associate with either Bax or Bak in these cells to initiate cell death. In mouse embryonic fibroblasts (MEFs), the amount of Puma peaked within 4 h of its induction. In contrast, in bax/bak double-knockout MEFs, Puma was stably expressed following its induction and was unable to trigger apoptosis even at very high levels. Overexpression of Bcl-2 in wild-type MEFs, like in BaF(3) cells, resulted in higher levels of Puma being reached but did not prevent cell death from occurring. These results demonstrate that the level of the Bcl-2 prosurvival family sets the threshold at which Puma is able to indirectly activate Bax or Bak, leading in turn to activation of caspases that not only cause cell death but also rapidly induce Puma degradation.
Collapse
Affiliation(s)
- Bernard A Callus
- Department of Biochemistry, La Trobe University, Victoria 3086, Australia.
| | | | | | | | | | | | | |
Collapse
|
95
|
Ashkenazi A, Herbst RS. To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 2008; 118:1979-90. [PMID: 18523647 DOI: 10.1172/jci34359] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Disturbances in mechanisms that direct abnormal cells to undergo apoptosis frequently and critically contribute to tumorigenesis, yielding a logical target for potential therapeutic intervention. There is currently heightened interest in the extrinsic apoptosis pathway, with several proapoptotic receptor agonists (PARAs) in development. The PARAs include the ligand recombinant human Apo2L/TRAIL and agonistic mAbs. Mechanistic and preclinical data with Apo2L/TRAIL indicate exciting opportunities for synergy with conventional therapies and for combining PARAs with other molecularly targeted agents. Novel molecular biomarkers may help identify those patients most likely to benefit from PARA therapy.
Collapse
Affiliation(s)
- Avi Ashkenazi
- Genentech, South San Francisco, California 94080, USA.
| | | |
Collapse
|
96
|
Song JH, Kandasamy K, Kraft AS. ABT-737 induces expression of the death receptor 5 and sensitizes human cancer cells to TRAIL-induced apoptosis. J Biol Chem 2008; 283:25003-13. [PMID: 18599488 DOI: 10.1074/jbc.m802511200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because Bcl-2 family members inhibit the ability of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis, we investigated whether ABT-737, a small molecule Bcl-2 inhibitor, enhances TRAIL killing. We demonstrate that a combination of ABT-737 and TRAIL induced significant cell death in multiple cancer types, including renal, prostate, and lung cancers, although each agent individually had little activity in these tumor cells. All of these cell lines expressed the Mcl-1 protein that is known to block the activity of ABT-737 and TRAIL but did not block the synergy between these agents. However, Bax-deficient cell lines, including DU145 and HCT116 cells and those cell lines expressing low levels of TRAIL receptor, were resistant to apoptosis induced by these agents. To understand how ABT-737 functions to markedly increase TRAIL sensitivity, the levels of specific death-inducing signaling complex components were evaluated. Treatment with ABT-737 did not change the levels of c-FLIP, FADD, and caspase-8 but up-regulated the levels of the TRAIL receptor DR5. DR5 up-regulation induced by ABT-737 treatment occurred through a transcriptional mechanism, and mutagenesis studies demonstrated that the NF-kappaB site found in the DR5 promoter was essential for the ability of ABT-737 to increase the levels of this mRNA. Using luciferase reporter plasmids, ABT-737 was shown to stimulate NF-kappaB activity. Together, these results demonstrate that the ability of ABT-737 and TRAIL to induce apoptosis is mediated through activation of both the extrinsic and intrinsic pathways. Combinations of ABT-737 and TRAIL can be exploited therapeutically where antiapoptotic Bcl-2 family members drive tumor cell resistance to current anticancer therapies.
Collapse
Affiliation(s)
- Jin H Song
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
97
|
|
98
|
Chetoui N, Sylla K, Gagnon-Houde JV, Alcaide-Loridan C, Charron D, Al-Daccak R, Aoudjit F. Down-regulation of mcl-1 by small interfering RNA sensitizes resistant melanoma cells to fas-mediated apoptosis. Mol Cancer Res 2008; 6:42-52. [PMID: 18234961 DOI: 10.1158/1541-7786.mcr-07-0080] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance of malignant melanoma cells to Fas-mediated apoptosis is among the mechanisms by which they escape immune surveillance. However, the mechanisms contributing to their resistance are not completely understood, and it is still unclear whether antiapoptotic Bcl-2-related family proteins play a role in this resistance. In this study, we report that treatment of Fas-resistant melanoma cell lines with cycloheximide, a general inhibitor of de novo protein synthesis, sensitizes them to anti-Fas monoclonal antibody (mAb)-induced apoptosis. The cycloheximide-induced sensitization to Fas-induced apoptosis is associated with a rapid down-regulation of Mcl-1 protein levels, but not that of Bcl-2 or Bcl-xL. Targeting Mcl-1 in these melanoma cell lines with specific small interfering RNA was sufficient to sensitize them to both anti-Fas mAb-induced apoptosis and activation of caspase-9. Furthermore, ectopic expression of Mcl-1 in a Fas-sensitive melanoma cell line rescues the cells from Fas-mediated apoptosis. Our results further show that the expression of Mcl-1 in melanoma cells is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) and not by phosphatidylinositol 3-kinase/AKT signaling pathway. Inhibition of ERK signaling with the mitogen-activated protein/ERK kinase-1 inhibitor or by expressing a dominant negative form of mitogen-activated protein/ERK kinase-1 also sensitizes resistant melanoma cells to anti-Fas mAb-induced apoptosis. Thus, our study identifies mitogen-activated protein kinase/ERK/Mcl-1 as an important survival signaling pathway in the resistance of melanoma cells to Fas-mediated apoptosis and suggests that its targeting may contribute to the elimination of melanoma tumors by the immune system.
Collapse
Affiliation(s)
- Nizar Chetoui
- Centre de Recherche en Rhumatologie et Immunologie, CHUQ Pavillon CHUL, Ste-Foy, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
99
|
Kruyt FAE. TRAIL and cancer therapy. Cancer Lett 2008; 263:14-25. [PMID: 18329793 DOI: 10.1016/j.canlet.2008.02.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/29/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors are promising targets for the selective eradication of tumor cells while sparing normal cells. Currently, both recombinant TRAIL proteins and TRAIL receptor agonistic antibodies are being tested in the clinic, showing encouraging antitumor activities and mild side effects. Unfortunately, resistance to TRAIL therapy is frequently encountered requiring combined treatments with sensitizing agents. Standard chemotherapeutics can enhance TRAIL sensitivity; however, more specific and less toxic agents are needed to exploit the full antitumor potential of TRAIL. Here, a brief overview of the TRAIL signaling pathway is given together with a short description of early results obtained with TRAIL therapy in the clinic. Mechanisms of TRAIL resistance and ways to overcome these by targeted agents that either neutralize apoptotic blockades or suppress prosurvival signals also triggered by TRAIL are highlighted, such as inhibitors of IAPs, Bcl-2 family members, HDACi, and modulators of NF-kappaB, Raf and EGFR signaling.
Collapse
Affiliation(s)
- Frank A E Kruyt
- Department of Medical Oncology, VU University Medical Center, CCA-Building, Room 2.36, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|