51
|
Brauburger K, Akyildiz S, Ruppert JG, Graeb M, Bernkopf DB, Hadjihannas MV, Behrens J. Adenomatous polyposis coli (APC) membrane recruitment 3, a member of the APC membrane recruitment family of APC-binding proteins, is a positive regulator of Wnt-β-catenin signalling. FEBS J 2013; 281:787-801. [PMID: 24251807 DOI: 10.1111/febs.12624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022]
Abstract
The adenomatous polyposis coli (APC) membrane recruitment (Amer) family proteins Amer1/Wilms tumour gene on the X chromosome and Amer2 are binding partners of the APC tumour suppressor protein, and act as negative regulators in the Wnt signalling cascade. So far, nothing has been known about the third member of the family, Amer3. Here we show that Amer3 binds to the armadillo repeat domain of APC, similarly to Amer1 and Amer2. Amer3 also binds to the Wnt pathway regulator conductin/axin2. Furthermore, we identified Amer1 as binding partner of Amer3. Whereas Amer1 and Amer2 are linked to the plasma membrane by an N-terminal membrane localization domain, Amer3 lacks this domain. Amer3 localizes to the cytoplasm and nucleus of epithelial cells, and this is dependent on specific nuclear import and export sequences. Functionally, exogenous Amer3 enhances the expression of a β-catenin/T-cell factor-dependent reporter gene, and knockdown of endogenous Amer3 reduces Wnt target gene expression in colorectal cancer cells. Thus, Amer3 acts as an activator of Wnt signalling, in contrast to Amer1 and Amer2, which are inhibitors, suggesting a nonredundant role of Amer proteins in the regulation of this pathway. Our data, together with those of previous studies, provide a comprehensive picture of similarities and differences within the Amer protein family.
Collapse
Affiliation(s)
- Katharina Brauburger
- Nikolaus Fiebiger Centre for Molecular Medicine, University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
52
|
Mok KW, Mruk DD, Cheng CY. Regulation of blood-testis barrier (BTB) dynamics during spermatogenesis via the "Yin" and "Yang" effects of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:291-358. [PMID: 23317821 DOI: 10.1016/b978-0-12-407704-1.00006-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammalian testes, haploid spermatozoa are formed from diploid spermatogonia during spermatogenesis, which is a complicated cellular process. While these cellular events were reported in the 1960s and 1970s, the underlying molecular mechanism(s) that regulates these events remained unexplored until the past ∼10 years. For instance, adhesion proteins were shown to be integrated components at the Sertoli cell-cell interface and/or the Sertoli-spermatid interface in the late 1980s. But only until recently, studies have demonstrated that some of the adhesion proteins serve as the platform for signal transduction that regulates cell adhesion. In this chapter, a brief summary and critical discussion are provided on the latest findings regarding these cell-adhesion proteins in the testis and their relationship to spermatogenesis. Moreover, antagonistic effects of two mammalian target of rapamycin (mTOR) complexes, known as mTORC1 and mTORC2, on cell-adhesion function in the testis are discussed. Finally, a hypothetic model is presented to depict how these two mTOR-signaling complexes having the "yin" and "yang" antagonistic effects on the Sertoli cell tight junction (TJ)-permeability barrier can maintain the blood-testis barrier (BTB) integrity during the epithelial cycle while preleptotene spermatocytes are crossing the BTB.
Collapse
Affiliation(s)
- Ka Wai Mok
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | | | | |
Collapse
|
53
|
Schmidt S, Schneider S, Yang W, Liu G, Schmidt EM, Schmid E, Mia S, Brucker S, Stournaras C, Wallwiener D, Brosens JJ, Lang F. TGFβ1 and SGK1-sensitive store-operated Ca2+ entry and Orai1 expression in endometrial Ishikawa cells. Mol Hum Reprod 2013; 20:139-47. [PMID: 24043696 DOI: 10.1093/molehr/gat066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The serum-and-glucocorticoid-inducible-kinase-1 (SGK1) is ubiquitously expressed and under genomic control by cell stress, hormones and further mediators. A most powerful stimulator of SGK1 expression is transforming growth factor TGFβ1. SGK1 is activated by insulin and growth factors via phosphatidylinositol-3-kinase and the 3-phosphoinositide-dependent kinase PDK1. As shown recently, SGK1 increases the store-operated Ca(2+) entry (SOCE), which is accomplished by the pore-forming ion channel unit Orai. Most recent observations further revealed that SGK1 plays a critical role in the regulation of fertility. SGK1 is up-regulated in the luminal epithelium of women with unexplained infertility but down-regulated in decidualizing stromal cells of patients with recurrent pregnancy loss. The present study explored whether Orai1 is expressed in endometrium and sensitive to regulation by SGK1 and/or TGFβ1. To this end, Orai1 protein abundance was determined by western blotting and SOCE by fura-2 fluorescence. As a result, Orai1 was expressed in human endometrium and in human endometrial Ishikawa cells. Orai1 expression and SOCE in Ishikawa cells were increased by transfection with constitutively active (S422D)SGK1 but not by transfection with inactive (K127N)SGK1. The difference of SOCE between (S422D)SGK1 and (K127N)SGK1-transfected cells was virtually abrogated in the presence of Orai1 inhibitor 2-aminoethoxydiphenyl borate (2-APB, 50 µM). Similar to (S422D)SGK1 transfection TGFβ1 treatment up-regulated both Orai1 protein abundance and SOCE. In conclusion, Orai1 is expressed in the human endometrium and is up-regulated by SGK1 and TGFβ1. The present observations thus uncover a novel element in SGK1-sensitive regulation of endometrial cells.
Collapse
Affiliation(s)
- S Schmidt
- Department of Physiology, University of Tübingen, D72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Tao GZ, Lehwald N, Jang KY, Baek J, Xu B, Omary MB, Sylvester KG. Wnt/β-catenin signaling protects mouse liver against oxidative stress-induced apoptosis through the inhibition of forkhead transcription factor FoxO3. J Biol Chem 2013; 288:17214-24. [PMID: 23620592 DOI: 10.1074/jbc.m112.445965] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Numerous liver diseases are associated with extensive oxidative tissue damage. It is well established that Wnt/β-catenin signaling directs multiple hepatocellular processes, including development, proliferation, regeneration, nutrient homeostasis, and carcinogenesis. It remains unexplored whether Wnt/β-catenin signaling provides hepatocyte protection against hepatotoxin-induced apoptosis. Conditional, liver-specific β-catenin knockdown (KD) mice and their wild-type littermates were challenged by feeding with a hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to induce chronic oxidative liver injury. Following the DDC diet, mice with β-catenin-deficient hepatocytes demonstrate increased liver injury, indicating an important role of β-catenin signaling for liver protection against oxidative stress. This finding was further confirmed in AML12 hepatocytes with β-catenin signaling manipulation in vitro using paraquat, a known oxidative stress inducer. Immunofluorescence staining revealed an intense nuclear FoxO3 staining in β-catenin-deficient livers, suggesting active FoxO3 signaling in response to DDC-induced liver injury when compared with wild-type controls. Consistently, FoxO3 target genes p27 and Bim were significantly induced in β-catenin KD livers. Conversely, SGK1, a β-catenin target gene, was significantly impaired in β-catenin KD hepatocytes that failed to inactivate FoxO3. Furthermore, shRNA-mediated deletion of FoxO3 increased hepatocyte resistance to oxidative stress-induced apoptosis, confirming a proapoptotic role of FoxO3 in the stressed liver. Our findings suggest that Wnt/β-catenin signaling is required for hepatocyte protection against oxidative stress-induced apoptosis. The inhibition of FoxO through its phosphorylation by β-catenin-induced SGK1 expression reduces the apoptotic function of FoxO3, resulting in increased hepatocyte survival. These findings have relevance for future therapies directed at hepatocyte protection, regeneration, and anti-cancer treatment.
Collapse
Affiliation(s)
- Guo-Zhong Tao
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305-5148, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Peck B, Ferber EC, Schulze A. Antagonism between FOXO and MYC Regulates Cellular Powerhouse. Front Oncol 2013; 3:96. [PMID: 23630664 PMCID: PMC3635031 DOI: 10.3389/fonc.2013.00096] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/08/2013] [Indexed: 11/13/2022] Open
Abstract
Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation, and tumor progression, thereby leading to a poorer clinical outcome. Metabolic adaptations enable cancer cells to survive in suboptimal growth conditions, such as the limited supply of nutrient and oxygen often found in the tumor microenvironment. Metabolic changes, including activation of glycolysis and inhibition of mitochondrial ATP production, are induced under hypoxia to promote survival in low oxygen. FOXO3a, a transcription factor that is inhibited by the phosphatidylinositol 3-kinase/Akt pathway and is upregulated in hypoxia, has emerged as an important negative regulator of MYC function. Recent studies have revealed that FOXO3a acts as a negative regulator of mitochondrial function through inhibition of MYC. Ablation of FOXO3a prevents the inhibition of mitochondrial function induced by hypoxia and results in enhanced oxidative stress. This review will focus on the antagonism between FOXO3a and MYC and discuss their role in cellular bioenergetics, reactive oxygen metabolism, and adaptation to hypoxia, raising questions about the role of FOXO proteins in cancer.
Collapse
Affiliation(s)
- Barrie Peck
- Gene Expression Analysis Laboratory, Cancer Research UK, London Research Institute London, UK
| | | | | |
Collapse
|
56
|
Lang F, Voelkl J. Therapeutic potential of serum and glucocorticoid inducible kinase inhibition. Expert Opin Investig Drugs 2013; 22:701-14. [PMID: 23506284 DOI: 10.1517/13543784.2013.778971] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Expression of serum-and-glucocorticoid-inducible kinase-1 (SGK1) is low in most cells, but dramatically increases under certain pathophysiological conditions, such as glucocorticoid or mineralocorticoid excess, inflammation with TGFβ release, hyperglycemia, cell shrinkage and ischemia. SGK1 is activated by insulin and growth factors via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase and mammalian target of rapamycin. SGK1 sensitive functions include activation of ion channels (including epithelial Na(+) channel ENaC, voltage gated Na(+) channel SCN5A transient receptor potential channels TRPV4 - 6, Ca(2+) release activated Ca(2+) channel Orai1/STIM1, renal outer medullary K(+) channel ROMK, voltage gated K(+) channels KCNE1/KCNQ1, kainate receptor GluR6, cystic fibrosis transmembrane regulator CFTR), carriers (including Na(+),Cl(-) symport NCC, Na(+),K(+),2Cl(-) symport NKCC, Na(+)/H(+) exchangers NHE1 and NHE3, Na(+), glucose symport SGLT1, several amino acid transporters), and Na(+)/K(+)-ATPase. SGK1 regulates several enzymes (e.g., glycogen synthase kinase-3, ubiquitin-ligase Nedd4-2) and transcription factors (e.g., forkhead transcription factor 3a, β-catenin, nuclear factor kappa B). AREAS COVERED The phenotype of SGK1 knockout mice is mild and SGK1 is apparently dispensible for basic functions. Excessive SGK1 expression and activity, however, contributes to the pathophysiology of several disorders, including hypertension, obesity, diabetes, thrombosis, stroke, fibrosing disease, infertility and tumor growth. A SGK1 gene variant (prevalence ∼ 3 - 5% in Caucasians and ∼ 10% in Africans) is associated with hypertension, stroke, obesity and type 2 diabetes. SGK1 inhibitors have been developed and shown to reduce blood pressure of hyperinsulinemic mice and to counteract tumor cell survival. EXPERT OPINION Targeting SGK1 may be a therapeutic option in several clinical conditions, including metabolic syndrome and tumor growth.
Collapse
Affiliation(s)
- Florian Lang
- University of Tuebingen, Department of Physiology, Tuebingen, Germany.
| | | |
Collapse
|
57
|
Serum- and glucocorticoid-regulated kinase 1 is required for nuclear export of the ribonucleoprotein of influenza A virus. J Virol 2013; 87:6020-6. [PMID: 23487453 DOI: 10.1128/jvi.01258-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We previously performed a small interfering RNA (siRNA) screen and identified serum- and glucocorticoid-regulated kinase 1 (SGK1) as a host factor required for influenza A virus replication. However, the role of SGK1 in the influenza viral life cycle has never been examined. In this study, we demonstrate that SGK1 is required for optimal replication of influenza virus, using the SGK1 inhibitor GSK 650394 and SGK1-specific siRNAs. We also demonstrate that SGK1 is required for viral ribonucleoprotein nuclear export.
Collapse
|
58
|
Caballero-Caballero A, Engel T, Martinez-Villarreal J, Sanz-Rodriguez A, Chang P, Dunleavy M, Mooney CM, Jimenez-Mateos EM, Schindler CK, Henshall DC. Mitochondrial localization of the forkhead box class O transcription factor FOXO3a in brain. J Neurochem 2013; 124:749-56. [PMID: 23278239 DOI: 10.1111/jnc.12133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 12/30/2022]
Abstract
FOXO3a is member of the Forkhead box class O transcription factors, which functions in diverse pathways to regulate cellular metabolism, differentiation, and apoptosis. FOXO3a shuttles between the cytoplasm and nucleus and may be activated in neurons by stressors, including seizures. A subset of nuclear transcription factors may localize to mitochondria, but whether FOXO3a is present within brain mitochondria is unknown. Here, we report that purified mitochondrial fractions from rat, mouse, and human hippocampus, as well as HT22 hippocampal cells, contain FOXO3a protein. Immunogold electron microscopy supported the presence of FOXO3a within brain mitochondria, and chromatin immunoprecipitation analysis suggested FOXO3a was associated with mitochondrial DNA. Over-expression of a mitochondrially targeted FOXO3a fusion protein in HT22 cells, but not primary hippocampal neurons, conferred superior protection against glutamate toxicity than FOXO3a alone. Mitochondrial FOXO3a levels were reduced in the damaged region of the mouse hippocampus after status epilepticus, while mitochondrial fractions from the hippocampus of patients with temporal lobe epilepsy displayed higher levels of FOXO3a than controls. These results support mitochondria as a site of FOXO3a localization, which may contribute to the overall physiological and pathophysiological functions of this transcription factor.
Collapse
|
59
|
Mulligan KA, Cheyette BNR. Wnt signaling in vertebrate neural development and function. J Neuroimmune Pharmacol 2012; 7:774-87. [PMID: 23015196 DOI: 10.1007/s11481-012-9404-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/10/2012] [Indexed: 02/03/2023]
Abstract
Members of the Wnt family of secreted signaling proteins influence many aspects of neural development and function. Wnts are required from neural induction and axis formation to axon guidance and synapse development, and even help modulate synapse activity. Wnt proteins activate a variety of downstream signaling pathways and can induce a similar variety of cellular responses, including gene transcription changes and cytoskeletal rearrangements. This review provides an introduction to Wnt signaling pathways and discusses current research on their roles in vertebrate neural development and function.
Collapse
Affiliation(s)
- Kimberly A Mulligan
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
60
|
Astrup E, Lekva T, Davì G, Otterdal K, Santilli F, Oie E, Halvorsen B, Damås JK, Raoult D, Vitale G, Olano JP, Ueland T, Aukrust P. A complex interaction between Rickettsia conorii and Dickkopf-1--potential role in immune evasion mechanisms in endothelial cells. PLoS One 2012; 7:e43638. [PMID: 23028464 PMCID: PMC3445570 DOI: 10.1371/journal.pone.0043638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/24/2012] [Indexed: 01/08/2023] Open
Abstract
The pathophysiological hallmark of spotted fever group rickettsioses comprises vascular inflammation. Based on the emerging importance of the wingless (Wnt) pathways in inflammation and vascular biology, we hypothesized that Dickkopf-1 (DKK-1), as a major modulator of Wnt signaling, could be involved in the pathogenesis in rickettsial infections. Our major findings were: (i) While baseline concentration of DKK-1 in patients with R. conorii infection (n = 32) were not different from levels in controls (n = 24), DKK-1 rose significantly from presentation to first follow-up sample (median 7 days after baseline). (ii) In vitro experiments in human umbilical vein endothelial cells (HUVECs) showed that while heat-inactivated R. conorii enhanced the release of interleukin-6 (IL-6) and IL-8, it down-regulated the release of endothelial-derived DKK-1 in a time- and dose-dependent manner. (iii) Silencing of DKK-1 attenuated the release of IL-6, IL-8 and growth-related oncogene (GRO)α in R. conorii-exposed HUVECs, suggesting inflammatory effects of DKK-1. (iv) Silencing of DKK-1 attenuated the expression of tissue factor and enhanced the expression of thrombomodulin in R. conorii-exposed HUVECs suggesting pro-thrombotic effects of DKK-1. The capacity of R. conorii to down-regulate endothelial-derived DKK-1 and the ability of silencing DKK-1 to attenuate R. conorii-induced inflammation in endothelial cells could potentially reflect a novel mechanism by which R. conorii escapes the immune response at the site of infection.
Collapse
Affiliation(s)
- Elisabeth Astrup
- Institute of Clinical Medicine, Akershus University Hospital, Lørenskog, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Willis CM, Klüppel M. Inhibition by chondroitin sulfate E can specify functional Wnt/β-catenin signaling thresholds in NIH3T3 fibroblasts. J Biol Chem 2012; 287:37042-56. [PMID: 22915582 DOI: 10.1074/jbc.m112.391490] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aberrant activation of the Wnt/β-catenin signaling pathway is frequently associated with human disease, including cancer, and thus represents a key therapeutic target. However, Wnt/β-catenin signaling also plays critical roles in many aspects of normal adult tissue homeostasis. The identification of mechanisms and strategies to selectively inhibit the disease-related functions of Wnt signaling, while preserving normal physiological functions, is in its infancy. Here, we report the identification of exogenous chondroitin sulfate-E (CS-E) as an inhibitor of specific molecular and biological outcomes of Wnt3a signaling in NIH3T3 fibroblasts. We demonstrate that CS-E can decrease Wnt3a signaling through the negative regulation of LRP6 receptor activation. However, this inhibitory effect of CS-E only affected Wnt3a-mediated induction, but not repression, of target gene expression. We went on to identify a critical Wnt3a signaling threshold that differentially affects target gene induction versus repression. This signaling threshold also controlled the effects of Wnt3a on proliferation and serum starvation-induced apoptosis. Limiting Wnt3a signaling to this critical threshold, either by CS-E treatment or by ligand dilution, interfered with Wnt3a-mediated stimulation of proliferation but did not impair Wnt3a-mediated reduction of serum starvation-induced apoptosis. Treatment with pharmacological inhibitors demonstrated that both induction and repression of Wnt3a target genes in NIH3T3 cells require the canonical Wnt/β-catenin signaling cascade. Our data establish the feasibility of selective inhibition of Wnt/β-catenin transcriptional programs and biological outcomes through the exploitation of intrinsic signaling thresholds.
Collapse
Affiliation(s)
- Catherine M Willis
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60614, USA
| | | |
Collapse
|
62
|
β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 2012; 18:892-901. [PMID: 22610277 DOI: 10.1038/nm.2772] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 04/10/2012] [Indexed: 02/07/2023]
Abstract
The Wnt–β-catenin and PI3K-AKT-FOXO3a pathways have a central role in cancer. AKT phosporylates FOXO3a, relocating it from the cell nucleus to the cytoplasm, an effect that is reversed by PI3K and AKT inhibitors. Simultaneous hyperactivation of the Wnt–β-catenin pathway and inhibition of PI3K-AKT signaling promote nuclear accumulation of β-catenin and FOXO3a, respectively, promoting cell scattering and metastasis by regulating a defined set of target genes. Indeed, the anti-tumoral AKT inhibitor API-2 promotes nuclear FOXO3a accumulation and metastasis of cells with high nuclear β-catenin content. Nuclear β-catenin confers resistance to the FOXO3a-mediated apoptosis induced by PI3K and AKT inhibitors in patient-derived primary cultures and in corresponding xenograft tumors in mice. This resistance is reversed by XAV-939, an inhibitor of Wnt–β-catenin signaling. In the presence of high nuclear β-catenin content, activation of FOXO3a by PI3K or AKT inhibitors makes it behave as a metastasis inductor rather than a proapoptotic tumor suppressor. We show that it is possible to evaluate the β-catenin status of patients' carcinomas and the response of patient-derived cells to target-directed drugs that accumulate FOXO3a in the nucleus before deciding on a course of treatment. We propose that this evaluation could be essential to the provision of a safer and more effective personalized treatment.
Collapse
|
63
|
Abstract
The multifunctional protein ß-catenin governs as transcription factor the expression of a wide variety of genes relevant for cell proliferation and cell survival. In addition, ß-catenin is localized at the cell membrane and may influence the function of channels. The present study explored the possibility that ß-catenin participates in the regulation of the HERG K+ channel. To this end, HERG was expressed in Xenopus oocytes with or without ß-catenin and the voltage-gated current determined utilizing the dual electrode voltage clamp. As a result, expression of ß-catenin markedly upregulated HERG channel activity, an effect not sensitive to inhibition of transcription with actinomycin D (10 µM). According to chemiluminescence, ß-catenin may increase HERG channel abundance within the oocyte cell membrane. Following inhibition of channel insertion into the cell membrane by brefeldin A (5 µM) the decay of current was similar in oocytes expressing HERG together with ß-catenin to oocytes expressing HERG alone. The experiments uncover a novel function of APC/ß-catenin, i.e. the regulation of HERG channels.
Collapse
|
64
|
Hadjihannas MV, Bernkopf DB, Brückner M, Behrens J. Cell cycle control of Wnt/β-catenin signalling by conductin/axin2 through CDC20. EMBO Rep 2012; 13:347-54. [PMID: 22322943 DOI: 10.1038/embor.2012.12] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/30/2011] [Accepted: 01/18/2012] [Indexed: 11/09/2022] Open
Abstract
Wnt/β-catenin signalling regulates cell proliferation by modulating the cell cycle and is negatively regulated by conductin/axin2/axil. We show that conductin levels peak at G2/M followed by a rapid decline during return to G1. In line with this, Wnt/β-catenin target genes are low at G2/M and high at G1/S, and β-catenin phosphorylation oscillates during the cell cycle in a conductin-dependent manner. Conductin is degraded by the anaphase-promoting complex/cyclosome cofactor CDC20. Knockdown of CDC20 blocks Wnt signalling through conductin. CDC20-resistant conductin inhibits Wnt signalling and attenuates colony formation of colorectal cancer cells. We propose that CDC20-mediated degradation of conductin regulates Wnt/β-catenin signalling for maximal activity during G1/S.
Collapse
Affiliation(s)
- Michel V Hadjihannas
- Nikolaus-Fiebiger-Center of Molecular Medicine, University of Erlangen, Glueckstrasse 6, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
65
|
A WNT/p21 circuit directed by the C-clamp, a sequence-specific DNA binding domain in TCFs. Mol Cell Biol 2012; 32:3648-62. [PMID: 22778133 DOI: 10.1128/mcb.06769-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The lymphoid enhancer factor 1/T cell factor (LEF/TCF) family of transcription factors are downstream effectors of the WNT signaling pathway, which drives colon tumorigenesis. LEF/TCFs have a DNA sequence-specific high-mobility group (HMG) box that binds Wnt response elements (WREs). The "E tail" isoforms of TCFs are alternatively spliced to include a second DNA binding domain called the C-clamp. We show that induction of a dominant negative C-clamp version of TCF1 (dnTCF1E) induces p21 expression and a stall in the growth of DLD1 colon cancer cells. Induction of a C-clamp mutant did not efficiently induce p21, nor did it stall cell growth. Microarray analysis revealed that induction of p21 by wild-type dnTCF1E (dnTCF1E(WT)) correlated with a decrease in expression of multiple p21 suppressors that act at multiple levels from transcription (SP5, YAP1, and RUNX1), RNA stability (MSI2), and protein stability (CUL4A). We show that the C-clamp is a sequence-specific DNA binding domain that can make contacts with 5'-RCCG-3' elements upstream or downstream of WREs. The C-clamp-RCCG interaction was critical for TCF1E-mediated transcriptional control of p21-connected target gene promoters. Our results indicate that a rapid-response WNT/p21 circuit is driven by C-clamp target gene selection.
Collapse
|
66
|
|
67
|
Wilmes J, Haddad-Tóvolli R, Alesutan I, Munoz C, Sopjani M, Pelzl L, Bogatikov E, Fedele G, Faggio C, Seebohm G, Föller M, Lang F. Regulation of KCNQ1/KCNE1 by β-catenin. Mol Membr Biol 2012; 29:87-94. [PMID: 22583083 DOI: 10.3109/09687688.2012.678017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
β-catenin, a multifunctional protein expressed in all tissues including the heart stimulates the expression of several genes important for cell proliferation. Signaling involving ß-catenin participates in directing cardiac development and in the pathophysiology of cardiac hypertrophy. Nothing is known, however, on the role of β-catenin in the regulation of cardiac ion channels. The present study explored the functional interaction of β-catenin and KCNE1/KCNQ1, the K⁺ channel complex underlying the slowly activating outwardly rectifying K⁺ current. To this end, KCNE1/KCNQ1 was expressed in Xenopus oocytes with and without β-catenin and the depolarization (up to + 80 mV) induced current (I(Ks)) was determined using the two-electrode voltage clamp. As a result, β-catenin enhanced I(Ks) by 30%. The effect of β-catenin on I(Ks) was not affected by actinomycin D (10 μM), an inhibitor of transcription, indicating that β-catenin was not effective as transcription factor. Confocal microscopy revealed that β-catenin enhanced the KCNE1/KCNQ1 protein abundance in the cell membrane. Exposure of the oocytes to brefeldin A (5 μM), an inhibitor of vesicle insertion, was followed by a decline of I(Ks), which was then similar in oocytes expressing KCNE1/KCNQ1 together with β-catenin and in oocytes expressing KCNE1/KCNQ1 alone. In conclusion, β-catenin enhances I(Ks) by increasing the KCNE1/KCNQ1 protein abundance in the cell membrane, an effect requiring vesicle insertion into the cell membrane.
Collapse
Affiliation(s)
- Jan Wilmes
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Schmidt EM, Gu S, Anagnostopoulou V, Alevizopoulos K, Föller M, Lang F, Stournaras C. Serum- and glucocorticoid-dependent kinase-1-induced cell migration is dependent on vinculin and regulated by the membrane androgen receptor. FEBS J 2012; 279:1231-42. [DOI: 10.1111/j.1742-4658.2012.08515.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
69
|
Attenuation of the beta-catenin/TCF4 complex in colorectal cancer cells induces several growth-suppressive microRNAs that target cancer promoting genes. Oncogene 2011; 31:2750-60. [PMID: 21963845 DOI: 10.1038/onc.2011.453] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrant activation of the Wnt signaling pathway is causally involved in the formation of most colorectal cancers (CRCs). Although detailed knowledge exists regarding Wnt-regulated protein-coding genes, much less is known about the possible involvement of non-coding RNAs. Here we used TaqMan Array MicroRNA Cards, capable of detecting 664 unique human microRNAs (miRNAs), to describe changes of the miRNA transcriptome following disruption of beta-catenin/TCF4 activity in DLD1 CRC cells. Most miRNAs appeared to respond independent of host gene regulation and proximal TCF4 chromatin occupancy as inferred from expression microarray and ChIP-chip data. A module of miRNAs induced by abrogated Wnt signaling in vitro was downregulated in two independent series of human primary CRCs (n=76) relative to normal adjacent mucosa (n=34). Several of these miRNAs (miR-145, miR-126, miR-30e-3p and miR-139-5p) markedly inhibited CRC cell growth in vitro when ectopically expressed. By using an integrative approach of proteomics and expression microarrays, we found numerous mRNAs and proteins to be affected by ectopic miR-30e-3p levels. This included HELZ and PIK3C2A that were directly repressed by several miRNA binding sites as confirmed by luciferase reporter assays in combination with mutational analyses. Finally, small interfering RNA-mediated downregulation of PIK3C2A, but not HELZ, was sufficient on its own to restrict CRC cell growth. Collectively, our study demonstrates that multiple miRNAs are upregulated as a consequence of forced attenuation of Wnt signaling in CRC cells, and some of these miRNAs inhibit cell growth with concomitant suppression of several growth-stimulatory cancer-related genes.
Collapse
|
70
|
Li Y, Kong D, Bao B, Ahmad A, Sarkar FH. Induction of cancer cell death by isoflavone: the role of multiple signaling pathways. Nutrients 2011; 3:877-96. [PMID: 22200028 PMCID: PMC3244210 DOI: 10.3390/nu3100877] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/29/2011] [Accepted: 10/09/2011] [Indexed: 12/31/2022] Open
Abstract
Soy isoflavones have been documented as dietary nutrients broadly classified as "natural agents" which plays important roles in reducing the incidence of hormone-related cancers in Asian countries, and have shown inhibitory effects on cancer development and progression in vitro and in vivo, suggesting the cancer preventive or therapeutic activity of soy isoflavones against cancers. Emerging experimental evidence shows that isoflavones could induce cancer cell death by regulating multiple cellular signaling pathways including Akt, NF-κB, MAPK, Wnt, androgen receptor (AR), p53 and Notch signaling, all of which have been found to be deregulated in cancer cells. Therefore, homeostatic regulation of these important cellular signaling pathways by isoflavones could be useful for the activation of cell death signaling, which could result in the induction of apoptosis of both pre-cancerous and/or cancerous cells without affecting normal cells. In this article, we have attempted to summarize the current state-of-our-knowledge regarding the induction of cancer cell death pathways by isoflavones, which is believed to be mediated through the regulation of multiple cellular signaling pathways. The knowledge gained from this article will provide a comprehensive view on the molecular mechanism(s) by which soy isoflavones may exert their effects on the prevention of tumor progression and/or treatment of human malignancies, which would also aid in stimulating further in-depth mechanistic research and foster the initiation of novel clinical trials.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 740 Hudson Webber Cancer Research Center, 4100 John R, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
71
|
Krol AJ, Roellig D, Dequéant ML, Tassy O, Glynn E, Hattem G, Mushegian A, Oates AC, Pourquié O. Evolutionary plasticity of segmentation clock networks. Development 2011; 138:2783-92. [PMID: 21652651 DOI: 10.1242/dev.063834] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vertebral column is a conserved anatomical structure that defines the vertebrate phylum. The periodic or segmental pattern of the vertebral column is established early in development when the vertebral precursors, the somites, are rhythmically produced from presomitic mesoderm (PSM). This rhythmic activity is controlled by a segmentation clock that is associated with the periodic transcription of cyclic genes in the PSM. Comparison of the mouse, chicken and zebrafish PSM oscillatory transcriptomes revealed networks of 40 to 100 cyclic genes mostly involved in Notch, Wnt and FGF signaling pathways. However, despite this conserved signaling oscillation, the identity of individual cyclic genes mostly differed between the three species, indicating a surprising evolutionary plasticity of the segmentation networks.
Collapse
Affiliation(s)
- Aurélie J Krol
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Unique features of memory T cells in HIV elite controllers: a systems biology perspective. Curr Opin HIV AIDS 2011; 6:188-96. [DOI: 10.1097/coh.0b013e32834589a1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
73
|
Marchand A, Atassi F, Gaaya A, Leprince P, Le Feuvre C, Soubrier F, Lompré AM, Nadaud S. The Wnt/beta-catenin pathway is activated during advanced arterial aging in humans. Aging Cell 2011; 10:220-32. [PMID: 21108734 DOI: 10.1111/j.1474-9726.2010.00661.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aging is the main risk factor for cardiovascular diseases, but the associated molecular mechanisms are poorly understood. The Wnt signaling pathway was shown to be induced during aging in muscle and in the skin, but the regulation and role of Wnt signaling in the aged vessel have not yet been addressed. While screening for age-related changes in gene expression in the intima/media of human mammary arteries, we observed that the expression of frizzled 4 (Fzd4), a Wnt receptor, and of several targets of the Wnt/β-catenin/TCF signaling pathway [Wnt-inducible secreted protein 1 (WISP1), versican, osteopontin (SPP1), insulin-like growth factor binding protein 2 (IGFBP-2), and p21] were modified with age, suggesting an activation of the Wnt/β-catenin pathway. In contrast, we did not observe any regulation of forkhead transcription factor (FoxO) target genes. Beta-catenin-activating phosphorylation at position Ser675 was increased in aging mammary arteries, confirming the activation of this pathway. We confirmed in vitro that Wnt3a or Wnt1 treatment of human vascular smooth muscle cells (VSMCs) induced β-catenin phosphorylation at Ser675 and WISP1, SPP1, and IGFBP-2 expression. In vitro, Wnt treatment induced proliferation and cyclin D1 expression in VSMC from young (6 weeks old) rats but not in cells from older rats (8 months old), even though low-density lipoprotein receptor-related protein 6 and β-catenin phosphorylation, and β-catenin nuclear translocation demonstrated β-catenin activation in both cell types. Beta-catenin silencing demonstrated that Wnt induction of cyclin D1 expression is β-catenin dependent. Altogether, our data show that the Wnt/β-catenin/TCF pathway is activated in aging human mammary artery cells, but fails to induce the proliferation of aging vascular cells.
Collapse
Affiliation(s)
- Alexandre Marchand
- INSERM UMRS_956; UPMC Univ Paris 06, 91 boulevard de l'Hôpital, Paris Cedex 13, France
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Tumor suppressor gene adenomatous polyposis coli downregulates intestinal transport. Pflugers Arch 2011; 461:527-36. [DOI: 10.1007/s00424-011-0945-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 12/21/2022]
|
75
|
Eylenstein A, Gehring EM, Heise N, Shumilina E, Schmidt S, Szteyn K, Münzer P, Nurbaeva MK, Eichenmüller M, Tyan L, Regel I, Föller M, Kuhl D, Soboloff J, Penner R, Lang F. Stimulation of Ca2+-channel Orai1/STIM1 by serum- and glucocorticoid-inducible kinase 1 (SGK1). FASEB J 2011; 25:2012-21. [PMID: 21385992 DOI: 10.1096/fj.10-178210] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ca(2+) signaling includes store-operated Ca(2+) entry (SOCE) following depletion of endoplasmic reticulum (ER) Ca(2+) stores. On store depletion, the ER Ca(2+) sensor STIM1 activates Orai1, the pore-forming unit of Ca(2+)-release-activated Ca(2+) (CRAC) channels. Here, we show that Orai1 is regulated by serum- and glucocorticoid-inducible kinase 1 (SGK1), a growth factor-regulated kinase. Membrane Orai1 protein abundance, I(CRAC), and SOCE in human embryonic kidney (HEK293) cells stably expressing Orai1 and transfected with STIM1 were each significantly enhanced by coexpression of constitutively active (S422D)SGK1 (by+81, +378, and+136%, respectively) but not by inactive (K127N)SGK1. Coexpression of the ubiquitin ligase Nedd4-2, an established negatively regulated SGK1 target, down-regulated SOCE (by -48%) and I(CRAC) (by -60%), an effect reversed by expression of (S422D)SGK1 (by +175 and +173%, respectively). Orai1 protein abundance and SOCE were significantly lower in mast cells from SGK1-knockout (sgk1(-/-)) mice (by -37% and -52%, respectively) than in mast cells from wild-type (sgk1(+/+)) littermates. Activation of SOCE by sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase-inhibitor thapsigargin (2 μM) stimulated migration, an effect significantly higher (by +306%) in (S422D)SGK1-expressing than in (K127N)SGK1-expressing HEK293 cells, and also significantly higher (by +108%) in sgk1(+/+) than in sgk1(-/-) mast cells. SGK1 is thus a novel key player in the regulation of SOCE.
Collapse
Affiliation(s)
- Anja Eylenstein
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Endo T, Kusakabe M, Sunadome K, Yamamoto T, Nishida E. The kinase SGK1 in the endoderm and mesoderm promotes ectodermal survival by down-regulating components of the death-inducing signaling complex. Sci Signal 2011; 4:ra2. [PMID: 21245468 DOI: 10.1126/scisignal.2001211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A balance between cell survival and apoptosis is essential for animal development. Although proper development involves multiple interactions between germ layers, little is known about the intercellular and intertissue signaling pathways that promote cell survival in neighboring or distant germ layers. We found that serum- and glucocorticoid-inducible kinase 1 (SGK1) promoted ectodermal cell survival during early Xenopus embryogenesis through a non-cell-autonomous mechanism. Dorsal depletion of SGK1 in Xenopus embryos resulted in shortened axes and reduced head structures with defective eyes, and ventral depletion led to defective tail morphologies. Although the gene encoding SGK1 was mainly expressed in the endoderm and dorsal mesoderm, knockdown of SGK1 caused excessive apoptosis in the ectoderm. SGK1-depleted ectodermal explants showed little or no apoptosis, suggesting non-cell-autonomous effects of SGK1 on ectodermal cells. Microarray analysis revealed that SGK1 knockdown increased the expression of genes encoding FADD (Fas-associated death domain protein) and caspase-10, components of the death-inducing signaling complex (DISC). Inhibition of DISC function suppressed excessive apoptosis in SGK1-knockdown embryos. SGK1 acted through the transcription factor nuclear factor κB (NF-κB) to stimulate production of bone morphogenetic protein 7 (BMP7), and overexpression of BMP7 in SGK1-knockdown embryos reduced the abundance of DISC components. We show that phosphoinositide 3-kinase (PI3K) functioned upstream of SGK1, thus revealing an endodermal and mesodermal pathway from PI3K to SGK1 to NF-κB that produces BMP7, which promotes ectodermal survival by decreasing DISC function.
Collapse
Affiliation(s)
- Tatsuya Endo
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
77
|
Kawakami K, Yamamura S, Hirata H, Ueno K, Saini S, Majid S, Tanaka Y, Kawamoto K, Enokida H, Nakagawa M, Dahiya R. Secreted frizzled-related protein-5 is epigenetically downregulated and functions as a tumor suppressor in kidney cancer. Int J Cancer 2011; 128:541-50. [PMID: 20340127 DOI: 10.1002/ijc.25357] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Secreted frizzled-related protein-5 (sFRP-5) has been identified as 1 of the secreted antagonists that bind Wnt protein. However, the functional significance of sFRP-5 in renal cell cancer (RCC) has not been reported. We hypothesized that sFRP-5 may be epigenetically downregulated through DNA methylation and histone modification and function as a tumor suppressor gene in RCC. Using tissue microarray and real-time RT-PCR, we found that sFRP-5 was significantly downregulated in kidney cancer tissues and cell lines, respectively. DNA bisulfite sequencing of the sFRP-5 promoter region in RCC cell lines showed it to be densely methylated, whereas there was few promoter methylation in normal kidney. The sFRP-5 expression was restored and the acetylation of H3 and H4 histones associated with the sFRP-5 promoter region were significantly increased after treatment with demethylation agent (5-Aza-dc) and histone deacetylase inhibitor (TSA). When RCC cells were transfected with the sFRP-5 gene, significant inhibition of anchorage independent colony formation and cell invasion were observed compared to controls. The sFRP-5 transfection also significantly induced apoptosis in RCC cells. In conclusion, this is the first report documenting that the sFRP-5 is downregulated by promoter methylation and histone acetylation and functions as a tumor suppressor gene by inducing apoptosis in RCC cells.
Collapse
Affiliation(s)
- Kazumori Kawakami
- Department of Urology, Veterans Affairs Medical Center and University of California, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Sopjani M, Alesutan I, Wilmes J, Dërmaku-Sopjani M, Lam RS, Koutsouki E, Jakupi M, Föller M, Lang F. Stimulation of Na+/K+ ATPase activity and Na+ coupled glucose transport by β-catenin. Biochem Biophys Res Commun 2010; 402:467-70. [DOI: 10.1016/j.bbrc.2010.10.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/09/2010] [Indexed: 01/16/2023]
|
79
|
Shang YC, Chong ZZ, Hou J, Maiese K. Wnt1, FoxO3a, and NF-kappaB oversee microglial integrity and activation during oxidant stress. Cell Signal 2010; 22:1317-29. [PMID: 20462515 PMCID: PMC2893230 DOI: 10.1016/j.cellsig.2010.04.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/29/2010] [Indexed: 01/08/2023]
Abstract
Elucidating the underlying mechanisms that govern microglial activation and survival is essential for the development of new treatment strategies for neurodegenerative disorders, since microglia serve not only as guardian sentries of the nervous system, but also play a significant role in determining neuronal and vascular cell fate. Here we show that endogenous and exogenous Wnt1 in inflammatory microglial cells is necessary for the prevention of apoptotic early membrane phosphatidylserine exposure and later DNA degradation, since blockade of Wnt1 signaling abrogates cell survival during oxidative stress. Wnt1 prevents apoptotic demise through the post-translational phosphorylation and maintenance of FoxO3a in the cytoplasm to inhibit an apoptotic cascade that relies upon the loss of mitochondrial membrane permeability, cytochrome c release, Bad phosphorylation, and activation of caspase 3 and caspase 1 as demonstrated by complimentary gene knockdown studies of FoxO3a. Furthermore, subcellular trafficking and gene knockdown studies of NF-kappaB p65 illustrate that microglial cell survival determined by Wnt1 during oxidative stress requires NF-kappaB p65. Our work highlights Wnt1 and the control of novel downstream transcriptional pathways as critical components for the oversight of nervous system microglial cells.
Collapse
Affiliation(s)
- Yan Chen Shang
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Jinling Hou
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201
- Departments of Neurology and Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201
- Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
80
|
Abstract
Although preclinical work with rapalogs suggests potential in treatment of multiple myeloma (MM), they have been less successful clinically. These drugs allostearically inhibit the mammalian target of rapamycin kinase primarily curtailing activity of the target of rapamycin complex (TORC)1. To assess if the mammalian target of rapamycin within the TORC2 complex could be a better target in MM, we tested a new agent, pp242, which prevents activation of TORC2 as well as TORC1. Although comparable to rapamycin against phosphorylation of the TORC1 substrates p70S6kinase and 4E-BP-1, pp242 could also inhibit phosphorylation of AKT on serine 473, a TORC2 substrate, while rapamycin was ineffective. pp242 was also more effective than rapamycin in achieving cytoreduction and apoptosis in MM cells. In addition, pp242 was an effective agent against primary MM cells in vitro and growth of 8226 cells in mice. Knockdown of the TORC2 complex protein, rictor, was deleterious to MM cells further supporting TORC2 as the critical target for pp242. TORC2 activation was frequently identified in primary specimens by immunostaining for AKT phosphorylation on serine 473. Potential mechanisms of up-regulated TORC2 activity in MM were stimulation with interleukin-6 or insulin-like growth factor 1, and phosphatase and tensin homolog or RAS alterations. Combining pp242 with bortezomib led to synergistic anti-MM effects. These results support TORC2 as a therapeutic target in MM.
Collapse
|
81
|
Colorectal carcinoma cells--regulation of survival and growth by SGK1. Int J Biochem Cell Biol 2010; 42:1571-5. [PMID: 20541034 DOI: 10.1016/j.biocel.2010.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/28/2010] [Accepted: 05/30/2010] [Indexed: 12/21/2022]
Abstract
Colorectal carcinoma is among the most common malignancies. The tumour cells may arise from mutations in genes encoding proteins involved in the regulation of cell survival and proliferation. Recent evidence disclosed the sensitivity of colon carcinoma to the expression of ubiquitous serum and glucocorticoid inducible kinase-1 (SGK1). The kinase is activated by insulin and growth factors via the phosphatidylinositide-3-kinase (PI3K) and the 3-phosphoinositide dependent kinase (PDK1). SGK1 regulates channels, carriers and Na(+)/K(+)-ATPase, enzymes such as glycogen-synthase-kinase-3 (GSK3) and ubiquitin-ligase Nedd4-2, as well as several transcription factors. SGK1 regulates transport, hormone release, neuroexcitability, inflammation, cell proliferation and apoptosis. SGK1 contributes to metabolic syndrome and the pathophysiology of neurodegeneration, allergy, peptic ulcer, fibrosing disease and response to ischemia. SGK1 is upregulated in some tumours but downregulated in others. SGK1-sensitive mechanisms fostering tumour growth include activation of K(+) channels and Ca(2+) channels, Na(+)/H(+) exchanger, amino acid transporters and glucose transporters, upregulation of the nuclear factor NFkappaB and beta-catenin as well as downregulation of the transcription factors Foxo3a/FKHRL1 and p53. SGK1 enhances survival, invasiveness, motility, epithelial to mesenchymal transition and adhesiveness of tumour cells. Following deficiency of APC (adenoma polyposis coli) or chemical cancerogenesis, SGK1 knockout mice develop less intestinal tumours than their wild-type littermates and pharmacological SGK1 inhibition counteracts growth of prostate cancer cells.
Collapse
|
82
|
Abstract
The Forkhead family of transcription factors mediates many aspects of physiology, including stress response, metabolism, commitment to apoptosis, and development. The Forkhead box subfamily O (FoxO) proteins have garnered particular interest due to their involvement in the modulation of cardiovascular biology. In this review, we discuss the mechanisms of FoxO regulation and outcomes of FoxO signaling under normal and pathological cardiovascular contexts.
Collapse
Affiliation(s)
- Sarah M Ronnebaum
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
83
|
Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 2010; 3:11. [PMID: 20429876 PMCID: PMC2880315 DOI: 10.1186/1757-2215-3-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/29/2010] [Indexed: 12/15/2022] Open
Abstract
Background Chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Curcumin is a naturally occurring compound with anti-cancer activity in multiple cancers; however, its chemo/radio-sensitizing potential is not well studied in ovarian cancer. Herein, we demonstrate the effectiveness of a curcumin pre-treatment strategy for chemo/radio-sensitizing cisplatin resistant ovarian cancer cells. To improve the efficacy and specificity of curcumin induced chemo/radio sensitization, we developed a curcumin nanoparticle formulation conjugated with a monoclonal antibody specific for cancer cells. Methods Cisplatin resistant A2780CP ovarian cancer cells were pre-treated with curcumin followed by exposure to cisplatin or radiation and the effect on cell growth was determined by MTS and colony formation assays. The effect of curcumin pre-treatment on the expression of apoptosis related proteins and β-catenin was determined by Western blotting or Flow Cytometry. A luciferase reporter assay was used to determine the effect of curcumin on β-catenin transcription activity. The poly(lactic acid-co-glycolic acid) (PLGA) nanoparticle formulation of curcumin (Nano-CUR) was developed by a modified nano-precipitation method and physico-chemical characterization was performed by transmission electron microscopy and dynamic light scattering methods. Results Curcumin pre-treatment considerably reduced the dose of cisplatin and radiation required to inhibit the growth of cisplatin resistant ovarian cancer cells. During the 6 hr pre-treatment, curcumin down regulated the expression of Bcl-XL and Mcl-1 pro-survival proteins. Curcumin pre-treatment followed by exposure to low doses of cisplatin increased apoptosis as indicated by annexin V staining and cleavage of caspase 9 and PARP. Additionally, curcumin pre-treatment lowered β-catenin expression and transcriptional activity. Nano-CUR was successfully generated and physico-chemical characterization of Nano-CUR indicated an average particle size of ~70 nm, steady and prolonged release of curcumin, antibody conjugation capability and effective inhibition of ovarian cancer cell growth. Conclusion Curcumin pre-treatment enhances chemo/radio-sensitization in A2780CP ovarian cancer cells through multiple molecular mechanisms. Therefore, curcumin pre-treatment may effectively improve ovarian cancer therapeutics. A targeted PLGA nanoparticle formulation of curcumin is feasible and may improve the in vivo therapeutic efficacy of curcumin.
Collapse
Affiliation(s)
- Murali M Yallapu
- Cancer Biology Research Center, Sanford Research/University of South Dakota, Sioux Falls, SD 57105, USA.
| | | | | | | | | | | |
Collapse
|
84
|
Hadjihannas MV, Brückner M, Behrens J. Conductin/axin2 and Wnt signalling regulates centrosome cohesion. EMBO Rep 2010; 11:317-24. [PMID: 20300119 PMCID: PMC2854593 DOI: 10.1038/embor.2010.23] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 01/22/2010] [Accepted: 01/27/2010] [Indexed: 12/26/2022] Open
Abstract
Activated Wnt/beta-catenin signalling is a characteristic of many cancers and drives cell-cycle progression. Here, we report a mechanism linking Wnt/beta-catenin signalling to centrosome separation. We show that conductin/axin2, a negative regulator of beta-catenin, localizes at the centrosomes by binding to the centriole-associated component C-Nap1. Knockout or knockdown of conductin leads to premature centrosome separation--that is, splitting--which is abolished by knockdown of beta-catenin. Conductin promotes phosphorylation of the amino-terminal serine (Ser 33/37) and threonine (Thr 41) residues of centrosome-associated beta-catenin. Beta-catenin mutated at these residues causes centrosomal splitting, whereas a phospho-mimicking mutant of beta-catenin does not. Importantly, beta-catenin-induced splitting is not inhibited by blocking beta-catenin-dependent transcription. Treatment with Wnts and inhibition of glycogen synthase kinase 3 block beta-catenin phosphorylation and induce centrosomal splitting. These data indicate that Wnt/beta-catenin signalling and conductin regulate centrosomal cohesion by altering the phosphorylation status of beta-catenin at the centrosomes.
Collapse
Affiliation(s)
- Michel V Hadjihannas
- Nikolaus Fiebiger Center for Molecular Medicine, University Erlangen–Nürnberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Martina Brückner
- Nikolaus Fiebiger Center for Molecular Medicine, University Erlangen–Nürnberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Jürgen Behrens
- Nikolaus Fiebiger Center for Molecular Medicine, University Erlangen–Nürnberg, Glueckstrasse 6, Erlangen 91054, Germany
| |
Collapse
|
85
|
Abstract
Compelling evidence is accumulating indicating a pathophysiological role of the serum-and-glucocorticoid-inducible-kinase-1 (SGK1) in the development and complications of diabetes. SGK1 is ubiquitously expressed with exquisitely high transcriptional volatility. Stimulators of SGK1 expression include hyperglycemia, cell shrinkage, ischemia, glucocorticoids and mineralocorticoids. SGK1 is activated by insulin and growth factors via PI3K, 3-phosphoinositide dependent kinase PDK1 and mTOR. SGK1 activates ion channels (including ENaC, TRPV5, ROMK, KCNE1/KCNQ1 and CLCKa/Barttin), carriers (including NCC, NKCC, NHE3, SGLT1 and EAAT3), and the Na(+)/K(+)-ATPase. It regulates the activity of several enzymes (e.g., glycogen-synthase-kinase-3, ubiquitin-ligase Nedd4-2, phosphomannose-mutase-2), and transcription factors (e.g., forkhead-transcription-factor FOXO3a, beta-catenin and NF-kappaB). A common SGK1 gene variant ( approximately 3 - 5% prevalence in Caucasians, approximately 10% in Africans) is associated with increased blood pressure, obesity and type 2 diabetes. In patients suffering from type 2 diabetes, SGK1 presumably contributes to fluid retention and hypertension, enhanced coagulation and increased deposition of matrix proteins leading to tissue fibrosis such as diabetic nephropathy. Accordingly, targeting SGK1 may favourably influence occurrence and course of type 2 diabetes.
Collapse
Affiliation(s)
- Florian Lang
- Eberhard-Karls-University of Tuebingen, Department of Physiology, Gmelinstrasse 5, Tuebingen 72076, Germany.
| | | | | |
Collapse
|
86
|
Komorowsky C, Ocker M, Goppelt‐Struebe M. Differential regulation of connective tissue growth factor in renal cells by histone deacetylase inhibitors. J Cell Mol Med 2009. [DOI: 10.1111/j.1582-4934.2008.00674.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | - Matthias Ocker
- Department of Gastroenterology & Hepatology, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
87
|
Kawakami K, Hirata H, Yamamura S, Kikuno N, Saini S, Majid S, Tanaka Y, Kawamoto K, Enokida H, Nakagawa M, Dahiya R. Functional significance of Wnt inhibitory factor-1 gene in kidney cancer. Cancer Res 2009; 69:8603-10. [PMID: 19887605 DOI: 10.1158/0008-5472.can-09-2534] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wnt inhibitory factor-1 (WIF-1) has been identified as one of the secreted antagonists that bind Wnt protein. WIF-1 has been described as a tumor suppressor in various types of cancer. However, the molecular function of WIF-1 gene has never been examined in human renal cell carcinoma (RCC). Therefore, we hypothesized that WIF-1 functions as a tumor suppressor gene and overexpression of this gene may induce apoptosis and inhibit tumor growth in RCC cells. Immunohistochemistry and real-time reverse transcription-PCR revealed that WIF-1 was significantly downregulated in RCC samples and RCC cell lines, respectively. Bisulfite sequencing of the WIF-1 promoter region in RCC cell lines showed it to be densely methylated, whereas there was no methylation of WIF-1 promoter in normal kidney. Significant inhibition of cell growth and colony formation in WIF-1-transfected cells compared with controls were observed. WIF-1 transfection significantly induced apoptosis and suppressed in vivo tumor growth. Also, Wnt signaling activity and beta-catenin expression were reduced by WIF-1 transfection. In conclusion, this is the first report documenting that the WIF-1 is downregulated by promoter methylation and functions as a tumor suppressor gene by inducing apoptosis in RCC cells.
Collapse
Affiliation(s)
- Kazumori Kawakami
- Department of Urology, Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California 94121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Curr Opin Nephrol Hypertens 2009; 18:439-48. [PMID: 19584721 DOI: 10.1097/mnh.0b013e32832f125e] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The role of serum and glucocorticoid-inducible kinase 1 (SGK1) in renal physiology and pathophysiology is reviewed with particular emphasis on recent advances. RECENT FINDINGS The mammalian target of rapamycin complex 2 has been shown to phosphorylate SGK1 at Ser422 (the so-called hydrophobic motif). Ser397 and Ser401 are two additional SGK1-phosphorylation sites required for maximal SGK1 activity. A 5' variant alternate transcript of human Sgk1 has been identified that is widely expressed and shows improved stability, enhanced membrane association, and greater stimulation of epithelial Na+ transport. SGK1 is essential for optimal processing of the epithelial sodium channel and also regulates the expression of the Na+-Cl- cotransporter. With regard to pathophysiology, SGK1 participates in the stimulation of renal tubular glucose transport in diabetes, the renal profibrotic effect of both angiotensin II and aldosterone, and in fetal programing of arterial hypertension. SUMMARY The outlined recent findings advanced our understanding of the molecular regulation of SGK1 as well as the role of the kinase in renal physiology and the pathophysiology of renal disease and hypertension. Future studies using pharmacological inhibitors of SGK1 will reveal the utility of the kinase as a new therapeutic target.
Collapse
|
89
|
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) has emerged as an attractive cancer therapeutic target. Accordingly, several mTOR inhibitors (e.g., rapamycin and its analogs; rapalogs) are currently being tested in many cancer clinical trials. Despite the encouraging results showing that some rapalogs improved overall survival among patients with metastatic renal-cell carcinoma, the single-agent activity of rapalogs in most other tumor-types has been modest, at best. OBJECTIVE To review the current understanding of the mTOR axis and discuss potential strategies to enhance mTOR-targeted cancer therapy. METHODS Preclinical and clinical data in peer-reviewed reports on the novel biological and therapeutic parts of the mTOR axis are discussed. CONCLUSION The mTOR axis involves complex regulatory networks. Inhibition of the mTOR axis with a rapalog induces feedback activation of several survival signaling pathways such as Akt activation, which, in turn, blunt rapalogs' anticancer efficacy. Thus, blockage or prevention of the activation of these survival signaling pathways may enhance mTOR-targeted cancer therapy.
Collapse
Affiliation(s)
- Xuerong Wang
- Emory University School of Medicine, Winship Cancer Institute, Department of Hematology, Atlanta, GA 30322, USA
| | | |
Collapse
|
90
|
Bhandaru M, Kempe DS, Rotte A, Rexhepaj R, Kuhl D, Lang F. Hyperaldosteronism, hypervolemia, and increased blood pressure in mice expressing defective APC. Am J Physiol Regul Integr Comp Physiol 2009; 297:R571-5. [DOI: 10.1152/ajpregu.00070.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenomatous polyposis coli (APC) fosters degradation of β-catenin, a multifunctional protein upregulating the serum- and glucocorticoid-inducible kinase (SGK1). SGK1 regulates a wide variety of renal transport processes. The present study explored the possibility that APC influences renal function. To this end, metabolic cage experiments were performed in mice carrying a loss-of-function mutation in the APC gene ( apc Min/+), their wild-type littermates ( apc+/+), and apc Min/+ mice lacking functional SGK1 ( apc Min/+ /sgk1−/−). As a result, mean body weight, food intake, fluid intake, salt appetite, urinary flow, as well as plasma Na+ and K+ concentrations were similar in apc Min/+ mice, apc+/+ mice, and apc Min/+ /sgk1−/− mice. Glomerular filtration rate and absolute renal Na+ excretion were decreased, and fractional urinary K+ excretion was enhanced in apc Min/+ mice. The antinatriuresis, but not the hypofiltration and kaliuresis was partially reversed by additional lack of SGK1. Plasma corticosterone and aldosterone concentrations were significantly enhanced in apc Min/+ mice. While the plasma corticosterone concentration was similar in apc+/+ mice and apc Min/+ /sgk1−/− mice, plasma aldosterone was even higher in apc Min/+ /sgk1−/− mice than in apc Min/+ mice. The hyperaldosteronism of apc Min/+ mice was paralleled by significantly elevated plasma volume and blood pressure. The experiments reveal an influence of defective APC on adrenal hormone release and renal function, effects partially but not completely explained by APC dependence of SGK1 expression.
Collapse
|
91
|
Nasir O, Wang K, Föller M, Gu S, Bhandaru M, Ackermann TF, Boini KM, Mack A, Klingel K, Amato R, Perrotti N, Kuhl D, Behrens J, Stournaras C, Lang F. Relative resistance of SGK1 knockout mice against chemical carcinogenesis. IUBMB Life 2009; 61:768-76. [PMID: 19548318 DOI: 10.1002/iub.209] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The serum and glucocorticoid inducible kinase SGK1 was originally cloned from mammary tumor cells. SGK1 was found to be up-regulated in a variety of tumors, but down-regulated in several distinct tumors. Thus, evidence for a role of SGK1 in tumor growth remained conflicting. According to in vitro observations, SGK1 is up-regulated by the oncogene beta-catenin and negatively regulates the proapoptotic transcription factor FOXO3a, which in turn stimulates transcription of the Bcl2-interacting mediator BIM. This study aimed to define the role of SGK1 in colon carcinoma in vivo. SGK1 knockout mice (sgk1(-/-)) and their wild type littermates (sgk1(+/+)) were subjected to chemical cancerogenesis (intraperitoneal injection of 20 mg/kg 1,2-dimethylhydrazine followed by three cycles of 30 g/L synthetic dextran sulfate sodium for 7 days). Moreover, SGK1 was silenced in HEK293 cells. FOXO3a and BIM protein abundance was determined by Western blotting and immunohistochemistry. Following chemical cancerogenesis, sgk1(-/-)mice developed significantly less colonic tumors than sgk1(+/+)mice. According to Western blotting and immunohistochemistry, SGK1 deficiency enhanced the expression of FOXO3a and BIM both, in vitro and in vivo. SGK1 deficiency counteracts the development of colonic tumors, an effect at least in part due to up-regulation of FOXO3a and BIM.
Collapse
Affiliation(s)
- Omaima Nasir
- Department of Physiology, University of Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Just A. Going with the Wnt? Focus on "Hyperaldosteronism, hypervolemia, and increased blood pressure in mice expressing defective APC". Am J Physiol Regul Integr Comp Physiol 2009; 297:R568-70. [PMID: 19553497 DOI: 10.1152/ajpregu.00356.2009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
93
|
Alessi DR, Pearce LR, García-Martínez JM. New insights into mTOR signaling: mTORC2 and beyond. Sci Signal 2009; 2:pe27. [PMID: 19383978 DOI: 10.1126/scisignal.267pe27] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mammalian target of rapamycin complex 2 (mTORC2) plays critical roles in regulating cell growth and proliferation. mTORC2 promotes the activation of the serum glucocorticoid-induced protein kinase (SGK). This mTOR complex also promotes the constitutive phosphorylation of proline-directed serine or threonine sites in the turn motif of Akt and protein kinase C isoforms. mTORC2 may control phosphorylation of the turn motif by promoting the activity of a kinase that targets the Ser/Thr-Pro sequence or by inhibiting the activity of a phosphatase.
Collapse
Affiliation(s)
- Dario R Alessi
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD15EH, Scotland, UK.
| | | | | |
Collapse
|
94
|
Segditsas S, Sieber O, Deheragoda M, East P, Rowan A, Jeffery R, Nye E, Clark S, Spencer-Dene B, Stamp G, Poulsom R, Suraweera N, Silver A, Ilyas M, Tomlinson I. Putative direct and indirect Wnt targets identified through consistent gene expression changes in APC-mutant intestinal adenomas from humans and mice. Hum Mol Genet 2008; 17:3864-75. [PMID: 18782851 PMCID: PMC2638572 DOI: 10.1093/hmg/ddn286] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In order to identify new genes with differential expression in early intestinal tumours, we performed mRNA (messenger ribonucleic acid) expression profiling of 16 human and 63 mouse adenomas. All individuals had germline APC mutations to ensure that tumorigenesis was driven by ‘second hits’ at APC. Using stringent filtering to identify changes consistent between humans and mice, we identified 60 genes up-regulated and 151 down-regulated in tumours. For 22 selected genes—including known Wnt targets—expression differences were confirmed by qRT–PCR (quantitative reverse transcription polymerase chain reaction). Most, but not all, differences were also present in colorectal carcinomas. In situ analysis showed a complex picture. Expression of up-regulated genes in adenomas was usually uniform/diffuse (e.g. ITGA6) or prominent in the tumour core (e.g. LGR5); in normal tissue, these genes were expressed at crypt bases or the transit amplifying zone. Down-regulated genes were often undetectable in adenomas, but in normal tissue were expressed in mesenchyme (e.g. GREM1/2) or differentiated cells towards crypt tops (e.g. SGK1). In silico analysis of TCF4-binding motifs showed that some of our genes were probably direct Wnt targets. Previous studies, mostly focused on human tumours, showed partial overlap with our ‘expression signature’, but 37 genes were unique to our study, including TACSTD2, SEMA3F, HOXA9 and IER3 (up-regulated), and TAGLN, GREM1, GREM2, MAB21L2 and RARRES2 (down-regulated). Combined analysis of our and published human data identified additional genes differentially expressed in adenomas, including decreased BMPs (bone morphogenetic proteins) and increased BUB1/BUB1B. Several of the newly identified, differentially expressed genes represent potential diagnostic or therapeutic targets for intestinal tumours.
Collapse
Affiliation(s)
- Stefania Segditsas
- Molecular and Population Genetics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3PX, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|