51
|
Westhoff M, Murray CI, Eldstrom J, Fedida D. Photo-Cross-Linking of I Ks Demonstrates State-Dependent Interactions between KCNE1 and KCNQ1. Biophys J 2017; 113:415-425. [PMID: 28746852 DOI: 10.1016/j.bpj.2017.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 01/09/2023] Open
Abstract
The slow delayed rectifier potassium current (IKs) is a key repolarizing current during the cardiac action potential. It consists of four KCNQ1 α-subunits and up to four KCNE1 β-subunits, which are thought to reside within external clefts of the channel. The interaction of KCNE1 with KCNQ1 dramatically delays opening of the channel but the mechanisms by which this occur are not yet fully understood. Here, we have used unnatural amino acid photo-cross-linking to investigate the dynamic interactions that occur between KCNQ1 and KCNE1 during activation gating. The unnatural amino acid p-Benzoylphenylalanine was successfully incorporated into two residues within the transmembrane domain of KCNE1: F56 and F57. UV-induced cross-linking suggested that F56Bpa interacts with KCNQ1 in the open state, whereas F57Bpa interacts predominantly in resting channel conformations. When UV was applied at progressively more depolarized preopen holding potentials, cross-linking of F57Bpa with KCNQ1 was slowed, which indicates that KCNE1 is displaced within the channel's cleft early during activation, or that conformational changes in KCNQ1 alter its interaction with KCNE1. In E1R/R4E KCNQ1, a mutant with constitutively activated voltage sensors, F56Bpa and F57Bpa KCNE1 were cross-linked in open and closed states, respectively, which suggests that their actions are mediated mainly by modulation of KCNQ1 pore function.
Collapse
Affiliation(s)
- Maartje Westhoff
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher I Murray
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
52
|
Liebsch F, Aurousseau MRP, Bethge T, McGuire H, Scolari S, Herrmann A, Blunck R, Bowie D, Multhaup G. Full-length cellular β-secretase has a trimeric subunit stoichiometry, and its sulfur-rich transmembrane interaction site modulates cytosolic copper compartmentalization. J Biol Chem 2017. [PMID: 28637867 DOI: 10.1074/jbc.m117.779165] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The β-secretase (BACE1) initiates processing of the amyloid precursor protein (APP) into Aβ peptides, which have been implicated as central players in the pathology of Alzheimer disease. BACE1 has been described as a copper-binding protein and its oligomeric state as being monomeric, dimeric, and/or multimeric, but the native cellular stoichiometry has remained elusive. Here, by using single-molecule fluorescence and in vitro cross-linking experiments with photo-activatable unnatural amino acids, we show that full-length BACE1, independently of its subcellular localization, exists as trimers in human cells. We found that trimerization requires the BACE1 transmembrane sequences (TMSs) and cytoplasmic domains, with residues Ala463 and Cys466 buried within the trimer interface of the sulfur-rich core of the TMSs. Our 3D model predicts that the sulfur-rich core of the trimeric BACE1 TMS is accessible to metal ions, but copper ions did not trigger trimerization. The results of functional assays of endogenous BACE1 suggest that it has a role in intracellular copper compartmentalization by transferring cytosolic copper to intracellular compartments, while leaving the overall cellular copper concentration unaltered. Adding to existing physiological models, our results provide novel insight into the atypical interactions between copper and BACE1 and into its non-enzymatic activities. In conclusion, therapeutic Alzheimer disease prevention strategies aimed at decreasing BACE1 protein levels should be regarded with caution, because adverse effects in copper homeostasis may occur.
Collapse
Affiliation(s)
- Filip Liebsch
- From the Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Mark R P Aurousseau
- the Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Tobias Bethge
- the Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Hugo McGuire
- the Department of Physics, Université de Montréal, Montreal, Quebec H3C 3J7, Canada, and
| | - Silvia Scolari
- the Institut für Biologie, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Andreas Herrmann
- the Institut für Biologie, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Rikard Blunck
- the Department of Physics, Université de Montréal, Montreal, Quebec H3C 3J7, Canada, and
| | - Derek Bowie
- From the Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 0B1, Canada.,the Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Gerd Multhaup
- From the Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 0B1, Canada, .,the Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
53
|
Koole C, Reynolds CA, Mobarec JC, Hick C, Sexton PM, Sakmar TP. Genetically encoded photocross-linkers determine the biological binding site of exendin-4 peptide in the N-terminal domain of the intact human glucagon-like peptide-1 receptor (GLP-1R). J Biol Chem 2017; 292:7131-7144. [PMID: 28283573 PMCID: PMC5409479 DOI: 10.1074/jbc.m117.779496] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/09/2017] [Indexed: 12/25/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a key therapeutic target in the management of type II diabetes mellitus, with actions including regulation of insulin biosynthesis and secretion, promotion of satiety, and preservation of β-cell mass. Like most class B G protein-coupled receptors (GPCRs), there is limited knowledge linking biological activity of the GLP-1R with the molecular structure of an intact, full-length, and functional receptor·ligand complex. In this study, we have utilized genetic code expansion to site-specifically incorporate the photoactive amino acid p-azido-l-phenylalanine (azF) into N-terminal residues of a full-length functional human GLP-1R in mammalian cells. UV-mediated photolysis of azF was then carried out to induce targeted photocross-linking to determine the proximity of the azido group in the mutant receptor with the peptide exendin-4. Cross-linking data were compared directly with the crystal structure of the isolated N-terminal extracellular domain of the GLP-1R in complex with exendin(9-39), revealing both similarities as well as distinct differences in the mode of interaction. Generation of a molecular model to accommodate the photocross-linking constraints highlights the potential influence of environmental conditions on the conformation of the receptor·peptide complex, including folding dynamics of the peptide and formation of dimeric and higher order oligomeric receptor multimers. These data demonstrate that crystal structures of isolated receptor regions may not give a complete reflection of peptide/receptor interactions and should be combined with additional experimental constraints to reveal peptide/receptor interactions occurring in the dynamic, native, and full-length receptor state.
Collapse
Affiliation(s)
- Cassandra Koole
- From the Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| | - Christopher A Reynolds
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Juan C Mobarec
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Caroline Hick
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia, and
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia, and
| | - Thomas P Sakmar
- From the Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065,
| |
Collapse
|
54
|
Mapping the naloxone binding sites on the mu-opioid receptor using cell-based photocrosslinkers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:336-343. [DOI: 10.1016/j.bbapap.2016.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/02/2016] [Accepted: 12/20/2016] [Indexed: 11/22/2022]
|
55
|
Abstract
Fluorescent proteins of different colors are useful probes to study protein structure and function, and to investigate cellular events and conditions. Large efforts have focused on engineering new properties into fluorescent proteins via rational design and directed evolution. In addition to applications in imaging of protein expression level and subcellular localization, fluorescent proteins have been increasingly engineered to act as biosensors to track concentrations of small-molecule metabolites, enzyme activities, and protein conformational changes in living cells. Unlike small-molecule fluorescence biosensors, fluorescent proteins are genetically encodable, and thus can be expressed inside living cells. Attachment of organelle-specific signals to the proteins allows their localization to be specified. Recently, a new class of fluorescent protein biosensors has been developed to include unnatural amino acids as the sensing element. The unique chemical and physical properties of the unnatural amino acids enable sensor designs that cannot be realized by using the standard genetic code with the 20 canonical amino acids. In this chapter, we detail the general procedure for the genetic incorporation of unnatural amino acids. We further present two protocols for the in vitro and in vivo detection of hydrogen peroxide (H2O2) using a fluorescent protein biosensor that contains an unnatural amino acid, p-boronophenylalanine.
Collapse
Affiliation(s)
- Wei Niu
- University of Nebraska-Lincoln, Lincoln, NE, United States.
| | - Jiantao Guo
- University of Nebraska-Lincoln, Lincoln, NE, United States.
| |
Collapse
|
56
|
Lehmann J. Induced fit of the peptidyl-transferase center of the ribosome and conformational freedom of the esterified amino acids. RNA (NEW YORK, N.Y.) 2017; 23:229-239. [PMID: 27879432 PMCID: PMC5238797 DOI: 10.1261/rna.057273.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
The catalytic site of most enzymes can efficiently handle only one substrate. In contrast, the ribosome is capable of polymerizing at a similar rate at least 20 different kinds of amino acids from aminoacyl-tRNA carriers while using just one catalytic site, the peptidyl-transferase center (PTC). An induced-fit mechanism has been uncovered in the PTC, but a possible connection between this mechanism and the uniform handling of the substrates has not been investigated. We present an analysis of published ribosome structures supporting the hypothesis that the induced fit eliminates unreactive rotamers predominantly populated for some A-site aminoacyl esters before induction. We show that this hypothesis is fully consistent with the wealth of kinetic data obtained with these substrates. Our analysis reveals that induction constrains the amino acids into a reactive conformation in a side-chain independent manner. It allows us to highlight the rationale of the PTC structural organization, which confers to the ribosome the very unusual ability to handle large as well as small substrates.
Collapse
Affiliation(s)
- Jean Lehmann
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Campus Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
57
|
An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb. Proc Natl Acad Sci U S A 2016; 113:12721-12726. [PMID: 27791144 DOI: 10.1073/pnas.1612331113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have been shown to bind the cyclin T subunit of P-TEFb. How this binding leads to inhibition of the kinase activity of Cdk9 has remained elusive, however. Using a photoreactive amino acid incorporated into proteins, we show that in live cells, cell extracts, and in vitro reconstituted complexes, Hexim1 cross-links and thus contacts Cdk9. Notably, replacement of a phenylalanine, F208, belonging to an evolutionary conserved Hexim1 peptide (202PYNTTQFLM210) known as the "PYNT" sequence, cross-links a peptide within the activation segment that controls access to the Cdk9 catalytic cleft. Reciprocally, Hexim1 is cross-linked by a photoreactive amino acid replacing Cdk9 W193, a tryptophan within this activation segment. These findings provide evidence of a direct interaction between Cdk9 and its inhibitor, Hexim1. Based on similarities with Cdk2 3D structure, the Cdk9 peptide cross-linked by Hexim1 corresponds to the substrate binding-site. Accordingly, the Hexim1 PYNT sequence is proposed to interfere with substrate binding to Cdk9 and thereby to inhibit its kinase activity.
Collapse
|
58
|
Tian M, Ye S. Allosteric regulation in NMDA receptors revealed by the genetically encoded photo-cross-linkers. Sci Rep 2016; 6:34751. [PMID: 27713495 PMCID: PMC5054432 DOI: 10.1038/srep34751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/16/2016] [Indexed: 11/09/2022] Open
Abstract
Allostery is essential to neuronal receptor function, but its transient nature poses a challenge for characterization. The N-terminal domains (NTDs) distinct from ligand binding domains are a major locus for allosteric regulation of NMDA receptors (NMDARs), where different modulatory binding sites have been observed. The inhibitor ifenprodil, and related phenylethanoamine compounds specifically targeting GluN1/GluN2B NMDARs have neuroprotective activity. However, whether they use differential structural pathways than the endogenous inhibitor Zn2+ for regulation is unknown. We applied genetically encoded unnatural amino acids (Uaas) and monitored the functional changes in living cells with photo-cross-linkers specifically incorporated at the ifenprodil binding interface between GluN1 and GluN2B subunits. We report constraining the NTD domain movement, by a light induced crosslinking bond that introduces minimal perturbation to the ligand binding, specifically impedes the transduction of ifenprodil but not Zn2+ inhibition. Subtle distance changes reveal interfacial flexibility and NTD rearrangements in the presence of modulators. Our results present a much richer dynamic picture of allostery than conventional approaches targeting the same interface, and highlight key residues that determine functional and subtype specificity of NMDARs. The light-sensitive mutant neuronal receptors provide complementary tools to the photo-switchable ligands for opto-neuropharmacology.
Collapse
Affiliation(s)
- Meilin Tian
- Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China.,Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1024, Paris, France.,Centre National de la Recherche Scientifique, UMR 8197, Paris, France
| | - Shixin Ye
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1024, Paris, France.,Centre National de la Recherche Scientifique, UMR 8197, Paris, France
| |
Collapse
|
59
|
Abstract
The site-specific incorporation of unnatural amino acids (Uaas) via genetic code expansion provides a powerful method to introduce synthetic moieties into specific positions of a protein directly in the live cell. The technique, first developed in bacteria, is nowadays widely applicable in mammalian cells. In general, different Uaas are incorporated with different efficiency. By comparing the incorporation efficiency of several Uaas recently designed for bioorthogonal chemistry, we present here a facile dual-fluorescence assay to evaluate relative yields of Uaa incorporation. Several biological questions can be addressed using Uaas tools. In recent years, photo-cross-linking Uaas have been extensively applied to map ligand-binding sites on G protein-coupled receptors (GPCRs). We describe a simple and efficient two-plasmid system to incorporate a photoactivatable Uaa into a class B GPCR, and demonstrate cross-linking to its nonmodified natural ligand.
Collapse
|
60
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
61
|
Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter. Nat Commun 2016; 7:11261. [PMID: 27089947 PMCID: PMC4838859 DOI: 10.1038/ncomms11261] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/07/2016] [Indexed: 02/02/2023] Open
Abstract
Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode photocrosslinking unnatural amino acids (UAAs) into 75 different positions in hSERT. UAAs are incorporated with high specificity, and functionally active transporters have similar transport properties and pharmacological profiles compared with wild-type transporters. We employ ultraviolet-induced crosslinking with p-azido-L-phenylalanine (azF) at selected positions in hSERT to map the binding site of imipramine, a prototypical tricyclic antidepressant, and vortioxetine, a novel multimodal antidepressant. We find that the two antidepressants crosslink with azF incorporated at different positions within the central substrate-binding site of hSERT, while no crosslinking is observed at the vestibular-binding site. Taken together, our data provide direct evidence for defining the high-affinity antidepressant binding site in hSERT. Molecular details of how antidepressant drugs bind to the human serotonin transporter are not currently clear. Here, the authors introduce photo-cross-linkers into the protein and map the binding site of several antidepressants.
Collapse
|
62
|
Murray CI, Westhoff M, Eldstrom J, Thompson E, Emes R, Fedida D. Unnatural amino acid photo-crosslinking of the IKs channel complex demonstrates a KCNE1:KCNQ1 stoichiometry of up to 4:4. eLife 2016; 5. [PMID: 26802629 PMCID: PMC4807126 DOI: 10.7554/elife.11815] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/22/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiac repolarization is determined in part by the slow delayed rectifier current (IKs), through the tetrameric voltage-gated ion channel, KCNQ1, and its β-subunit, KCNE1. The stoichiometry between α and β-subunits has been controversial with studies reporting either a strict 2 KCNE1:4 KCNQ1 or a variable ratio up to 4:4. We used IKs fusion proteins linking KCNE1 to one (EQ), two (EQQ) or four (EQQQQ) KCNQ1 subunits, to reproduce compulsory 4:4, 2:4 or 1:4 stoichiometries. Whole cell and single-channel recordings showed EQQ and EQQQQ to have increasingly hyperpolarized activation, reduced conductance, and shorter first latency of opening compared to EQ - all abolished by the addition of KCNE1. As well, using a UV-crosslinking unnatural amino acid in KCNE1, we found EQQQQ and EQQ crosslinking rates to be progressively slowed compared to KCNQ1, which demonstrates that no intrinsic mechanism limits the association of up to four β-subunits within the IKs complex. DOI:http://dx.doi.org/10.7554/eLife.11815.001 The membrane that surrounds heart muscle cells contains specialized channels that can open and close to control the movements of charged ions into and out of the cell. This ion flow generates the electrical signals that stimulate the heart muscle to contract for each heart beat. Different ion channels influence different steps in the initiation and termination of each electrical signal. For example, the IKs ion channel complex helps to return the cell to a resting state so the heart muscle can relax. This allows chambers of the heart to fill with blood before the next beat pumps blood throughout the body. Mutations that affect IKs cause serious heart conditions that affect heart rhythm, such as Long QT Syndrome. The IKs complex consists of channels that are each made of four copies of a protein called KCNQ1, through which potassium ions exit the cell. This channel opens in response to changes in the voltage across the cell membrane (known as the “membrane potential”). A small protein subunit called KCNE1 also makes up part of the complex, but it was not clear how many KCNE1 molecules combine with KCNQ1 to form a working channel complex. Several previous studies have reported two different results: that the KCNQ1 channel complex only exists with two KCNE1 molecules, or that the association is flexible, allowing the complex to contain up to four KCNE1 subunits. Murray et al. have now constructed IKs fusion channels out of different numbers of KCNQ1 and KCNE1 molecules to investigate how different KCNQ1:KCNE1 ratios affect how the channel works. Measuring the responses of these modified channels in mammalian cells revealed that channels with four KCNE1 subunits conducted ions better than channels with one or two KCNE1s. The channels containing fewer KCNE1s also opened at lower membrane potentials and after a shorter delay following a change in the membrane potential. Further experiments also supported the theory that up to four independent KCNE1 subunits may be easily added to the IKs ion channel complex. Murray et al. suggest that by being able to form channel complexes containing different numbers of KCNE1 subunits, cells can more flexibly control the rate at which ions flow out of the heart cells to tune the electrical signals that trigger each heart beat. The next challenges will be to determine the composition of the IKs channel complex in adult heart cells and to investigate how the complex might change with disease. DOI:http://dx.doi.org/10.7554/eLife.11815.002
Collapse
Affiliation(s)
- Christopher I Murray
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Maartje Westhoff
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Emely Thompson
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Robert Emes
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
63
|
Ogawa A, Namba Y, Gakumasawa M. Rational optimization of amber suppressor tRNAs toward efficient incorporation of a non-natural amino acid into protein in a eukaryotic wheat germ extract. Org Biomol Chem 2016; 14:2671-8. [DOI: 10.1039/c5ob02533h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amber suppressor tRNAs (sup-tRNAs) were rationally optimized toward efficient incorporation of a non-natural amino acid (AcPhe) into protein in a eukaryotic wheat germ extract.
Collapse
Affiliation(s)
| | - Yuki Namba
- Proteo-Science Center
- Ehime University
- Matsuyama
- Japan
| | | |
Collapse
|
64
|
Bioorthogonal Labeling of Ghrelin Receptor to Facilitate Studies of Ligand-Dependent Conformational Dynamics. ACTA ACUST UNITED AC 2015; 22:1431-1436. [DOI: 10.1016/j.chembiol.2015.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/21/2015] [Accepted: 09/28/2015] [Indexed: 01/09/2023]
|
65
|
Tian H, Sakmar TP, Huber T. Micelle-Enhanced Bioorthogonal Labeling of Genetically Encoded Azido Groups on the Lipid-Embedded Surface of a GPCR. Chembiochem 2015; 16:1314-22. [PMID: 25962668 PMCID: PMC5287413 DOI: 10.1002/cbic.201500030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 12/21/2022]
Abstract
Genetically encoded p-azido-phenylalanine (azF) residues in G protein-coupled receptors (GPCRs) can be targeted with dibenzocyclooctyne-modified (DIBO-modified) fluorescent probes by means of strain-promoted [3+2] azide-alkyne cycloaddition (SpAAC). Here we show that azF residues situated on the transmembrane surfaces of detergent-solubilized receptors exhibit up to 1000-fold rate enhancement relative to azF residues on water-exposed surfaces. We show that the amphipathic moment of the labeling reagent, consisting of hydrophobic DIBO coupled to hydrophilic Alexa dye, results in strong partitioning of the DIBO group into the hydrocarbon core of the detergent micelle and consequently high local reactant concentrations. The observed rate constant for the micelleenhanced SpAAC is comparable with those of the fastest bioorthogonal labeling reactions known. Targeting hydrophobic regions of membrane proteins by use of micelle-enhanced SpAAC should expand the utility of bioorthogonal labeling strategies.
Collapse
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA).
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Alfred Nobels Allé 23, 141 57 Huddinge (Sweden).
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA).
| |
Collapse
|
66
|
Pless SA, Kim RY, Ahern CA, Kurata HT. Atom-by-atom engineering of voltage-gated ion channels: magnified insights into function and pharmacology. J Physiol 2015; 593:2627-34. [PMID: 25640301 DOI: 10.1113/jphysiol.2014.287714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/26/2015] [Indexed: 12/12/2022] Open
Abstract
Unnatural amino acid incorporation into ion channels has proven to be a valuable approach to interrogate detailed hypotheses arising from atomic resolution structures. In this short review, we provide a brief overview of some of the basic principles and methods for incorporation of unnatural amino acids into proteins. We also review insights into the function and pharmacology of voltage-gated ion channels that have emerged from unnatural amino acid mutagenesis approaches.
Collapse
Affiliation(s)
- Stephan A Pless
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Robin Y Kim
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | | | - Harley T Kurata
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
67
|
Structures of the Gβ-CCT and PhLP1-Gβ-CCT complexes reveal a mechanism for G-protein β-subunit folding and Gβγ dimer assembly. Proc Natl Acad Sci U S A 2015; 112:2413-8. [PMID: 25675501 DOI: 10.1073/pnas.1419595112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G-protein signaling depends on the ability of the individual subunits of the G-protein heterotrimer to assemble into a functional complex. Formation of the G-protein βγ (Gβγ) dimer is particularly challenging because it is an obligate dimer in which the individual subunits are unstable on their own. Recent studies have revealed an intricate chaperone system that brings Gβ and Gγ together. This system includes cytosolic chaperonin containing TCP-1 (CCT; also called TRiC) and its cochaperone phosducin-like protein 1 (PhLP1). Two key intermediates in the Gβγ assembly process, the Gβ-CCT and the PhLP1-Gβ-CCT complexes, were isolated and analyzed by a hybrid structural approach using cryo-electron microscopy, chemical cross-linking coupled with mass spectrometry, and unnatural amino acid cross-linking. The structures show that Gβ interacts with CCT in a near-native state through interactions of the Gγ-binding region of Gβ with the CCTγ subunit. PhLP1 binding stabilizes the Gβ fold, disrupting interactions with CCT and releasing a PhLP1-Gβ dimer for assembly with Gγ. This view provides unique insight into the interplay between CCT and a cochaperone to orchestrate the folding of a protein substrate.
Collapse
|
68
|
Wu L, Xu B. Analysis of protein ligand-receptor binding by photoaffinity cross-linking. ACTA ACUST UNITED AC 2015; 79:19.26.1-19.26.14. [PMID: 25640895 DOI: 10.1002/0471140864.ps1926s79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Photoaffinity cross-linking is a rapidly developing technology for studying biomolecular interactions, including protein ligand-receptor binding. This technology provides detailed binding information including receptor contact sites, active conformation of receptor-ligand complexes, global binding surfaces, and binding modes. Advancements in genetic technology have enabled non-natural photoactive amino acid derivatives to be incorporated into designer or target proteins, providing a host of new opportunities for manufacturing protein photo-probes while bypassing the traditional peptide or small protein limits of classical chemical synthesis. This unit provides several protocols for performing basic photoaffinity cross-linking and related analyses for applications in ligand-receptor binding and protein-protein interactions.
Collapse
Affiliation(s)
- Ling Wu
- Department of Biochemistry and Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Bin Xu
- Department of Biochemistry and Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
69
|
Naganathan S, Ray-Saha S, Park M, Tian H, Sakmar TP, Huber T. Multiplex detection of functional G protein-coupled receptors harboring site-specifically modified unnatural amino acids. Biochemistry 2015; 54:776-86. [PMID: 25524496 PMCID: PMC4310623 DOI: 10.1021/bi501267x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
We developed a strategy for identifying
positions in G protein-coupled
receptors that are amenable to bioorthogonal modification with a peptide
epitope tag under cell culturing conditions. We introduced the unnatural
amino acid p-azido-l-phenylalanine (azF)
into human CC chemokine receptor 5 (CCR5) at site-specific amber codon
mutations. We then used strain-promoted azide–alkyne [3+2]
cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated
aza-dibenzocyclooctyne (DBCO) reagent. A microtiter plate-based sandwich
fluorophore-linked immunosorbent assay was used to probe simultaneously
the FLAG epitope and the receptor using infrared dye-conjugated antibodies
so that the extent of DBCO incorporation, corresponding nominally
to labeling efficiency, could be quantified ratiometrically. The extent
of incorporation of DBCO at the various sites was evaluated in the
context of a recent crystal structure of maraviroc-bound CCR5. We
observed that labeling efficiency varied dramatically depending on
the topological location of the azF in CCR5. Interestingly, position
109 in transmembrane helix 3, located in a hydrophobic cavity on the
extracellular side of the receptor, was labeled most efficiently.
Because the bioorthogonal labeling and detection strategy described
might be used to introduce a variety of different peptide epitopes
or fluorophores into engineered expressed receptors, it might prove
to be useful for a wide range of applications, including single-molecule
detection studies of receptor trafficking and signaling mechanism.
Collapse
Affiliation(s)
- Saranga Naganathan
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University , New York, New York 10065, United States
| | | | | | | | | | | |
Collapse
|
70
|
Dumas A, Lercher L, Spicer CD, Davis BG. Designing logical codon reassignment - Expanding the chemistry in biology. Chem Sci 2015; 6:50-69. [PMID: 28553457 PMCID: PMC5424465 DOI: 10.1039/c4sc01534g] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, the ability to genetically encode unnatural amino acids (UAAs) has evolved rapidly. The programmed incorporation of UAAs into recombinant proteins relies on the reassignment or suppression of canonical codons with an amino-acyl tRNA synthetase/tRNA (aaRS/tRNA) pair, selective for the UAA of choice. In order to achieve selective incorporation, the aaRS should be selective for the designed tRNA and UAA over the endogenous amino acids and tRNAs. Enhanced selectivity has been achieved by transferring an aaRS/tRNA pair from another kingdom to the organism of interest, and subsequent aaRS evolution to acquire enhanced selectivity for the desired UAA. Today, over 150 non-canonical amino acids have been incorporated using such methods. This enables the introduction of a large variety of structures into proteins, in organisms ranging from prokaryote, yeast and mammalian cells lines to whole animals, enabling the study of protein function at a level that could not previously be achieved. While most research to date has focused on the suppression of 'non-sense' codons, recent developments are beginning to open up the possibility of quadruplet codon decoding and the more selective reassignment of sense codons, offering a potentially powerful tool for incorporating multiple amino acids. Here, we aim to provide a focused review of methods for UAA incorporation with an emphasis in particular on the different tRNA synthetase/tRNA pairs exploited or developed, focusing upon the different UAA structures that have been incorporated and the logic behind the design and future creation of such systems. Our hope is that this will help rationalize the design of systems for incorporation of unexplored unnatural amino acids, as well as novel applications for those already known.
Collapse
Affiliation(s)
- Anaëlle Dumas
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Lukas Lercher
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Christopher D Spicer
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Benjamin G Davis
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| |
Collapse
|
71
|
Schiller SM. Protein Tectons in Synthetic Biology. Synth Biol (Oxf) 2015. [DOI: 10.1007/978-3-319-02783-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
72
|
Park M, Tian H, Naganathan S, Sakmar TP, Huber T. Quantitative Multi-color Detection Strategies for Bioorthogonally Labeled GPCRs. Methods Mol Biol 2015; 1335:67-93. [PMID: 26260595 DOI: 10.1007/978-1-4939-2914-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe multiple bioorthogonal approaches to label G protein-coupled receptors (GPCRs) heterologously expressed in mammalian cells. The use of genetically encoded unnatural amino acids as bioorthogonal tags results in receptors that are expressed at lower levels than even their low abundance wild-type counterparts. Therefore, reproducible and sensitive quantification of the labeled GPCRs is extremely important and conventional methods are simply not sufficiently accurate and precise. Silver stains lack reproducibility, spectroscopic methods using fluorescent ligands are limited to quantifying only functional receptor molecules, and immunoassays using epitope tags derived from rhodopsin are particularly variable for low-abundance GPCRs. To avoid these shortcomings, we employ near infrared (NIR) imaging-based methods that enable simultaneous multi-color detection of two different antigens, thus facilitating the ratiometric analysis of bioorthogonally modified GPCRs. We anticipate that these multi-color detection strategies will provide new tools for quantitatively assessing stoichiometrically labeled GPCRs for studies of signalosomes and for structure-function relationships at a single molecule level.
Collapse
Affiliation(s)
- Minyoung Park
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, New York, NY, 10065, USA
| | | | | | | | | |
Collapse
|
73
|
Spicer CD, Davis BG. Selective chemical protein modification. Nat Commun 2014; 5:4740. [PMID: 25190082 DOI: 10.1038/ncomms5740] [Citation(s) in RCA: 723] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/21/2014] [Indexed: 02/06/2023] Open
Abstract
Chemical modification of proteins is an important tool for probing natural systems, creating therapeutic conjugates and generating novel protein constructs. Site-selective reactions require exquisite control over both chemo- and regioselectivity, under ambient, aqueous conditions. There are now various methods for achieving selective modification of both natural and unnatural amino acids--each with merits and limitations--providing a 'toolkit' that until 20 years ago was largely limited to reactions at nucleophilic cysteine and lysine residues. If applied in a biologically benign manner, this chemistry could form the basis of true Synthetic Biology.
Collapse
Affiliation(s)
- Christopher D Spicer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Benjamin G Davis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
74
|
Huber T, Sakmar T. Chemical Biology Methods for Investigating G Protein-Coupled Receptor Signaling. ACTA ACUST UNITED AC 2014; 21:1224-37. [DOI: 10.1016/j.chembiol.2014.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/21/2014] [Accepted: 08/20/2014] [Indexed: 11/26/2022]
|
75
|
Tian H, Naganathan S, Kazmi MA, Schwartz TW, Sakmar TP, Huber T. Bioorthogonal fluorescent labeling of functional G-protein-coupled receptors. Chembiochem 2014; 15:1820-9. [PMID: 25045132 DOI: 10.1002/cbic.201402193] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/12/2022]
Abstract
Novel methods are required for site-specific, quantitative fluorescent labeling of G-protein-coupled receptors (GPCRs) and other difficult-to-express membrane proteins. Ideally, fluorescent probes should perturb the native structure and function as little as possible. We evaluated bioorthogonal reactions to label genetically encoded p-acetyl-L-phenylalanine (AcF) or p-azido-L-phenylalanine (azF) residues in receptors heterologously expressed in mammalian cells. We found that keto-selective reagents were not truly bioorthogonal, possibly owing to post-translational protein oxidation reactions. In contrast, the strain-promoted [3+2] azide-alkyne cycloaddition (SpAAC) with dibenzocyclooctyne (DIBO) reagents yielded stoichiometric conjugates with azF-rhodopsin while undergoing negligible background reactions. As one application of this technique, we used Alexa488-rhodopsin to measure the kinetics of ligand uptake and release in membrane-mimetic bicelles using a novel fluorescence-quenching assay.
Collapse
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (USA)
| | | | | | | | | | | |
Collapse
|
76
|
Ma Z, Du L, Li M. Toward fluorescent probes for G-protein-coupled receptors (GPCRs). J Med Chem 2014; 57:8187-203. [PMID: 24983484 DOI: 10.1021/jm401823z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
G-protein-coupled receptors (GPCRs), a superfamily of cell-surface receptors that are the targets of about 40% of prescription drugs on the market, can sense numerous critical extracellular signals. Recent breakthroughs in structural biology, especially in holo-form X-ray crystal structures, have contributed to our understanding of GPCR signaling. However, actions of GPCRs at the cellular and molecular level, interactions between GPCRs, and the role of protein dynamics in receptor activities still remain controversial. To overcome these dilemmas, fluorescent probes of GPCRs have been employed, which have advantages of in vivo safety and real-time monitoring. Various probes that depend on specific mechanisms and/or technologies have been used to study GPCRs. The present review focuses on surveying the design and applications of fluorescent probes for GPCRs that are derived from small molecules or using protein-labeling techniques, as well as discussing some design strategies for new probes.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University , Jinan, Shandong 250012, China
| | | | | |
Collapse
|
77
|
Valentin-Hansen L, Park M, Huber T, Grunbeck A, Naganathan S, Schwartz TW, Sakmar TP. Mapping substance P binding sites on the neurokinin-1 receptor using genetic incorporation of a photoreactive amino acid. J Biol Chem 2014; 289:18045-54. [PMID: 24831006 DOI: 10.1074/jbc.m113.527085] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Substance P (SP) is a neuropeptide that mediates numerous physiological responses, including transmission of pain and inflammation through the neurokinin-1 (NK1) receptor, a G protein-coupled receptor. Previous mutagenesis studies and photoaffinity labeling using ligand analogues suggested that the binding site for SP includes multiple domains in the N-terminal (Nt) segment and the second extracellular loop (ECLII) of NK1. To map precisely the NK1 residues that interact with SP, we applied a novel receptor-based targeted photocross-linking approach. We used amber codon suppression to introduce the photoreactive unnatural amino acid p-benzoyl-l-phenylalanine (BzF) at 11 selected individual positions in the Nt tail (residues 11-21) and 23 positions in the ECLII (residues 170(C-10)-193(C+13)) of NK1. The 34 NK1 variants were expressed in mammalian HEK293 cells and retained the ability to interact with a fluorescently labeled SP analog. Notably, 10 of the receptor variants with BzF in the Nt tail and 4 of those with BzF in ECLII cross-linked efficiently to SP, indicating that these 14 sites are juxtaposed to SP in the ligand-bound receptor. These results show that two distinct regions of the NK1 receptor possess multiple determinants for SP binding and demonstrate the utility of genetically encoded photocross-linking to map complex multitopic binding sites on G protein-coupled receptors in a cell-based assay format.
Collapse
Affiliation(s)
- Louise Valentin-Hansen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, The Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark, Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark, and
| | - Minyoung Park
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark, and Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| | - Amy Grunbeck
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| | - Saranga Naganathan
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| | - Thue W Schwartz
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, The Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark, Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark, and
| | - Thomas P Sakmar
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark, and Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| |
Collapse
|
78
|
Yan ECY, Fu L, Wang Z, Liu W. Biological Macromolecules at Interfaces Probed by Chiral Vibrational Sum Frequency Generation Spectroscopy. Chem Rev 2014; 114:8471-98. [DOI: 10.1021/cr4006044] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Elsa C. Y. Yan
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520, United States
| | - Li Fu
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520, United States
| | - Zhuguang Wang
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520, United States
| | - Wei Liu
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
79
|
Lang K, Chin JW. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 2014; 114:4764-806. [PMID: 24655057 DOI: 10.1021/cr400355w] [Citation(s) in RCA: 801] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kathrin Lang
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
80
|
Abstract
Ionotropic glutamate receptors (iGluRs) are ubiquitous in the mammalian brain, and the AMPA-subtype is essential for fast, glutamate-activated postsynaptic currents. We incorporated photoactive crosslinkers into AMPA receptors using genetically encoded unnatural amino acid mutagenesis in a mammalian cell line. Receptors rescued by incorporation of unnatural amino acids, including p-benzoyl-l-phenylalanine (BzF, also known as Bpa), had largely similar properties to wild-type channels and were expressed at similar levels. BzF incorporation at subunit interfaces afforded photocrosslinking of subunits, as assessed by biochemical experiments. In electrophysiological recordings, BzF incorporation allowed selective and potent UV-driven photoinactivation of both homomeric (GluA2) and heteromeric (GluA2:GluA1) AMPA receptors. State dependence of trapping at two sites in the lower lobe of the ligand binding domain is consistent with deformation of these domains as well as intersubunit rearrangements during AMPA receptor desensitization.
Collapse
|
81
|
Ray-Saha S, Huber T, Sakmar TP. Antibody epitopes on g protein-coupled receptors mapped with genetically encoded photoactivatable cross-linkers. Biochemistry 2014; 53:1302-10. [PMID: 24490954 PMCID: PMC3985944 DOI: 10.1021/bi401289p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
We
developed a strategy for creating epitope maps of monoclonal
antibodies (mAbs) that bind to G protein-coupled receptors (GPCRs)
containing photo-cross-linkers. Using human CXC chemokine receptor
4 (CXCR4) as a model system, we genetically incorporated the photolabile
unnatural amino acid p-azido-l-phenylalanine
(azF) at various positions within extracellular loop 2 (EC2). We then
mapped the interactions of the azF-CXCR4 variants with mAb 12G5 using
targeted loss-of-function studies and photo-cross-linking in whole
cells in a microplate-based format. We used a novel variation of a
whole cell enzyme-linked immunosorbent assay to quantitate cross-linking
efficiency. 12G5 cross-linked primarily to residues 184, 178, and
189 in EC2 of CXCR4. Mapping of the data to the crystal structure
of CXCR4 showed a distinct mAb epitope footprint with the photo-cross-linked
residues clustered around the loss-of-function sites. We also used
the targeted photo-cross-linking approach to study the interaction
of human CC chemokine receptor 5 (CCR5) with PRO 140, a humanized
mAb that inhibits human immunodeficiency virus-1 cellular entry, and
2D7. The mAbs produced distinct cross-linking patterns on EC2 of CCR5.
PRO 140 cross-linked primarily to residues 174 and 175 at the amino-terminal
end of EC2, and 2D7 cross-linked mainly to residues 170, 176, and
184. These results were mapped to the recent crystal structure of
CCR5 in complex with maraviroc, showing cross-linked residues at the
tip of the maraviroc binding crevice formed by EC2. As a strategy
for mapping mAb epitopes on GPCRs, our targeted photo-cross-linking
method is complementary to loss-of-function mutagenesis results and
should be especially useful for studying mAbs with discontinuous epitopes.
Collapse
Affiliation(s)
- Sarmistha Ray-Saha
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | | | | |
Collapse
|
82
|
|
83
|
Grunbeck A, Sakmar TP. Probing G Protein-Coupled Receptor—Ligand Interactions with Targeted Photoactivatable Cross-Linkers. Biochemistry 2013; 52:8625-32. [DOI: 10.1021/bi401300y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Amy Grunbeck
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New
York 10065, United States
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New
York 10065, United States
| |
Collapse
|
84
|
Alexiev U, Farrens DL. Fluorescence spectroscopy of rhodopsins: insights and approaches. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:694-709. [PMID: 24183695 DOI: 10.1016/j.bbabio.2013.10.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 01/30/2023]
Abstract
Fluorescence spectroscopy has become an established tool at the interface of biology, chemistry and physics because of its exquisite sensitivity and recent technical advancements. However, rhodopsin proteins present the fluorescence spectroscopist with a unique set of challenges and opportunities due to the presence of the light-sensitive retinal chromophore. This review briefly summarizes some approaches that have successfully met these challenges and the novel insights they have yielded about rhodopsin structure and function. We start with a brief overview of fluorescence fundamentals and experimental methodologies, followed by more specific discussions of technical challenges rhodopsin proteins present to fluorescence studies. Finally, we end by discussing some of the unique insights that have been gained specifically about visual rhodopsin and its interactions with affiliate proteins through the use of fluorescence spectroscopy. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Ulrike Alexiev
- Physics Department, Freie Universität Berlin, Berlin, Germany.
| | - David L Farrens
- Departments of Biochemistry and Molecular Biology, Oregon Health Sciences University, USA
| |
Collapse
|
85
|
Naganathan S, Grunbeck A, Tian H, Huber T, Sakmar TP. Genetically-encoded molecular probes to study G protein-coupled receptors. J Vis Exp 2013. [PMID: 24056801 DOI: 10.3791/50588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes.
Collapse
Affiliation(s)
- Saranga Naganathan
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University
| | | | | | | | | |
Collapse
|
86
|
Smolskaya S, Zhang ZJ, Alfonta L. Enhanced yield of recombinant proteins with site-specifically incorporated unnatural amino acids using a cell-free expression system. PLoS One 2013; 8:e68363. [PMID: 23844190 PMCID: PMC3699557 DOI: 10.1371/journal.pone.0068363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/03/2013] [Indexed: 11/19/2022] Open
Abstract
Using a commercial protein expression system, we sought the crucial elements and conditions for the expression of proteins with genetically encoded unnatural amino acids. By identifying the most important translational components, we were able to increase suppression efficiency to 55% and to increase mutant protein yields to levels higher than achieved with wild type expression (120%), reaching over 500 µg/mL of translated protein (comprising 25 µg in 50 µL of reaction mixture). To our knowledge, these results are the highest obtained for both in vivo and in vitro systems. We also demonstrated that efficiency of nonsense suppression depends greatly on the nucleotide following the stop codon. Insights gained in this thorough analysis could prove useful for augmenting in vivo expression levels as well.
Collapse
Affiliation(s)
- Sviatlana Smolskaya
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zhiwen Jonathan Zhang
- Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, California, United States of America
- * E-mail: (ZJZ); (LA)
| | - Lital Alfonta
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (ZJZ); (LA)
| |
Collapse
|
87
|
Huber T, Naganathan S, Tian H, Ye S, Sakmar TP. Unnatural amino acid mutagenesis of GPCRs using amber codon suppression and bioorthogonal labeling. Methods Enzymol 2013; 520:281-305. [PMID: 23332705 DOI: 10.1016/b978-0-12-391861-1.00013-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
To advance dynamic, temporal, and kinetic studies of the G protein-coupled receptor (GPCR) signalosome, new approaches are required to introduce non- or minimally perturbing labels or probes into expressed receptors. We report here a series of methods that are based on unnatural amino acid mutagenesis of GPCRs using amber codon suppression technology. We show that labeling reactions at genetically introduced keto moieties (p-acetyl-L-Phe/AcF and p-benzoyl-L-Phe/BzF) are not completely bioorthogonal due to protein oxidation, which causes high background. However, labeling reactions that target p-azido-L-Phe (azF) using the Staudinger-Bertozzi ligation and the strain-promoted alkyne-azide cycloaddition are bioorthogonal and are satisfactory for introducing labels or probes at near quantitative efficiency under mild labeling conditions. To our knowledge, this is the first report of a site-specific modification of an azF residue with a dibenzocyclooctyne-derivatized fluorophore. The methodologies we discuss are general, in that they can be applied in principle to any amino acid position in any expressed GPCR.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, USA.
| | | | | | | | | |
Collapse
|
88
|
Grunbeck A, Huber T, Sakmar TP. Mapping a ligand binding site using genetically encoded photoactivatable crosslinkers. Methods Enzymol 2013; 520:307-22. [PMID: 23332706 DOI: 10.1016/b978-0-12-391861-1.00014-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
G protein-coupled receptor (GPCR) signaling complexes are important for mediating many different biological processes. Uncovering the mechanism for how a ligand triggers a GPCR to elicit a specific response is an active area of research. One step toward understanding this mechanism is through identifying a ligand's binding site on a GPCR. We have optimized a targeted photocrosslinking technology to detect the residues in a receptor that are within a precise distance from a bound ligand in the receptor-ligand complex. Here, we describe the method for introducing photoactivable crosslinkers into a GPCR using the amber stop codon suppression technology. In addition, we review the steps to identify the binding site of a fluorescein-tagged peptide ligand and a tritium-labeled small molecule ligand.
Collapse
Affiliation(s)
- Amy Grunbeck
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, USA
| | | | | |
Collapse
|
89
|
Kim CH, Axup JY, Schultz PG. Protein conjugation with genetically encoded unnatural amino acids. Curr Opin Chem Biol 2013; 17:412-9. [PMID: 23664497 DOI: 10.1016/j.cbpa.2013.04.017] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/27/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
The site-specific incorporation of unnatural amino acids with orthogonal chemical reactivity into proteins enables the synthesis of structurally defined protein conjugates. Amino acids containing ketone, azide, alkyne, alkene, and tetrazine side chains can be genetically encoded in response to nonsense and frameshift codons. These bio-orthogonal chemical handles allow precise control over the site and stoichiometry of conjugation, and have enabled medicinal chemistry-like optimization of the physical and biological properties of protein conjugates, especially the next-generation protein therapeutics.
Collapse
Affiliation(s)
- Chan Hyuk Kim
- California Institute for Biomedical Research, 11119 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | | | | |
Collapse
|
90
|
Thirumurugan P, Matosiuk D, Jozwiak K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem Rev 2013; 113:4905-79. [DOI: 10.1021/cr200409f] [Citation(s) in RCA: 1309] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Prakasam Thirumurugan
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Dariusz Matosiuk
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Krzysztof Jozwiak
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| |
Collapse
|
91
|
Naganathan S, Ye S, Sakmar TP, Huber T. Site-specific epitope tagging of G protein-coupled receptors by bioorthogonal modification of a genetically encoded unnatural amino acid. Biochemistry 2013; 52:1028-36. [PMID: 23317030 DOI: 10.1021/bi301292h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We developed a general strategy for labeling expressed membrane proteins with a peptide epitope tag and detecting the tagged proteins in native cellular membranes. First, we genetically encoded the unnatural amino acid p-azido-L-phenylalanine (azF) at various specific sites in a G protein-coupled receptor (GPCR), C-C chemokine receptor 5 (CCR5). The reactive azido moiety facilitates Staudinger ligation to a triarylphosphine-conjugated FLAG peptide. We then developed a whole-cell-based enzyme-linked immunosorbent assay approach to detect the modified azF-CCR5 using anti-FLAG mAb. We optimized conditions to achieve labeling and detection of low-abundance GPCRs in live cells. We also performed an accessibility screen to identify azF positions on CCR5 amenable to labeling. Finally, we demonstrate a preparative strategy for obtaining pure bioorthogonally modified GPCRs suitable for single-molecule detection fluorescence experiments. This peptide epitope tagging strategy, which employs genetic encoding and bioorthogonal labeling of azF in live cells, should be useful for studying biogenesis of polytopic membrane proteins and GPCR signaling mechanisms.
Collapse
Affiliation(s)
- Saranga Naganathan
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
92
|
Ye S, Riou M, Carvalho S, Paoletti P. Expanding the genetic code in Xenopus laevis oocytes. Chembiochem 2013; 14:230-5. [PMID: 23292655 DOI: 10.1002/cbic.201200515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Indexed: 01/12/2023]
Abstract
Heterologous expression of ligand-gated ion channels (LGICs) in Xenopus laevis oocytes combined with site-directed mutagenesis has been demonstrated to be a powerful approach to study structure-function relationships. In particular, introducing unnatural amino acids (UAAs) has enabled modifications that are not found in natural proteins. However, the current strategy relies on the technically demanding in vitro synthesis of aminoacylated suppressor tRNA. We report here a general method that circumvents this limitation by utilizing orthogonal aminoacyl-tRNA synthetase (aaRS)/suppressor tRNA(CUA) pairs to genetically encode UAAs in Xenopus oocytes. We show that UAAs inserted in the N-terminal domain of N-methyl-D-aspartate receptors (NMDARs) serve as photo-crosslinkers that lock the receptor in a discrete conformational state in response to UV photo treatment. Our method should be generally applicable to studies of other LGICs in Xenopus oocytes.
Collapse
Affiliation(s)
- Shixin Ye
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, 46 rue d'Ulm, Paris 75005, France.
| | | | | | | |
Collapse
|
93
|
Site-Specific Labeling of Genetically Encoded Azido Groups for Multicolor, Single-Molecule Fluorescence Imaging of GPCRs. Methods Cell Biol 2013; 117:267-303. [DOI: 10.1016/b978-0-12-408143-7.00015-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
94
|
Grunbeck A, Huber T, Abrol R, Trzaskowski B, Goddard WA, Sakmar TP. Genetically encoded photo-cross-linkers map the binding site of an allosteric drug on a G protein-coupled receptor. ACS Chem Biol 2012; 7:967-72. [PMID: 22455376 DOI: 10.1021/cb300059z] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) are dynamic membrane proteins that bind extracellular molecules to transduce signals. Although GPCRs represent the largest class of therapeutic targets, only a small percentage of their ligand-binding sites are precisely defined. Here we describe the novel application of targeted photo-cross-linking using unnatural amino acids to obtain structural information about the allosteric binding site of a small molecule drug, the CCR5-targeted HIV-1 co-receptor blocker maraviroc.
Collapse
Affiliation(s)
- Amy Grunbeck
- Laboratory of Molecular Biology & Biochemistry, The Rockefeller University, 1230 York Ave., New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Molecular Biology & Biochemistry, The Rockefeller University, 1230 York Ave., New York, New York 10065, United States
| | - Ravinder Abrol
- Materials and Process Simulation
Center (MC 139-74), California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Bartosz Trzaskowski
- Materials and Process Simulation
Center (MC 139-74), California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - William A. Goddard
- Materials and Process Simulation
Center (MC 139-74), California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Thomas P. Sakmar
- Laboratory of Molecular Biology & Biochemistry, The Rockefeller University, 1230 York Ave., New York, New York 10065, United States
| |
Collapse
|
95
|
Nehring S, Budisa N, Wiltschi B. Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code. PLoS One 2012; 7:e31992. [PMID: 22493661 PMCID: PMC3320878 DOI: 10.1371/journal.pone.0031992] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/17/2012] [Indexed: 12/02/2022] Open
Abstract
Background The suppression of amber stop codons with non-canonical amino acids (ncAAs) is used for the site-specific introduction of many unusual functions into proteins. Specific orthogonal aminoacyl-tRNA synthetase (o-aaRS)/amber suppressor tRNACUA pairs (o-pairs) for the incorporation of ncAAs in S. cerevisiae were previously selected from an E. coli tyrosyl-tRNA synthetase/tRNACUA mutant library. Incorporation fidelity relies on the specificity of the o-aaRSs for their ncAAs and the ability to effectively discriminate against their natural substrate Tyr or any other canonical amino acid. Methodology/Principal Findings We used o-pairs previously developed for ncAAs carrying reactive alkyne-, azido-, or photocrosslinker side chains to suppress an amber mutant of human superoxide dismutase 1 in S. cerevisiae. We found worse incorporation efficiencies of the alkyne- and the photocrosslinker ncAAs than reported earlier. In our hands, amber suppression with the ncAA containing the azido group did not occur at all. In addition to the incorporation experiments in S. cerevisiae, we analyzed the catalytic properties of the o-aaRSs in vitro. Surprisingly, all o-aaRSs showed much higher preference for their natural substrate Tyr than for any of the tested ncAAs. While it is unclear why efficiently recognized Tyr is not inserted at amber codons, we speculate that metabolically inert ncAAs accumulate in the cell, and for this reason they are incorporated despite being weak substrates for the o-aaRSs. Conclusions/Significance O-pairs have been developed for a whole plethora of ncAAs. However, a systematic and detailed analysis of their catalytic properties is still missing. Our study provides a comprehensive scrutiny of o-pairs developed for the site-specific incorporation of reactive ncAAs in S. cerevisiae. It suggests that future development of o-pairs as efficient biotechnological tools will greatly benefit from sound characterization in vivo and in vitro in parallel to monitoring intracellular ncAA levels.
Collapse
Affiliation(s)
- Sebastian Nehring
- Department of Biocatalysis, Technical University of Berlin, Berlin, Germany
| | - Nediljko Budisa
- Department of Biocatalysis, Technical University of Berlin, Berlin, Germany
| | - Birgit Wiltschi
- BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
96
|
Abe R, Caaveiro JMM, Kozuka-Hata H, Oyama M, Tsumoto K. Mapping ultra-weak protein-protein interactions between heme transporters of Staphylococcus aureus. J Biol Chem 2012; 287:16477-87. [PMID: 22427659 DOI: 10.1074/jbc.m112.346700] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron is an essential nutrient for the proliferation of Staphylococcus aureus during bacterial infections. The iron-regulated surface determinant (Isd) system of S. aureus transports and metabolizes iron porphyrin (heme) captured from the host organism. Transportation of heme across the thick cell wall of this bacterium requires multiple relay points. The mechanism by which heme is physically transferred between Isd transporters is largely unknown because of the transient nature of the interactions involved. Herein, we show that the IsdC transporter not only passes heme ligand to another class of Isd transporter, as previously known, but can also perform self-transfer reactions. IsdA shows a similar ability. A genetically encoded photoreactive probe was used to survey the regions of IsdC involved in self-dimerization. We propose an updated model that explicitly considers self-transfer reactions to explain heme delivery across the cell wall. An analogous photo-cross-linking strategy was employed to map transient interactions between IsdC and IsdE transporters. These experiments identified a key structural element involved in the rapid and specific transfer of heme from IsdC to IsdE. The resulting structural model was validated with a chimeric version of the homologous transporter IsdA. Overall, our results show that the ultra-weak interactions between Isd transporters are governed by bona fide protein structural motifs.
Collapse
Affiliation(s)
- Ryota Abe
- Department of Medical Genome Sciences, School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
97
|
Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 2012; 64:299-336. [PMID: 22407612 DOI: 10.1124/pr.110.004309] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
98
|
Designer proteins: applications of genetic code expansion in cell biology. Nat Rev Mol Cell Biol 2012; 13:168-82. [DOI: 10.1038/nrm3286] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
99
|
Siderius M, Wal M, Scholten DJ, Smit MJ, Sakmar TP, Leurs R, de Graaf C. Unnatural amino acids for the study of chemokine receptor structure and dynamics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e227-e314. [PMID: 24063744 DOI: 10.1016/j.ddtec.2012.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
100
|
Beck-Sickinger AG, Budisa N. Genetically Encoded Photocrosslinkers as Molecular Probes To Study G-Protein-Coupled Receptors (GPCRs). Angew Chem Int Ed Engl 2011; 51:310-2. [DOI: 10.1002/anie.201107211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Indexed: 11/12/2022]
|