51
|
Bebeacua C, Förster A, McKeown C, Meyer HH, Zhang X, Freemont PS. Distinct conformations of the protein complex p97-Ufd1-Npl4 revealed by electron cryomicroscopy. Proc Natl Acad Sci U S A 2012; 109:1098-103. [PMID: 22232657 PMCID: PMC3268311 DOI: 10.1073/pnas.1114341109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
p97 is a key regulator of numerous cellular pathways and associates with ubiquitin-binding adaptors to remodel ubiquitin-modified substrate proteins. How adaptor binding to p97 is coordinated and how adaptors contribute to substrate remodeling is unclear. Here we present the 3D electron cryomicroscopy reconstructions of the major Ufd1-Npl4 adaptor in complex with p97. Our reconstructions show that p97-Ufd1-Npl4 is highly dynamic and that Ufd1-Npl4 assumes distinct positions relative to the p97 ring upon addition of nucleotide. Our results suggest a model for substrate remodeling by p97 and also explains how p97-Ufd1-Npl4 could form other complexes in a hierarchical model of p97-cofactor assembly.
Collapse
Affiliation(s)
- Cecilia Bebeacua
- Centre for Structural Biology and Centre for Biomolecular Electron Microscopy, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom; and
| | - Andreas Förster
- Centre for Structural Biology and Centre for Biomolecular Electron Microscopy, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom; and
| | - Ciarán McKeown
- Centre for Structural Biology and Centre for Biomolecular Electron Microscopy, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom; and
| | - Hemmo H. Meyer
- Molecular Biology Laboratory, Faculty of Biology, Centre of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Xiaodong Zhang
- Centre for Structural Biology and Centre for Biomolecular Electron Microscopy, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom; and
| | - Paul S. Freemont
- Centre for Structural Biology and Centre for Biomolecular Electron Microscopy, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom; and
| |
Collapse
|
52
|
Orme CM, Bogan JS. The ubiquitin regulatory X (UBX) domain-containing protein TUG regulates the p97 ATPase and resides at the endoplasmic reticulum-golgi intermediate compartment. J Biol Chem 2011; 287:6679-92. [PMID: 22207755 DOI: 10.1074/jbc.m111.284232] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
p97/VCP is a hexameric ATPase that is coupled to diverse cellular processes, such as membrane fusion and proteolysis. How p97 activity is regulated is not fully understood. Here we studied the potential role of TUG, a widely expressed protein containing a UBX domain, to control mammalian p97. In HEK293 cells, the vast majority of TUG was bound to p97. Surprisingly, the TUG UBX domain was neither necessary nor sufficient for this interaction. Rather, an extended sequence, comprising three regions of TUG, bound to the p97 N-terminal domain. The TUG C terminus resembled the Arabidopsis protein PUX1. Similar to the previously described action of PUX1 on AtCDC48, TUG caused the conversion of p97 hexamers into monomers. Hexamer disassembly was stoichiometric rather than catalytic and was not greatly affected by the p97 ATP-binding state or by TUG N-terminal regions in vitro. In HeLa cells, TUG localized to the endoplasmic reticulum-to-Golgi intermediate compartment and endoplasmic reticulum exit sites. Although siRNA-mediated TUG depletion had no marked effect on total ubiquitylated proteins or p97 localization, TUG overexpression caused an accumulation of ubiquitylated substrates and targeted both TUG and p97 to the nucleus. A physiologic role of TUG was revealed by siRNA-mediated depletion, which showed that TUG is required for efficient reassembly of the Golgi complex after brefeldin A removal. Together, these data support a model in which TUG controls p97 oligomeric status at a particular location in the early secretory pathway and in which this process regulates membrane trafficking in various cell types.
Collapse
Affiliation(s)
- Charisse M Orme
- Section of Endocrinology and Metabolism, Department of Internal Medicine, University School of Medicine, New Haven, Connecticut 06520-8020, USA
| | | |
Collapse
|
53
|
Wolf DH, Stolz A. The Cdc48 machine in endoplasmic reticulum associated protein degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:117-24. [PMID: 21945179 DOI: 10.1016/j.bbamcr.2011.09.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 10/17/2022]
Abstract
The AAA-type ATPase Cdc48 (named p97/VCP in mammals) is a molecular machine in all eukaryotic cells that transforms ATP hydrolysis into mechanic power to unfold and pull proteins against physical forces, which make up a protein's structure and hold it in place. From the many cellular processes, Cdc48 is involved in, its function in endoplasmic reticulum associated protein degradation (ERAD) is understood best. This quality control process for proteins of the secretory pathway scans protein folding and discovers misfolded proteins in the endoplasmic reticulum (ER), the organelle, destined for folding of these proteins and their further delivery to their site of action. Misfolded lumenal and membrane proteins of the ER are detected by chaperones and lectins and retro-translocated out of the ER for degradation. Here the Cdc48 machinery, recruited to the ER membrane, takes over. After polyubiquitylation of the protein substrate, Cdc48 together with its dimeric co-factor complex Ufd1-Npl4 pulls the misfolded protein out and away from the ER membrane and delivers it to down-stream components for degradation by a cytosolic proteinase machine, the proteasome. The known details of the Cdc48-Ufd1-Npl4 motor complex triggered process are subject of this review article.
Collapse
Affiliation(s)
- Dieter H Wolf
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | | |
Collapse
|
54
|
Wendler P, Ciniawsky S, Kock M, Kube S. Structure and function of the AAA+ nucleotide binding pocket. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:2-14. [PMID: 21839118 DOI: 10.1016/j.bbamcr.2011.06.014] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/17/2011] [Accepted: 06/27/2011] [Indexed: 10/17/2022]
Abstract
Members of the diverse superfamily of AAA+ proteins are molecular machines responsible for a wide range of essential cellular processes. In this review we summarise structural and functional data surrounding the nucleotide binding pocket of these versatile complexes. Protein Data Bank (PDB) structures of closely related AAA+ ATPase are overlaid and biologically relevant motifs are displayed. Interactions between protomers are illustrated on the basis of oligomeric structures of each AAA+ subgroup. The possible role of conserved motifs in the nucleotide binding pocket is assessed with regard to ATP binding and hydrolysis, oligomerisation and inter-subunit communication. Our comparison indicates that in particular the roles of the arginine finger and sensor 2 residues differ subtly between AAA+ subgroups, potentially providing a means for functional diversification.
Collapse
Affiliation(s)
- Petra Wendler
- Gene Center, Ludwig-Maximilians-Universität München, München, Germany.
| | | | | | | |
Collapse
|
55
|
Cdc48: a power machine in protein degradation. Trends Biochem Sci 2011; 36:515-23. [PMID: 21741246 DOI: 10.1016/j.tibs.2011.06.001] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 11/24/2022]
Abstract
Cdc48 is an essential, highly prominent ATP driven machine in eukaryotic cells. Physiological function of Cdc48 has been found in a multitude of cellular processes, for instance cell cycle progression, homotypic membrane fusion, chromatin remodeling, transcriptional and metabolic regulation, and many others. The molecular function of Cdc48 is arguably best understood in endoplasmic reticulum-associated protein degradation by the ubiquitin proteasome system. In this review, we summarize the general characteristics of Cdc48/p97 and the most recent results on the molecular function of Cdc48 in some of the above processes, which were found to finally end in proteolysis-connected pathways, either involving the proteasome or autophagocytosis-mediated lysosomal degradation.
Collapse
|
56
|
Kressler D, Hurt E, Bergler H, Bassler J. The power of AAA-ATPases on the road of pre-60S ribosome maturation--molecular machines that strip pre-ribosomal particles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:92-100. [PMID: 21763358 PMCID: PMC3264779 DOI: 10.1016/j.bbamcr.2011.06.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 11/16/2022]
Abstract
The biogenesis of ribosomes is a fundamental cellular process, which provides the molecular machines that synthesize all cellular proteins. The assembly of eukaryotic ribosomes is a highly complex multi-step process that requires more than 200 ribosome biogenesis factors, which mediate a broad spectrum of maturation reactions. The participation of many energy-consuming enzymes (e.g. AAA-type ATPases, RNA helicases, and GTPases) in this process indicates that the expenditure of energy is required to drive ribosome assembly. While the precise function of many of these enzymes remains elusive, recent progress has revealed that the three AAA-type ATPases involved in 60S subunit biogenesis are specifically dedicated to the release and recycling of distinct biogenesis factors. In this review, we will highlight how the molecular power of yeast Drg1, Rix7, and Rea1 is harnessed to promote the release of their substrate proteins from evolving pre-60S particles and, where appropriate, discuss possible catalytic mechanisms. This article is part of a Special Issue entitled: AAA ATPases: structure and function.
Collapse
Affiliation(s)
- Dieter Kressler
- University of Fribourg, Department of Biology, Unit of Biochemistry, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | | | | | | |
Collapse
|
57
|
Yamasaki T, Nakazaki Y, Yoshida M, Watanabe YH. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus. FEBS J 2011; 278:2395-403. [PMID: 21554542 DOI: 10.1111/j.1742-4658.2011.08167.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2). Here, we investigated the roles of these arginines (Arg322, Arg323, and Arg747) of ClpB from Thermus thermophilus in the ATPase cycle and chaperone function by alanine substitution. These mutations did not affect nucleotide binding, but did inhibit the hydrolysis of the bound ATP and slow the threading of the denatured protein through the central pore of the T. thermophilus ClpB ring, which severely impaired the chaperone functions. Previously, it was demonstrated that ATP binding to the AAA-1 module induced motion of the middle domain and stabilized the ClpB hexamer. However, the arginine mutations of the AAA-1 module destabilized the ClpB hexamer, even though ATP-induced motion of the middle domain was not affected. These results indicated that the three arginines are crucial for ATP hydrolysis and chaperone activity, but not for ATP binding. In addition, the two arginines in AAA-1 and the ATP-induced motion of the middle domain independently contribute to the stabilization of the hexamer.
Collapse
Affiliation(s)
- Takashi Yamasaki
- Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Japan
| | | | | | | |
Collapse
|
58
|
ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 2011; 144:526-38. [PMID: 21335235 DOI: 10.1016/j.cell.2011.02.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 11/03/2010] [Accepted: 02/01/2011] [Indexed: 01/10/2023]
Abstract
In the eukaryotic 26S proteasome, the 20S particle is regulated by six AAA ATPase subunits and, in archaea, by a homologous ring complex, PAN. To clarify the role of ATP in proteolysis, we studied how nucleotides bind to PAN. Although PAN has six identical subunits, it binds ATPs in pairs, and its subunits exhibit three conformational states with high, low, or no affinity for ATP. When PAN binds two ATPγS molecules or two ATPγS plus two ADP molecules, it is maximally active in binding protein substrates, associating with the 20S particle, and promoting 20S gate opening. However, binding of four ATPγS molecules reduces these functions. The 26S proteasome shows similar nucleotide dependence. These findings imply an ordered cyclical mechanism in which two ATPase subunits bind ATP simultaneously and dock into the 20S. These results can explain how these hexameric ATPases interact with and "wobble" on top of the heptameric 20S proteasome.
Collapse
|
59
|
Nishikori S, Esaki M, Yamanaka K, Sugimoto S, Ogura T. Positive cooperativity of the p97 AAA ATPase is critical for essential functions. J Biol Chem 2011; 286:15815-20. [PMID: 21454554 DOI: 10.1074/jbc.m110.201400] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p97 is composed of two conserved AAA (ATPases associated with diverse cellular activities) domains, which form a tandem hexameric ring. We characterized the ATP hydrolysis mechanism of CDC-48.1, a p97 homolog of Caenorhabditis elegans. The ATPase activity of the N-terminal AAA domain was very low at physiological temperature, whereas the C-terminal AAA domain showed high ATPase activity in a coordinated fashion with positive cooperativity. The cooperativity and coordination are generated by different mechanisms because a noncooperative mutant still showed the coordination. Interestingly, the growth speed of yeast cells strongly related to the positive cooperativity rather than the ATPase activity itself, suggesting that the positive cooperativity is critical for the essential functions of p97.
Collapse
Affiliation(s)
- Shingo Nishikori
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
60
|
Chapman E, Fry AN, Kang M. The complexities of p97 function in health and disease. MOLECULAR BIOSYSTEMS 2010; 7:700-10. [PMID: 21152665 DOI: 10.1039/c0mb00176g] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
p97 is a homohexameric, toroidal machine that harnesses the energy of ATP binding and hydrolysis to effect structural reorganization of a diverse and primarily uncharacterized set of substrate proteins. This action has been linked to endoplasmic reticulum associated degradation (ERAD), homotypic membrane fusion, transcription factor control, cell cycle progression, DNA repair, and post-mitotic spindle disassembly. Exactly how these diverse processes use p97 is not fully understood, but it is clear that binding sites, primarily on the N- and C-domains of p97, facilitate this diversity by coordinating a growing collection of cofactors. These cofactors act at the levels of mechanism, sub-cellular localization, and substrate modification. Another unifying theme is the use of ubiquitylation. Both p97 and many of the associated cofactors have demonstrable ubiquitin-binding competence. The present review will discuss some of the current mechanistic studies and controversies and how these relate to cofactors as well as discussing potential therapeutic targeting of p97.
Collapse
Affiliation(s)
- Eli Chapman
- Department of Molecular Biology, The Scripps Research Institute, Skaggs Molecular Biology Building, 10596 Torrey Pines Road, Rm. 203, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
61
|
Xu S, Peng G, Wang Y, Fang S, Karbowski M. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol Biol Cell 2010; 22:291-300. [PMID: 21118995 PMCID: PMC3031461 DOI: 10.1091/mbc.e10-09-0748] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies have revealed a role for the Ub/proteasome system in the regulation and turnover of OMM-associated proteins. The data presented show that an AAA-ATPase, p97, is required for the proteasomal degradation of Mcl1 and Mfn1, two unrelated OMM proteins, and establishes p97 as a novel and essential part of the OMM-protein degradation pathway. Recent studies have revealed a role for the ubiquitin/proteasome system in the regulation and turnover of outer mitochondrial membrane (OMM)-associated proteins. Although several molecular components required for this process have been identified, the mechanism of proteasome-dependent degradation of OMM-associated proteins is currently unclear. We show that an AAA-ATPase, p97, is required for the proteasomal degradation of Mcl1 and Mfn1, two unrelated OMM proteins with short half-lives. A number of biochemical assays, as well as imaging of changes in localization of photoactivable GFP-fused Mcl1, revealed that p97 regulates the retrotranslocation of Mcl1 from mitochondria to the cytosol, prior to, or concurrent with, proteasomal degradation. Mcl1 retrotranslocation from the OMM depends on the activity of the ATPase domain of p97. Furthermore, p97-mediated retrotranslocation of Mcl1 can be recapitulated in vitro, confirming a direct mitochondrial role for p97. Our results establish p97 as a novel and essential component of the OMM-associated protein degradation pathway.
Collapse
Affiliation(s)
- Shan Xu
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
62
|
Protein structure determination by exhaustive search of Protein Data Bank derived databases. Proc Natl Acad Sci U S A 2010; 107:21476-81. [PMID: 21098306 DOI: 10.1073/pnas.1012095107] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parallel sequence and structure alignment tools have become ubiquitous and invaluable at all levels in the study of biological systems. We demonstrate the application and utility of this same parallel search paradigm to the process of protein structure determination, benefitting from the large and growing corpus of known structures. Such searches were previously computationally intractable. Through the method of Wide Search Molecular Replacement, developed here, they can be completed in a few hours with the aide of national-scale federated cyberinfrastructure. By dramatically expanding the range of models considered for structure determination, we show that small (less than 12% structural coverage) and low sequence identity (less than 20% identity) template structures can be identified through multidimensional template scoring metrics and used for structure determination. Many new macromolecular complexes can benefit significantly from such a technique due to the lack of known homologous protein folds or sequences. We demonstrate the effectiveness of the method by determining the structure of a full-length p97 homologue from Trichoplusia ni. Example cases with the MHC/T-cell receptor complex and the EmoB protein provide systematic estimates of minimum sequence identity, structure coverage, and structural similarity required for this method to succeed. We describe how this structure-search approach and other novel computationally intensive workflows are made tractable through integration with the US national computational cyberinfrastructure, allowing, for example, rapid processing of the entire Structural Classification of Proteins protein fragment database.
Collapse
|
63
|
Haines DS. p97-containing complexes in proliferation control and cancer: emerging culprits or guilt by association? Genes Cancer 2010; 1:753-763. [PMID: 21103003 DOI: 10.1177/1947601910381381] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
p97 (also called VCP in metazoans and CDC48 in yeast) is a highly conserved, abundant and essential type II ATPase that functions in numerous ubiquitin signaling dependent processes. p97/Cd48 activities require a growing number of adaptor or accessory proteins that promote interactions with ubiquitinated proteins. p97 has human disease relevance as it is mutated in familial cases of inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). There is also increasing evidence suggesting that p97 and/or some of its adaptors play a role in cancer. This review will summarize our existing knowledge of the biochemical, molecular and cellular activities of p97-containing complexes, with an ending focus on their potential role in malignancy.
Collapse
Affiliation(s)
- Dale S Haines
- Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140, USA
| |
Collapse
|
64
|
Tang WK, Li D, Li CC, Esser L, Dai R, Guo L, Xia D. A novel ATP-dependent conformation in p97 N-D1 fragment revealed by crystal structures of disease-related mutants. EMBO J 2010; 29:2217-29. [PMID: 20512113 DOI: 10.1038/emboj.2010.104] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 04/26/2010] [Indexed: 12/12/2022] Open
Abstract
Mutations in p97, a major cytosolic AAA (ATPases associated with a variety of cellular activities) chaperone, cause inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). IBMPFD mutants have single amino-acid substitutions at the interface between the N-terminal domain (N-domain) and the adjacent AAA domain (D1), resulting in a reduced affinity for ADP. The structures of p97 N-D1 fragments bearing IBMPFD mutations adopt an atypical N-domain conformation in the presence of Mg(2+).ATPgammaS, which is reversible by ADP, showing for the first time the nucleotide-dependent conformational change of the N-domain. The transition from the ADP- to the ATPgammaS-bound state is accompanied by a loop-to-helix conversion in the N-D1 linker and by an apparent re-ordering in the N-terminal region of p97. X-ray scattering experiments suggest that wild-type p97 subunits undergo a similar nucleotide-dependent N-domain conformational change. We propose that IBMPFD mutations alter the timing of the transition between nucleotide states by destabilizing the ADP-bound form and consequently interfere with the interactions between the N-domains and their substrates.
Collapse
Affiliation(s)
- Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Esaki M, Ogura T. ATP-bound form of the D1 AAA domain inhibits an essential function of Cdc48p/p97. Biochem Cell Biol 2010; 88:109-17. [PMID: 20130684 DOI: 10.1139/o09-116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cdc48p/p97 is a highly conserved essential AAA protein that is required for many cellular processes, and is identified as a causative gene for an autosomal dominant human disorder, inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). Cdc48p/p97 is composed of an N-terminal domain, followed by two AAA domains (D1 and D2) whose ATPase activities have been characterized extensively. In this study, effects of mutations on the essential functions of yeast Cdc48p/p97 in vivo were systematically analyzed. IBMPFD-related mutations do not affect the essential functions of Cdc48p/p97. Loss of ATPase activity of D2 leads to loss of function of the protein in vivo. In contrast, ATPase activity of D1 per se is not essential, but a mutation locking D1 in an ATP-bound form is exceptionally lethal. Site-directed and random mutagenesis analyses suggest that the ATP-bound form of D1 changes an inter-domain interaction, thereby perturbing an essential function of Cdc48p/p97.
Collapse
Affiliation(s)
- Masatoshi Esaki
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.
| | | |
Collapse
|
66
|
Joly N, Buck M. Engineered interfaces of an AAA+ ATPase reveal a new nucleotide-dependent coordination mechanism. J Biol Chem 2010; 285:15178-15186. [PMID: 20197281 DOI: 10.1074/jbc.m110.103150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homohexameric ring AAA(+) ATPases are found in all kingdoms of life and are involved in all cellular processes. To accommodate the large spectrum of substrates, the conserved AAA(+) core has become specialized through the insertion of specific substrate-binding motifs. Given their critical roles in cellular function, understanding the nucleotide-driven mechanisms of action is of wide importance. For one type of member AAA(+) protein (phage shock protein F, PspF), we identified and established the functional significance of strategically placed arginine and glutamate residues that form interacting pairs in response to nucleotide binding. We show that these interactions are critical for "cis" and "trans" subunit communication, which support coordination between subunits for nucleotide-dependent substrate remodeling. Using an allele-specific suppression approach for ATPase and substrate remodeling, we demonstrate that the targeted residues directly interact and are unlikely to make any other pairwise critical interactions. We then propose a mechanistic rationale by which the nucleotide-bound state of adjacent subunits can be sensed without direct involvement of R-finger residues. As the structural AAA(+) core is conserved, we propose that the functional networks established here could serve as a template to identify similar residue pairs in other AAA(+) proteins.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Martin Buck
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
67
|
Mori-Konya C, Kato N, Maeda R, Yasuda K, Higashimae N, Noguchi M, Koike M, Kimura Y, Ohizumi H, Hori S, Kakizuka A. p97/valosin-containing protein (VCP) is highly modulated by phosphorylation and acetylation. Genes Cells 2009; 14:483-97. [PMID: 19335618 DOI: 10.1111/j.1365-2443.2009.01286.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
p97/valosin-containing protein (VCP) is a member of the AAA family proteins, which plays various important roles in cells by using its ATPase activity. But mechanism of regulating its ATPase activity is mostly unknown. We report here that VCP is highly modified throughout the protein via acetylation and phosphorylation. In addition to six previously identified phosphorylation sites, we identified at least 14 serines, 14 threonines, 6 tyrosines and 22 lysines as potential modification sites. Interestingly, these sites included Lys251 and Lys524, which are very critical for the ATP binding in Walker A motif of D1 and D2 domains, respectively. It is notable that 16 sites are in the N-terminal region and 16 sites are clustered in D2alpha domain (from Pro646 to Gly765). Indeed, amino acid substitution of Lys696 and Thr761 profoundly affect VCP ATPase activities. From these results, we propose that D2alpha domain acts as a VCP ATPase Regulatory domain or "VAR domain". VCP modifications including those in this VAR domain may endorse adaptive and multiple functions to VCP in different cell conditions such as in the cell cycle and with abnormal protein accumulation.
Collapse
Affiliation(s)
- Chiho Mori-Konya
- The Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies and Solution Oriented Research for Science and Technology (JST), Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Karlberg T, van den Berg S, Hammarström M, Sagemark J, Johansson I, Holmberg-Schiavone L, Schüler H. Crystal structure of the ATPase domain of the human AAA+ protein paraplegin/SPG7. PLoS One 2009; 4:e6975. [PMID: 19841671 PMCID: PMC2734466 DOI: 10.1371/journal.pone.0006975] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/12/2009] [Indexed: 11/24/2022] Open
Abstract
Paraplegin is an m-AAA protease of the mitochondrial inner membrane that is linked to hereditary spastic paraplegias. The gene encodes an FtsH-homology protease domain in tandem with an AAA+ homology ATPase domain. The protein is believed to form a hexamer that uses ATPase-driven conformational changes in its AAA-domain to deliver substrate peptides to its protease domain. We present the crystal structure of the AAA-domain of human paraplegin bound to ADP at 2.2 Å. This enables assignment of the roles of specific side chains within the catalytic cycle, and provides the structural basis for understanding the mechanism of disease mutations. Enhanced version This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
Collapse
Affiliation(s)
- Tobias Karlberg
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne van den Berg
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Hammarström
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Sagemark
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ida Johansson
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lovisa Holmberg-Schiavone
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Herwig Schüler
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
69
|
Wendler P, Shorter J, Snead D, Plisson C, Clare DK, Lindquist S, Saibil HR. Motor mechanism for protein threading through Hsp104. Mol Cell 2009; 34:81-92. [PMID: 19362537 PMCID: PMC2689388 DOI: 10.1016/j.molcel.2009.02.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/29/2008] [Accepted: 02/25/2009] [Indexed: 12/04/2022]
Abstract
The protein-remodeling machine Hsp104 dissolves amorphous aggregates as well as ordered amyloid assemblies such as yeast prions. Force generation originates from a tandem AAA+ (ATPases associated with various cellular activities) cassette, but the mechanism and allostery of this action remain to be established. Our cryoelectron microscopy maps of Hsp104 hexamers reveal substantial domain movements upon ATP binding and hydrolysis in the first nucleotide-binding domain (NBD1). Fitting atomic models of Hsp104 domains to the EM density maps plus supporting biochemical measurements show how the domain movements displace sites bearing the substrate-binding tyrosine loops. This provides the structural basis for N- to C-terminal substrate threading through the central cavity, enabling a clockwise handover of substrate in the NBD1 ring and coordinated substrate binding between NBD1 and NBD2. Asymmetric reconstructions of Hsp104 in the presence of ATPγS or ATP support sequential rather than concerted ATP hydrolysis in the NBD1 ring.
Collapse
Affiliation(s)
- Petra Wendler
- Department of Crystallography, Birkbeck College, London, UK
| | | | | | | | | | | | | |
Collapse
|
70
|
Davies BA, Lee JRE, Oestreich AJ, Katzmann DJ. Membrane protein targeting to the MVB/lysosome. Chem Rev 2009; 109:1575-86. [PMID: 19243135 PMCID: PMC3911787 DOI: 10.1021/cr800473s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Brian A. Davies
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Jacqueline R. E. Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Andrea J. Oestreich
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - David J. Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|