51
|
Abstract
Arenaviruses have a bisegmented negative-strand RNA genome, which encodes four viral proteins: GP and NP by the S segment and L and Z by the L segment. These four viral proteins possess multiple functions in infection, replication and release of progeny viruses from infected cells. The small RING finger protein, Z protein is a matrix protein that plays a central role in viral assembly and budding. Although all arenaviruses encode Z protein, amino acid sequence alignment showed a huge variety among the species, especially at the C-terminus where the L-domain is located. Recent publications have demonstrated the interactions between viral protein and viral protein, and viral protein and host cellular protein, which facilitate transportation and assembly of viral components to sites of virus egress. This review presents a summary of current knowledge regarding arenavirus assembly and budding, in comparison with other enveloped viruses. We also refer to the restriction of arenavirus production by the antiviral cellular factor, Tetherin/BST-2.
Collapse
|
52
|
Linero FN, Sepúlveda CS, Giovannoni F, Castilla V, García CC, Scolaro LA, Damonte EB. Host cell factors as antiviral targets in arenavirus infection. Viruses 2012; 4:1569-91. [PMID: 23170173 PMCID: PMC3499820 DOI: 10.3390/v4091569] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 12/11/2022] Open
Abstract
Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.
Collapse
Affiliation(s)
- Florencia N Linero
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/IQUIBICEN (CONICET), Ciudad Universitaria, Pabellón 2, Piso 4, Buenos Aires 1428, Argentina.
| | | | | | | | | | | | | |
Collapse
|
53
|
Radoshitzky SR, Kuhn JH, de Kok-Mercado F, Jahrling PB, Bavari S. Drug discovery technologies and strategies for Machupo virus and other New World arenaviruses. Expert Opin Drug Discov 2012; 7:613-32. [PMID: 22607481 PMCID: PMC3426302 DOI: 10.1517/17460441.2012.687719] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Seven arenaviruses cause viral hemorrhagic fever in humans: the Old World arenaviruses Lassa and Lujo, and the New World Clade B arenaviruses Machupo (MACV), Junín (JUNV), Guanarito (GTOV), Sabiá (SABV), and Chapare (CHPV). All of these viruses are Risk Group 4 biosafety pathogens. MACV causes human disease outbreak with high case-fatality rates. To date, at least 1,200 cases with ≈200 fatalities have been recorded. AREAS COVERED This review summarizes available systems and technologies for the identification of antivirals against MACV. Furthermore, the article summarizes animal models that have been used for the in vivo evaluation of novel inhibitors. The article highlights present treatments for arenaviral diseases and provides an overview of efficacious small molecules and other therapeutics reported to date. Finally, the article summarizes strategies to identify novel inhibitors for anti-arenaviral therapy. EXPERT OPINION New high-throughput approaches to quantitate infection rates of arenaviruses, as well as viruses modified to carry reporter genes, will accelerate compound screens and drug discovery efforts. RNAi, gene expression profiling and proteomics studies will identify host targets for therapeutic intervention. New discoveries in the cell entry mechanism of MACV and other arenaviruses as well as extensive structural studies of arenaviral L and NP could facilitate the rational design of antivirals effective against all pathogenic New World arenaviruses.
Collapse
Affiliation(s)
- Sheli R. Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Fabian de Kok-Mercado
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Peter B. Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
54
|
Whitby LR, Boyle KE, Cai L, Yu X, Gochin M, Boger DL. Discovery of HIV fusion inhibitors targeting gp41 using a comprehensive α-helix mimetic library. Bioorg Med Chem Lett 2012; 22:2861-5. [PMID: 22424973 PMCID: PMC3321071 DOI: 10.1016/j.bmcl.2012.02.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 11/19/2022]
Abstract
The evaluation of a comprehensive α-helix mimetic library for binding the gp41 NHR hydrophobic pocket recognizing an intramolecular CHR α-helix provided a detailed depiction of structural features required for binding and led to the discovery of small molecule inhibitors (K(i) 0.6-1.3 μM) that not only match or exceed the potency of those disclosed over the past decade, but that also exhibit effective activity in a cell-cell fusion assay (IC(50) 5-8 μM).
Collapse
Affiliation(s)
- Landon R. Whitby
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| | - Kristopher E. Boyle
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| | - Lifeng Cai
- Department of Basic Sciences, Touro University – California, 1310 Club Drive, Mare Island, Vallejo, CA 94592
| | - Xiaoqian Yu
- Department of Basic Sciences, Touro University – California, 1310 Club Drive, Mare Island, Vallejo, CA 94592
| | - Miriam Gochin
- Department of Basic Sciences, Touro University – California, 1310 Club Drive, Mare Island, Vallejo, CA 94592
| | - Dale L. Boger
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| |
Collapse
|
55
|
Dissection of the role of the stable signal peptide of the arenavirus envelope glycoprotein in membrane fusion. J Virol 2012; 86:6138-45. [PMID: 22438561 DOI: 10.1128/jvi.07241-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The arenavirus envelope glycoprotein (GPC) retains a stable signal peptide (SSP) as an essential subunit in the mature complex. The 58-amino-acid residue SSP comprises two membrane-spanning hydrophobic regions separated by a short ectodomain loop that interacts with the G2 fusion subunit to promote pH-dependent membrane fusion. Small-molecule compounds that target this unique SSP-G2 interaction prevent arenavirus entry and infection. The interaction between SSP and G2 is sensitive to the phylogenetic distance between New World (Junín) and Old World (Lassa) arenaviruses. For example, heterotypic GPC complexes are unable to support virion entry. In this report, we demonstrate that the hybrid GPC complexes are properly assembled, proteolytically cleaved, and transported to the cell surface but are specifically defective in their membrane fusion activity. Chimeric SSP constructs reveal that this incompatibility is localized to the first transmembrane segment of SSP (TM1). Genetic changes in TM1 also affect sensitivity to small-molecule fusion inhibitors, generating resistance in some cases and inhibitor dependence in others. Our studies suggest that interactions of SSP TM1 with the transmembrane domain of G2 may be important for GPC-mediated membrane fusion and its inhibition.
Collapse
|
56
|
Gowen BB, Bray M. Progress in the experimental therapy of severe arenaviral infections. Future Microbiol 2012; 6:1429-41. [PMID: 22122440 DOI: 10.2217/fmb.11.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A number of viruses in the family Arenaviridae cause severe illness in humans. Lassa virus in West Africa and a number of agents in South America produce hemorrhagic fever in persons exposed to aerosolized excretions of the pathogens' rodent hosts. Because arenaviruses are not transmitted by arthropods, and person-to-person spread is rare, human infections occur singly and sporadically, and are usually not diagnosed until the patient is severely ill. Because the arenaviruses are naturally transmitted by the airborne route, they also pose a potential threat as aerosolized bioterror weapons. The broad-spectrum antiviral drug ribavirin was shown to reduce mortality from Lassa fever, and has been tested against Argentine hemorrhagic fever, but it is not an approved treatment for either disease. Human immune convalescent plasma was proven to be effective for Argentine hemorrhagic fever in a controlled trial. New treatments are needed to block viral replication without causing toxicity and to prevent the increased vascular permeability that is responsible for hypotension and shock. In this paper, we review current developments in the experimental therapy of severe arenaviral infections, focusing on drugs that have been tested in animal models, and provide a perspective on future research.
Collapse
Affiliation(s)
- Brian B Gowen
- Institute for Antiviral Research & Department of Animal, Dairy & Veterinary Sciences, Utah State University, Logan, UT, USA.
| | | |
Collapse
|
57
|
Basu A, Mills DM, Bowlin TL. High-throughput screening of viral entry inhibitors using pseudotyped virus. CURRENT PROTOCOLS IN PHARMACOLOGY 2012; Chapter 13:Unit 13B.3. [PMID: 21935898 DOI: 10.1002/0471141755.ph13b03s51] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Virus entry into a host cell is an attractive target for therapy because propagation of virus can be blocked at an early stage, minimizing chances for the virus to acquire drug resistance. Anti-infective drug discovery for BSL-4 viruses like Ebola or Lassa hemorrhagic fever virus presents challenges due to the requirement for a BSL-4 laboratory containment facility. Pseudotyped viruses provide a surrogate model in which the native envelope glycoprotein of a BSL-2 level virus (e.g., vesicular stomatitis virus) is replaced with envelope glycoprotein of a foreign BSL-4 virus (e.g., Ebola virus). Because the envelope glycoprotein determines interaction of virus with its cellular receptors, pseudotyped viruses can mimic the viral entry process of the original virus. Moreover, they are competent for only a single cycle of infection, and therefore can be used in BSL-2 facilities. Pseudotyped viruses have been used in high-throughput screening of entry inhibitors for a number of BSL-4 level viruses. This unit includes protocols for preparing pseudotyped viruses using lentiviral vectors and use of pseudotyped viruses for high-throughput screening of viral entry inhibitors.
Collapse
Affiliation(s)
- Arnab Basu
- Microbiotix, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
58
|
An antibody recognizing the apical domain of human transferrin receptor 1 efficiently inhibits the entry of all new world hemorrhagic Fever arenaviruses. J Virol 2012; 86:4024-8. [PMID: 22278244 DOI: 10.1128/jvi.06397-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five New World (NW) arenaviruses cause human hemorrhagic fevers. Four of these arenaviruses are known to enter cells by binding human transferrin receptor 1 (hTfR1). Here we show that the fifth arenavirus, Chapare virus, similarly uses hTfR1. We also identify an anti-hTfR1 antibody, ch128.1, which efficiently inhibits entry mediated by the glycoproteins of all five viruses, as well as replication of infectious Junín virus. Our data indicate that all NW hemorrhagic fever arenaviruses utilize a common hTfR1 apical-domain epitope and suggest that therapeutic agents targeting this epitope, including ch128.1 itself, can be broadly effective in treating South American hemorrhagic fevers.
Collapse
|
59
|
The curious case of arenavirus entry, and its inhibition. Viruses 2012; 4:83-101. [PMID: 22355453 PMCID: PMC3280523 DOI: 10.3390/v4010083] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/07/2011] [Accepted: 01/05/2012] [Indexed: 11/17/2022] Open
Abstract
Arenaviruses comprise a diverse family of enveloped negative-strand RNA viruses that are endemic to specific rodent hosts worldwide. Several arenaviruses cause severe hemorrhagic fevers in humans, including Junín and Machupo viruses in South America and Lassa fever virus in western Africa. Arenavirus entry into the host cell is mediated by the envelope glycoprotein complex, GPC. The virion is endocytosed on binding to a cell-surface receptor, and membrane fusion is initiated in response to physiological acidification of the endosome. As with other class I virus fusion proteins, GPC-mediated membrane fusion is promoted through a regulated sequence of conformational changes leading to formation of the classical postfusion trimer-of-hairpins structure. GPC is, however, unique among the class I fusion proteins in that the mature complex retains a stable signal peptide (SSP) as a third subunit, in addition to the canonical receptor-binding and fusion proteins. We will review the curious properties of the tripartite GPC complex and describe evidence that SSP interacts with the fusion subunit to modulate pH-induced activation of membrane fusion. This unusual solution to maintaining the metastable prefusion state of GPC on the virion and activating the class I fusion cascade at acidic pH provides novel targets for antiviral intervention.
Collapse
|
60
|
Zapata JC, Pauza CD, Djavani MM, Rodas JD, Moshkoff D, Bryant J, Ateh E, Garcia C, Lukashevich IS, Salvato MS. Lymphocytic choriomeningitis virus (LCMV) infection of macaques: a model for Lassa fever. Antiviral Res 2011; 92:125-38. [PMID: 21820469 DOI: 10.1016/j.antiviral.2011.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/07/2011] [Accepted: 07/18/2011] [Indexed: 12/14/2022]
Abstract
Arenaviruses such as Lassa fever virus (LASV) and lymphocytic choriomeningitis virus (LCMV) are benign in their natural reservoir hosts, and can occasionally cause severe viral hemorrhagic fever (VHF) in non-human primates and in human beings. LCMV is considerably more benign for human beings than Lassa virus, however certain strains, like the LCMV-WE strain, can cause severe disease when the virus is delivered as a high-dose inoculum. Here we describe a rhesus macaque model for Lassa fever that employs a virulent strain of LCMV. Since LASV must be studied within Biosafety Level-4 (BSL-4) facilities, the LCMV-infected macaque model has the advantage that it can be used at BSL-3. LCMV-induced disease is rarely as severe as other VHF, but it is similar in cases where vascular leakage leads to lethal systemic failure. The LCMV-infected macaque has been valuable for describing the course of disease with differing viral strains, doses and routes of infection. By monitoring system-wide changes in physiology and gene expression in a controlled experimental setting, it is possible to identify events that are pathognomonic for developing VHF and potential treatment targets.
Collapse
Affiliation(s)
- Juan C Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Whitby LR, Ando Y, Setola V, Vogt PK, Roth BL, Boger DL. Design, synthesis, and validation of a β-turn mimetic library targeting protein-protein and peptide-receptor interactions. J Am Chem Soc 2011; 133:10184-94. [PMID: 21609016 DOI: 10.1021/ja201878v] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The design and synthesis of a β-turn mimetic library as a key component of a small-molecule library targeting the major recognition motifs involved in protein-protein interactions is described. Analysis of a geometric characterization of 10,245 β-turns in the protein data bank (PDB) suggested that trans-pyrrolidine-3,4-dicarboxamide could serve as an effective and synthetically accessible library template. This was confirmed by initially screening select compounds against a series of peptide-activated GPCRs that recognize a β-turn structure in their endogenous ligands. This validation study was highlighted by identification of both nonbasic and basic small molecules with high affinities (K(i) = 390 and 23 nM, respectively) for the κ-opioid receptor (KOR). Consistent with the screening capabilities of collaborators and following the design validation, the complete library was assembled as 210 mixtures of 20 compounds, providing a total of 4200 compounds designed to mimic all possible permutations of 3 of the 4 residues in a naturally occurring β-turn. Unique to the design and because of the C(2) symmetry of the template, a typical 20 × 20 × 20-mix (8000 compounds prepared as 400 mixtures of 20 compounds) needed to represent 20 variations in the side chains of three amino acid residues reduces to a 210 × 20-mix, thereby simplifying the library synthesis and subsequent screening. The library was prepared using a solution-phase synthetic protocol with liquid-liquid or liquid-solid extractions for purification and conducted on a scale that insures its long-term availability for screening campaigns. Screening the library against the human opioid receptors (KOR, MOR, and DOR) identified not only the activity of library members expected to mimic the opioid receptor peptide ligands but also additional side-chain combinations that provided enhanced receptor binding selectivities (>100-fold) and affinities (as low as K(i) = 80 nM for KOR). A key insight to emerge from the studies is that the phenol of Tyr in endogenous ligands bearing the H-Tyr-Pro-Trp/Phe-Phe-NH(2) β-turn is important for MOR binding but may not be important for KOR (accommodated, but not preferred) and that the resulting selectivity for KOR observed with its removal can be increased by replacing the phenol OH with a chlorine substituent, further enhancing KOR affinity.
Collapse
Affiliation(s)
- Landon R Whitby
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
62
|
Cashman KA, Smith MA, Twenhafel NA, Larson RA, Jones KF, Allen RD, Dai D, Chinsangaram J, Bolken TC, Hruby DE, Amberg SM, Hensley LE, Guttieri MC. Evaluation of Lassa antiviral compound ST-193 in a guinea pig model. Antiviral Res 2011; 90:70-9. [PMID: 21371508 PMCID: PMC3319460 DOI: 10.1016/j.antiviral.2011.02.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/18/2011] [Accepted: 02/22/2011] [Indexed: 12/12/2022]
Abstract
Lassa virus (LASV), a member of the Arenaviridae family, causes a viral hemorrhagic fever endemic to West Africa, where as many as 300,000 infections occur per year. Presently, there are no FDA-approved LASV-specific vaccines or antiviral agents, although the antiviral drug ribavirin has shown some efficacy. A recently identified small-molecule inhibitor of arenavirus entry, ST-193, exhibits submicromolar antiviral activity in vitro. To determine the antiviral utility of ST-193 in vivo, we tested the efficacy of this compound in the LASV guinea pig model. Four groups of strain 13 guinea pigs were administered 25 or 80 mg/kg ST-193, 25 mg/kg of ribavirin, or the vehicle by the intraperitoneal (i.p.) route before infection with a lethal dose of LASV, strain Josiah, and continuing once daily for 14 days. Control animals exhibited severe disease, becoming moribund between days 10 and 15 postinfection. ST-193-treated animals exhibited fewer signs of disease and enhanced survival when compared to the ribavirin or vehicle groups. Body temperatures in all groups were elevated by day 9, but returned to normal by day 19 postinfection in the majority of ST-193-treated animals. ST-193 treatment mediated a 2-3-log reduction in viremia relative to vehicle-treated controls. The overall survival rate for the ST-193-treated guinea pigs was 62.5% (10/16) compared with 0% in the ribavirin (0/8) and vehicle (0/7) groups. These data suggest that ST-193 may serve as an improved candidate for the treatment of Lassa fever.
Collapse
Affiliation(s)
- Kathleen A. Cashman
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Mark A. Smith
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Nancy A. Twenhafel
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | | | | | | | - Dongcheng Dai
- SIGA Technologies, Inc., Corvallis, OR, United States
| | | | | | | | - Sean M. Amberg
- SIGA Technologies, Inc., Corvallis, OR, United States
- Corresponding author at: SIGA Technologies, Inc., 4575 SW Research Way, Suite 230, Corvallis, OR 97333. Tel.: +1 541 753 2000; fax: +1 541 753 9999.
| | - Lisa E. Hensley
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Mary C. Guttieri
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
63
|
Charrel RN, Coutard B, Baronti C, Canard B, Nougairede A, Frangeul A, Morin B, Jamal S, Schmidt CL, Hilgenfeld R, Klempa B, de Lamballerie X. Arenaviruses and hantaviruses: from epidemiology and genomics to antivirals. Antiviral Res 2011; 90:102-14. [PMID: 21356244 DOI: 10.1016/j.antiviral.2011.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
Abstract
The arenaviruses and hantaviruses are segmented genome RNA viruses that are hosted by rodents. Due to their association with rodents, they are globally widespread and can infect humans via direct or indirect routes of transmission, causing considerable human morbidity and mortality. Nevertheless, despite their obvious and emerging importance as pathogens, there are currently no effective antiviral drugs (except ribavirin which proved effective against Lassa virus) with which to treat humans infected by any of these viruses. The EU-funded VIZIER project (Comparative Structural Genomics of Viral Enzymes Involved in Replication) was instigated with an ultimate view of contributing to the development of antiviral therapies for RNA viruses, including the arenaviruses and bunyaviruses. This review highlights some of the major features of the arenaviruses and hantaviruses that have been investigated during recent years. After describing their classification and epidemiology, we review progress in understanding the genomics as well as the structure and function of replicative enzymes achieved under the VIZIER program and the development of new disease control strategies.
Collapse
Affiliation(s)
- R N Charrel
- Unité des Virus Emergents UMR190, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and development of antiviral strategies. Virology 2011; 411:416-25. [PMID: 21324503 PMCID: PMC3057228 DOI: 10.1016/j.virol.2011.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 10/25/2022]
Abstract
Several arenaviruses, chiefly Lassa virus, cause hemorrhagic fever disease in humans and pose a significant public health problem in their endemic regions. On the other hand the prototypic arenavirus LCMV is a superb workhorse for the investigation of virus-host interactions and associated disease. The development of novel antiviral strategies to combat pathogenic arenaviruses would be facilitated by a detailed understanding of the arenavirus molecular and cell biology. To this end, the development of reverse genetic systems for several arenaviruses has provided investigators with novel and powerful approaches to dissect the functions of arenavirus proteins and their interactions with host factors required to complete each of the steps of the virus life cycle, as well as to cause disease.
Collapse
|
65
|
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fever, for which therapeutic options are not available. Preventing the entry of EBOV into host cells is an attractive antiviral strategy, which has been validated for HIV by the FDA approval of the anti-HIV drug enfuvirtide. To identify inhibitors of EBOV entry, the EBOV envelope glycoprotein (EBOV-GP) gene was used to generate pseudotype viruses for screening of chemical libraries. A benzodiazepine derivative (compound 7) was identified from a high-throughput screen (HTS) of small-molecule compound libraries utilizing the pseudotype virus. Compound 7 was validated as an inhibitor of infectious EBOV and Marburg virus (MARV) in cell-based assays, with 50% inhibitory concentrations (IC(50)s) of 10 μM and 12 μM, respectively. Time-of-addition and binding studies suggested that compound 7 binds to EBOV-GP at an early stage during EBOV infection. Preliminary Schrödinger SiteMap calculations, using a published EBOV-GP crystal structure in its prefusion conformation, suggested a hydrophobic pocket at or near the GP1 and GP2 interface as a suitable site for compound 7 binding. This prediction was supported by mutational analysis implying that residues Asn69, Leu70, Leu184, Ile185, Leu186, Lys190, and Lys191 are critical for the binding of compound 7 and its analogs with EBOV-GP. We hypothesize that compound 7 binds to this hydrophobic pocket and as a consequence inhibits EBOV infection of cells, but the details of the mechanism remain to be determined. In summary, we have identified a novel series of benzodiazepine compounds that are suitable for optimization as potential inhibitors of filoviral infection.
Collapse
|
66
|
García CC, Sepúlveda CS, Damonte EB. Novel therapeutic targets for arenavirus hemorrhagic fevers. Future Virol 2011. [DOI: 10.2217/fvl.10.65] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Several members of the family Arenaviridae can cause severe hemorrhagic fevers in humans, representing a serious public health problem in endemic areas of Africa and South America. The Lassa virus is the most prevalent and dangerous arenavirus, causing over 300,000 infections per year and several thousand deaths. Furthermore, pathogenic arenaviruses are considered as category A potential agents for bioterrorism. Based on the danger of arenaviruses for human health, the increased emergence of new viral species in recent years and the lack of effective tools for their control or prevention, the search for novel antiviral compounds effective against these pathogenic agents is a continuous demanding effort. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing viral and host proteins essential for virus infection as potential targets for antiviral development.
Collapse
Affiliation(s)
- Cybele C García
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas & Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | - Claudia S Sepúlveda
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas & Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | | |
Collapse
|
67
|
Thomas CJ, Casquilho-Gray HE, York J, DeCamp DL, Dai D, Petrilli EB, Boger DL, Slayden RA, Amberg SM, Sprang SR, Nunberg JH. A specific interaction of small molecule entry inhibitors with the envelope glycoprotein complex of the Junín hemorrhagic fever arenavirus. J Biol Chem 2010; 286:6192-200. [PMID: 21159779 DOI: 10.1074/jbc.m110.196428] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arenaviruses are responsible for acute hemorrhagic fevers worldwide and are recognized to pose significant threats to public health and biodefense. Small molecule compounds have recently been discovered that inhibit arenavirus entry and protect against lethal infection in animal models. These chemically distinct inhibitors act on the tripartite envelope glycoprotein (GPC) through its unusual stable signal peptide subunit to stabilize the complex against pH-induced activation of membrane fusion in the endosome. Here, we report the production and characterization of the intact transmembrane GPC complex of Junín arenavirus and its interaction with these inhibitors. The solubilized GPC is antigenically indistinguishable from the native protein and forms a homogeneous trimer in solution. When reconstituted into a lipid bilayer, the purified complex interacts specifically with its cell-surface receptor transferrin receptor-1. We show that small molecule entry inhibitors specific to New World or Old World arenaviruses bind to the membrane-associated GPC complex in accordance with their respective species selectivities and with dissociation constants comparable with concentrations that inhibit GPC-mediated membrane fusion. Furthermore, competitive binding studies reveal that these chemically distinct inhibitors share a common binding pocket on GPC. In conjunction with previous genetic studies, these findings identify the pH-sensing interface of GPC as a highly vulnerable target for antiviral intervention. This work expands our mechanistic understanding of arenavirus entry and provides a foundation to guide the development of small molecule compounds for the treatment of arenavirus hemorrhagic fevers.
Collapse
Affiliation(s)
- Celestine J Thomas
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Use of single-cycle infectious lymphocytic choriomeningitis virus to study hemorrhagic fever arenaviruses. J Virol 2010; 85:1684-95. [PMID: 21123370 DOI: 10.1128/jvi.02229-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several arenaviruses, chiefly Lassa virus (LASV) and Junin virus in West Africa and Argentina, respectively, cause hemorrhagic fever (HF) disease in humans that is associated with high morbidity and significant mortality. The investigation of antiviral strategies to combat HF arenaviruses is hampered by the requirement of biosafety level 4 (BSL-4) facilities to work with these viruses. These biosafety hurdles could be overcome by the use of recombinant single-cycle infectious arenaviruses. To explore this concept, we have developed a recombinant lymphocytic choriomeningitis virus (LCMV) (rLCMVΔGP/GFP) where we replaced the viral glycoprotein (GP) with the green fluorescent protein (GFP). We generated high titers of GP-pseudotyped rLCMVΔGP/GFP via genetic trans complementation using stable cell lines that constitutively express LCMV or LASV GPs. Replication of these GP-pseudotyped rLCMVΔGP/GFP viruses was restricted to GP-expressing cell lines. This system allowed us to rapidly and reliably characterize and quantify the neutralization activities of serum antibodies against LCMV and LASV within a BSL-2 facility. The sensitivity of the GFP-based microneutralization assay we developed was similar to that obtained with a conventionally used focus reduction neutralization (FRNT) assay. Using GP-pseudotyped rLCMVΔGP/GFP, we have also obtained evidence supporting the feasibility of this approach to identify and evaluate candidate antiviral drugs against HF arenaviruses without the need of BSL-4 laboratories.
Collapse
|
69
|
Shaginian A, Whitby LR, Hong S, Hwang I, Farooqi B, Searcey M, Chen J, Vogt PK, Boger DL. Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein-protein interactions. J Am Chem Soc 2010; 131:5564-72. [PMID: 19334711 DOI: 10.1021/ja810025g] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design and solution-phase synthesis of an alpha-helix mimetic library as an integral component of a small-molecule library targeting protein-protein interactions are described. The iterative design, synthesis, and evaluation of the candidate alpha-helix mimetic was initiated from a precedented triaryl template and refined by screening the designs for inhibition of MDM2/p53 binding. Upon identifying a chemically and biologically satisfactory design and consistent with the screening capabilities of academic collaborators, the corresponding complete library was assembled as 400 mixtures of 20 compounds (20 x 20 x 20-mix), where the added subunits are designed to mimic all possible permutations of the naturally occurring i, i + 4, i + 7 amino acid side chains of an alpha-helix. The library (8000 compounds) was prepared using a solution-phase synthetic protocol enlisting acid/base liquid-liquid extractions for purification on a scale that insures its long-term availability for screening campaigns. Screening of the library for inhibition of MDM2/p53 binding not only identified the lead alpha-helix mimetic upon which the library was based, but also suggests that a digestion of the initial screening results that accompany the use of such a comprehensive library can provide insights into the nature of the interaction (e.g., an alpha-helix mediated protein-protein interaction) and define the key residues and their characteristics responsible for recognition.
Collapse
Affiliation(s)
- Alex Shaginian
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Identification of broad-based HIV-1 protease inhibitors from combinatorial libraries. Biochem J 2010; 429:527-32. [PMID: 20507280 DOI: 10.1042/bj20091645] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Clinically approved inhibitors of the HIV-1 protease function via a competitive mechanism. A particular vulnerability of competitive inhibitors is their sensitivity to increases in substrate concentration, as may occur during virion assembly, budding and processing into a mature infectious viral particle. Advances in chemical synthesis have led to the development of new high-diversity chemical libraries using rapid in-solution syntheses. These libraries have been shown previously to be effective at disrupting protein-protein and protein-nucleic acid interfaces. We have screened 44000 compounds from such a library to identify inhibitors of the HIV-1 protease. One compound was identified that inhibits wild-type protease, as well as a drug-resistant protease with six mutations. Moreover, analysis of this compound suggests an allosteric non-competitive mechanism of inhibition and may represent a starting point for an additional strategy for anti-retroviral therapy.
Collapse
|
71
|
Targeting the proteolytic processing of the viral glycoprotein precursor is a promising novel antiviral strategy against arenaviruses. J Virol 2010; 84:573-84. [PMID: 19846507 DOI: 10.1128/jvi.01697-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A crucial step in the arenavirus life cycle is the biosynthesis of the viral envelope glycoprotein (GP) responsible for virus attachment and entry. Processing of the GP precursor (GPC) by the cellular proprotein convertase site 1 protease (S1P), also known as subtilisin-kexin-isozyme 1 (SKI-1), is crucial for cell-to-cell propagation of infection and production of infectious virus. Here, we sought to evaluate arenavirus GPC processing by S1P as a target for antiviral therapy using a recently developed peptide-based S1P inhibitor, decanoyl (dec)-RRLL-chloromethylketone (CMK), and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). To control for off-target effects of dec-RRLL-CMK, we employed arenavirus reverse genetics to introduce a furin recognition site into the GPC of LCMV. The rescued mutant virus grew to normal titers, and the processing of its GPC critically depended on cellular furin, but not S1P. Treatment with the S1P inhibitor dec-RRLL-CMK resulted in specific blocking of viral spread and virus production of LCMV. Combination of the protease inhibitor with ribavirin, currently used clinically for treatment of human arenavirus infections, resulted in additive drug effects. In cells deficient in S1P, the furin-dependent LCMV variant established persistent infection, whereas wild-type LCMV underwent extinction without the emergence of S1P-independent escape variants. Together, the potent antiviral activity of an inhibitor of S1P-dependent GPC cleavage, the additive antiviral effect with ribavirin, and the low probability of emergence of S1P-independent viral escape variants make S1P-mediated GPC processing by peptide-derived inhibitors a promising strategy for the development of novel antiarenaviral drugs.
Collapse
|
72
|
de la Torre JC. Molecular and cell biology of the prototypic arenavirus LCMV: implications for understanding and combating hemorrhagic fever arenaviruses. Ann N Y Acad Sci 2009; 1171 Suppl 1:E57-64. [PMID: 19751403 DOI: 10.1111/j.1749-6632.2009.05048.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arenaviruses merit interest as experimental model systems to study virus-host interactions and as clinically important human pathogens. Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever (HF) in humans. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen. Moreover, arenaviruses pose a biodefense threat. No licensed arenavirus vaccines are available, and current therapy is limited to the use of ribavirin, which is only partially effective and associated with significant side effects. The development of arenavirus reverse genetics systems has made it possible to manipulate the arenavirus genome, which is contributing to significant progress in understanding arenavirus molecular and cell biology, as well as arenavirus-host interactions underlying arenavirus-induced HF disease in humans. This, in turn, should facilitate the development of novel both vaccines and antiviral drugs to combat the dual threats of naturally occurring and intentionally introduced arenavirus infections.
Collapse
Affiliation(s)
- Juan C de la Torre
- Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
73
|
Shi J, Stover JS, Whitby LR, Vogt PK, Boger DL. Small molecule inhibitors of Myc/Max dimerization and Myc-induced cell transformation. Bioorg Med Chem Lett 2009; 19:6038-41. [PMID: 19800226 DOI: 10.1016/j.bmcl.2009.09.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
The preparation and evaluation of a series of inhibitors of Myc/Max dimerization and Myc-induced cell transformation are described providing mycmycin-1 (3) and mycmycin-2 (4).
Collapse
Affiliation(s)
- Jin Shi
- Department of Molecular and Experimental Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
74
|
Assembly of arenavirus envelope glycoprotein GPC in detergent-soluble membrane microdomains. J Virol 2009; 83:9890-900. [PMID: 19625404 DOI: 10.1128/jvi.00837-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The family Arenaviridae includes a number of highly pathogenic viruses that are responsible for acute hemorrhagic fevers in humans. Genetic diversity among arenavirus species in their respective rodent hosts supports the continued emergence of new pathogens. In the absence of available vaccines or therapeutic agents, the hemorrhagic fever arenaviruses remain a serious public health and biodefense concern. Arenaviruses are enveloped virions that assemble and bud from the plasma membrane. In this study, we have characterized the microdomain organization of the virus envelope glycoprotein (GPC) on the cell surface by using immunogold electron microscopy. We find that Junín virus (JUNV) GPC clusters into discrete microdomains of 120 to 160 nm in diameter and that this property of GPC is independent of its myristoylation and of coexpression with the virus matrix protein Z. In cells infected with the Candid#1 strain of JUNV, and in purified Candid#1 virions, these GPC microdomains are soluble in cold Triton X-100 detergent and are thus distinct from conventional lipid rafts, which are utilized by numerous other viruses for assembly. Virion morphogenesis ultimately requires colocalization of viral components, yet our dual-label immunogold staining studies failed to reveal a spatial association of Z with GPC microdomains. This observation may reflect either rapid Z-dependent budding of virus-like particles upon coassociation or a requirement for additional viral components in the assembly process. Together, these results provide new insight into the molecular basis for arenavirus morphogenesis.
Collapse
|
75
|
Maisa A, Ströher U, Klenk HD, Garten W, Strecker T. Inhibition of Lassa virus glycoprotein cleavage and multicycle replication by site 1 protease-adapted alpha(1)-antitrypsin variants. PLoS Negl Trop Dis 2009; 3:e446. [PMID: 19488405 PMCID: PMC2685025 DOI: 10.1371/journal.pntd.0000446] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 04/28/2009] [Indexed: 12/02/2022] Open
Abstract
Background Proteolytic processing of the Lassa virus envelope glycoprotein precursor GP-C by the host proprotein convertase site 1 protease (S1P) is a prerequisite for the incorporation of the subunits GP-1 and GP-2 into viral particles and, hence, essential for infectivity and virus spread. Therefore, we tested in this study the concept of using S1P as a target to block efficient virus replication. Methodology/Principal Finding We demonstrate that stable cell lines inducibly expressing S1P-adapted α1-antitrypsin variants inhibit the proteolytic maturation of GP-C. Introduction of the S1P recognition motifs RRIL and RRLL into the reactive center loop of α1-antitrypsin resulted in abrogation of GP-C processing by endogenous S1P to a similar level observed in S1P-deficient cells. Moreover, S1P-specific α1-antitrypsins significantly inhibited replication and spread of a replication-competent recombinant vesicular stomatitis virus expressing the Lassa virus glycoprotein GP as well as authentic Lassa virus. Inhibition of viral replication correlated with the ability of the different α1-antitrypsin variants to inhibit the processing of the Lassa virus glycoprotein precursor. Conclusions/Significance Our data suggest that glycoprotein cleavage by S1P is a promising target for the development of novel anti-arenaviral strategies. The virus family Arenaviridae includes several hemorrhagic fever causing agents such as Lassa, Guanarito, Junin, Machupo, and Sabia virus that pose a major public health concern to the human population in West African and South American countries. Current treatment options to control fatal outcome of disease are limited to the ribonucleoside analogue ribavirin, although its use has some significant limitations. The lack of effective treatment alternatives emphasizes the need for novel antiviral therapeutics to counteract these life-threatening infections. Maturation cleavage of the viral envelope glycoprotein by the host cell proprotein convertase site 1 protease (S1P) is critical for infectious virion production of several pathogenic arenaviruses. This finding makes this protease an attractive target for the development of novel anti-arenaviral therapeutics. We demonstrate here that highly selective S1P-adapted α1-antitrypsins have the potential to efficiently inhibit glycoprotein processing, which resulted in reduced Lassa virus replication. Our findings suggest that S1P should be considered as an antiviral target and that further optimization of modified α1-antitrypsins could lead to potent and specific S1P inhibitors with the potential for treatment of certain viral hemorrhagic fevers.
Collapse
Affiliation(s)
- Anna Maisa
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Ute Ströher
- Molecular Virology & Antiviral Approaches Unit, Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hans-Dieter Klenk
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Wolfgang Garten
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| | - Thomas Strecker
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
76
|
Characterization of lassa virus cell entry inhibitors: determination of the active enantiomer by asymmetric synthesis. Bioorg Med Chem Lett 2009; 19:3771-4. [PMID: 19428249 DOI: 10.1016/j.bmcl.2009.04.098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 11/22/2022]
Abstract
The comparative characterization of a series of 4-acyl-1,6-dialkylpiperazin-2-ones as potent cell entry inhibitors of the hemorrhagic fever arenavirus Lassa (LASV) is disclosed. The resolution and examination of the individual enantiomers of the prototypical LASV cell entry inhibitor 3 (16G8) is reported and the more potent (-)-enantiomer was found to be 15-fold more active than the corresponding (+)-enantiomer. The absolute configuration of (-)-3 was established by asymmetric synthesis of the active inhibitor (-)-(S)-3 (lassamycin-1). A limited deletion scan of lassamycin-1 defined key structural features required of the prototypical inhibitors.
Collapse
|
77
|
Intersubunit interactions modulate pH-induced activation of membrane fusion by the Junin virus envelope glycoprotein GPC. J Virol 2009; 83:4121-6. [PMID: 19224989 DOI: 10.1128/jvi.02410-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mature arenavirus envelope glycoprotein GPC is a tripartite complex comprising a stable signal peptide (SSP) in addition to the receptor-binding (G1) and transmembrane fusion (G2) subunits. We have shown previously that SSP is a key element in GPC-mediated membrane fusion, and that GPC sensitivity to acidic pH is modulated in part through the lysine residue at position 33 in the ectodomain loop of SSP (J. York and J. H. Nunberg, J. Virol. 80:7775-7780, 2006). A glutamine substitution at this position stabilizes the native GPC complex and thereby prevents the induction of pH-dependent membrane fusion. In efforts to identify the intersubunit interactions of K33, we performed alanine-scanning mutagenesis at charged residues in the membrane-proximal ectodomain of G2 and determined the ability of these mutations to rescue the fusion deficiency in K33Q GPC. Four second-site mutations that specifically complement K33Q were identified (D400A, E410A, R414A, and K417A). Moreover, complementation was also observed at three hydrophobic positions in the membrane-spanning domain of G2 (F427, W428, and F438). Interestingly, all of the complementing mutations restored wild-type pH sensitivity to the K33Q mutant, while none themselves affected the pH of membrane fusion. Our studies demonstrate a specific interaction between SSP and G2 that is involved in priming the native GPC complex for pH-induced membrane fusion. Importantly, this pH-dependent interaction has been shown to be vulnerable to small-molecule compounds that stabilize the native complex and prevent the activation of membrane fusion. A detailed mechanistic understanding of the control of GPC-mediated membrane fusion will be important in guiding the development of effective therapeutics against arenaviral hemorrhagic fever.
Collapse
|
78
|
Generation of recombinant lymphocytic choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest. Proc Natl Acad Sci U S A 2009; 106:3473-8. [PMID: 19208813 DOI: 10.1073/pnas.0900088106] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Several arenaviruses cause hemorrhagic fever disease in humans for which no licensed vaccines are available and current therapeutic intervention is limited to the off-label use of the wide-spectrum antiviral ribavirin. However, the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) has proven to be a Rosetta stone for the investigation of virus-host interactions. Arenaviruses have a bisegmented negative-strand RNA genome. The S segment encodes for the virus nucleoprotein and glycoprotein, whereas the L segment encodes for the virus polymerase (L) and Z protein. The ability to generate recombinant LCMV (rLCMV) expressing additional foreign genes of interest would open novel avenues for the study of virus-host interactions and the development of novel vaccine strategies and high-throughput screens to identify antiarenaviral molecules. To this end, we have developed a trisegmented (1L + 2S) rLCMV-based approach (r3LCMV). Each of the two S segments in r3LCMV was altered to replace one of the viral genes by a gene of interest. All r3LCMVs examined expressing different reported genes were stable both genetically and phenotypically and exhibited wild-type growth properties in cultured cells. Reporter gene expression in r3LCMV-infected cells provided an accurate surrogate of levels of virus multiplication. Notably, some r3LCMVs displayed highly attenuated virulence in mice but induced protective immunity against a subsequent lethal challenge with wild-type LCMV, supporting the potential development of r3LCMV-based vaccines.
Collapse
|
79
|
de la Torre JC. Reverse genetics approaches to combat pathogenic arenaviruses. Antiviral Res 2008; 80:239-50. [PMID: 18782590 PMCID: PMC2628465 DOI: 10.1016/j.antiviral.2008.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/11/2008] [Accepted: 08/13/2008] [Indexed: 11/18/2022]
Abstract
Several arenaviruses cause hemorrhagic fever (HF) in humans, and evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. Moreover, arenaviruses pose a biodefense threat. No licensed anti-arenavirus vaccines are available, and current anti-arenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with anemia and other side effects. Therefore, it is important to develop effective vaccines and better antiviral drugs to combat the dual threats of naturally occurring and intentionally introduced arenavirus infections. The development of arenavirus reverse genetic systems is allowing investigators to conduct a detailed molecular characterization of the viral cis-acting signals and trans-acting factors that control each of the steps of the arenavirus life cycle, including RNA synthesis, packaging and budding. Knowledge derived from these studies is uncovering potential novel targets for therapeutic intervention, as well as facilitating the establishment of assays to identify and characterize candidate antiviral drugs capable of interfering with specific steps of the virus life cycle. Likewise, the ability to generate predetermined specific mutations within the arenavirus genome and analyze their phenotypic expression would significantly contribute to the elucidation of arenavirus-host interactions, including the basis of their ability to cause severe HF. This, in turn, could lead to the development of novel, potent and safe arenavirus vaccines.
Collapse
Affiliation(s)
- Juan C de la Torre
- Immunology and Microbial Science, IMM-6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
80
|
pH-induced activation of arenavirus membrane fusion is antagonized by small-molecule inhibitors. J Virol 2008; 82:10932-9. [PMID: 18768973 DOI: 10.1128/jvi.01140-08] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arenavirus envelope glycoprotein (GPC) mediates viral entry through pH-induced membrane fusion in the endosome. This crucial process in the viral life cycle can be specifically inhibited in the New World arenaviruses by the small-molecule compound ST-294. Here, we show that ST-294 interferes with GPC-mediated membrane fusion by targeting the interaction of the G2 fusion subunit with the stable signal peptide (SSP). We demonstrate that amino acid substitutions at lysine-33 of the Junín virus SSP confer resistance to ST-294 and engender de novo sensitivity to ST-161, a chemically distinct inhibitor of the Old World Lassa fever virus. These compounds, as well as a broadly active inhibitor, ST-193, likely share a molecular target at the SSP-G2 interface. We also show that both ST-294 and ST-193 inhibit pH-induced dissociation of the G1 receptor-binding subunit from GPC, a process concomitant with fusion activation. Interestingly, the inhibitory activity of these molecules can in some cases be overcome by further lowering the pH used for activation. Our results suggest that these small molecules act to stabilize the prefusion GPC complex against acidic pH. The pH-sensitive interaction between SSP and G2 in GPC represents a robust molecular target for the development of antiviral compounds for the treatment of arenavirus hemorrhagic fevers.
Collapse
|
81
|
Abstract
Several arenaviruses, including Lassa virus (LASV), are causative agents of hemorrhagic fever, for which effective therapeutic options are lacking. The LASV envelope glycoprotein (GP) gene was used to generate lentiviral pseudotypes to identify small-molecule inhibitors of viral entry. A benzimidazole derivative with potent antiviral activity was identified from a high-throughput screen utilizing this strategy. Subsequent lead optimization for antiviral activity identified a modified structure, ST-193, with a 50% inhibitory concentration (IC(50)) of 1.6 nM against LASV pseudotypes. ST-193 inhibited pseudotypes generated with other arenavirus envelopes as well, including the remaining four commonly associated with hemorrhagic fever (IC(50)s for Junín, Machupo, Guanarito, and Sabiá were in the 0.2 to 12 nM range) but exhibited no antiviral activity against pseudotypes incorporating either the GP from the LASV-related arenavirus lymphocytic choriomeningitis virus (LCMV) or the unrelated G protein from vesicular stomatitis virus, at concentrations of up to 10 microM. Determinants of ST-193 sensitivity were mapped through a combination of LASV-LCMV domain-swapping experiments, genetic selection of viral variants, and site-directed mutagenesis. Taken together, these studies demonstrate that sensitivity to ST-193 is dictated by a segment of about 30 amino acids within the GP2 subunit. This region includes the carboxy-terminal region of the ectodomain and the predicted transmembrane domain of the envelope protein, revealing a novel antiviral target within the arenavirus envelope GP.
Collapse
|