51
|
Nagayama K, Kimura Y, Makino N, Matsumoto T. Strain waveform dependence of stress fiber reorientation in cyclically stretched osteoblastic cells: effects of viscoelastic compression of stress fibers. Am J Physiol Cell Physiol 2012; 302:C1469-78. [DOI: 10.1152/ajpcell.00155.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Actin stress fibers (SFs) of cells cultured on cyclically stretched substrate tend to reorient in the direction in which a normal strain of substrate becomes zero. However, little is known about the mechanism of this reorientation. Here we investigated the effects of cyclic stretch waveform on SF reorientation in osteoblastic cells. Cells adhering to silicone membranes were subjected to cyclic uniaxial stretch, having one of the following waveforms with an amplitude of 8% for 24 h: triangular, trapezoid, bottom hold, or peak hold. SF reorientation of these cells was then analyzed. No preferential orientation was observed for the triangular and the peak-hold waveforms, whereas SFs aligned mostly in the direction with zero normal strain (∼55°) with other waveforms, especially the trapezoid waveform, which had a hold time both at loaded and unloaded states. Viscoelastic properties of SFs were estimated in a quasi-in situ stress relaxation test using intact and SF-disrupted cells that maintained their shape on the substrate. The dynamics of tension FSFsacting on SFs during cyclic stretching were simulated using these properties. The simulation demonstrated that FSFsdecreased gradually during cyclic stretching and exhibited a compressive value (FSFs< 0). The magnitude and duration time of the compressive forces were relatively larger in the group with a trapezoid waveform. The frequency of SF orientation had a significant negative correlation with the applied compressive forces integrated with time in a strain cycle, and the integrated value was largest with the trapezoid waveform. These results may indicate that the applied compressive forces on SFs have a significant effect on the stretch-induced reorientation of SFs, and that SFs realigned to avoid their compression. Stress relaxation of SFs might be facilitated during the holding period in the trapezoid waveform, and depolymerization and reorientation of SFs were significantly accelerated by their viscoelastic compression.
Collapse
Affiliation(s)
- Kazuaki Nagayama
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Yuki Kimura
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Narutaka Makino
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Takeo Matsumoto
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
52
|
Moffatt CE, Inaba H, Hirano T, Lamont RJ. Porphyromonas gingivalis SerB-mediated dephosphorylation of host cell cofilin modulates invasion efficiency. Cell Microbiol 2012; 14:577-88. [PMID: 22212282 DOI: 10.1111/j.1462-5822.2011.01743.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Porphyromonas gingivalis, a host-adapted opportunistic pathogen, produces a serine phosphatase, SerB, known to affect virulence, invasion and persistence within the host cell. SerB induces actin filament rearrangement in epithelial cells, but the mechanistic basis of this is not fully understood. Here we investigated the effects of SerB on the actin depolymerizing host protein cofilin. P. gingivalis infection resulted in the dephosphorylation of cofilin in gingival epithelial cells. In contrast, a SerB-deficient mutant of P. gingivalis was unable to cause cofilin dephosphorylation. The involvement of cofilin in P. gingivalis invasion was determined by quantitative image analysis of epithelial cells in which cofilin had been knocked down or knocked in with various cofilin constructs. siRNA-silencing of cofilin led to a significant decrease in numbers of intracellular P. gingivalis marked by an absence of actin colocalization. Transfection with wild-type cofilin or constitutively active cofilin both increased numbers of intracellular bacteria, while constitutively inactive cofilin abrogated invasion. Expression of LIM kinase resulted in reduced P. gingivalis invasion, an effect that was reversed by expression of constitutively active cofilin. These results show that P. gingivalis SerB activity induces dephosphorylation of cofilin, and that active cofilin is required for optimal invasion into gingival epithelial cells.
Collapse
Affiliation(s)
- Catherine E Moffatt
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
53
|
Fediuk J, Gutsol A, Nolette N, Dakshinamurti S. Thromboxane-induced actin polymerization in hypoxic pulmonary artery is independent of Rho. Am J Physiol Lung Cell Mol Physiol 2012; 302:L13-26. [DOI: 10.1152/ajplung.00016.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Actin polymerization (APM), regulated by Rho GTPases, promotes myocyte force generation. Hypoxia is known to impede postnatal disassembly of the actin cytoskeleton in pulmonary arterial (PA) myocytes. We compared basal and agonist-induced APM in myocytes from PA and descending aorta (Ao), under hypoxic and normoxic conditions. We also examined effects of thromboxane challenge on force generation and cytoskeletal assembly in resistance PA and renal arteries from neonatal swine with persistent pulmonary hypertension (PPHN) induced by 72-h normobaric hypoxia, compared with age-matched controls. Synthetic and contractile phenotype myocytes from neonatal porcine PA or Ao were grown in hypoxia (10% O2) or normoxia (21% O2) for 7 days, then challenged with 10−6 M thromboxane mimetic U46619. F/G actin ratio was quantified by laser-scanning cytometry and by cytoskeletal fractionation. Thromboxane receptor (TP) G protein coupling was measured by immunoprecipitation and probing for Gαq, G12, or G13, RhoA activation by Rhotekin-RBD affinity precipitation, and LIM kinase (LIMK) and cofilin phosphorylation by Western blot. Isometric force to serial concentrations of U46619 was measured in muscular pulmonary and renal arteries from PPHN and control swine; APM was quantified in fixed contracted vessels. Contractile PA myocytes exhibit marked Rho-dependent APM in hypoxia, with increased active RhoA and LIMK phosphorylation. Their additional APM response to U46619 challenge is independent of RhoA, reflecting decreased TP association with G12/13 in favor of Gαq. In contrast, hypoxic contractile Ao myocytes polymerize actin modestly and depolymerize to U46619. Both basal APM and the APM response to U46619 are increased in PPHN PA. APM corresponds with increased force generation to U46619 challenge in PPHN PA but not renal arteries.
Collapse
Affiliation(s)
- Jena Fediuk
- Departments of 1Physiology and
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Alexey Gutsol
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Nora Nolette
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Shyamala Dakshinamurti
- Departments of 1Physiology and
- Pediatrics, University of Manitoba
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| |
Collapse
|
54
|
Figge C, Loers G, Schachner M, Tilling T. Neurite outgrowth triggered by the cell adhesion molecule L1 requires activation and inactivation of the cytoskeletal protein cofilin. Mol Cell Neurosci 2011; 49:196-204. [PMID: 22019611 DOI: 10.1016/j.mcn.2011.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/09/2011] [Accepted: 10/05/2011] [Indexed: 01/29/2023] Open
Abstract
Neurite outgrowth, an essential process for constructing nervous system connectivity, requires molecular cues which promote neurite extension and guide growing neurites. The neural cell adhesion molecule L1 is one of the molecules involved in this process. Growth of neurites depends on actin remodeling, but actin-remodeling proteins which act downstream of L1 signaling are not known. In this study, we investigated whether the actin-remodeling protein cofilin, which can be activated by dephosphorylation, is involved in neurite outgrowth stimulated by L1. Upon stimulation with an L1 monoclonal antibody which specifically triggers L1-dependent neurite outgrowth, cofilin phosphorylation in cultured cerebellar granule neurons and isolated growth cones was reduced to 47 ± 13% or 58 ± 9% of IgG control levels, respectively. We therefore investigated whether cofilin phosphorylation plays a role in L1-stimulated neurite outgrowth. Inhibition of calcineurin, a phosphatase acting upstream of cofilin dephosphorylation, impaired L1-dependent neurite extension in cultures of cerebellar granule neurons and led to an increase in cofilin phosphorylation. Moreover, when peptide S3, a competitive inhibitor of cofilin phosphorylation, or peptide pS3, a competitive inhibitor of cofilin dephosphorylation, were transferred into cerebellar neurons in culture, L1-stimulated neurite outgrowth was reduced from 173 ± 15% to 103 ± 4% of poly-L-lysine control levels in the presence of either peptide. Our findings suggest that both activation of cofilin by dephosphorylation and inactivation of cofilin by phosphorylation are essential for L1-stimulated neurite outgrowth. These results are in accordance with a cofilin activity cycle recently proposed for invasive tumor cells and inflammatory cells, indicating that a similar regulatory mechanism might be involved in neurite outgrowth. As L1 is expressed by invasive tumor cells, cofilin might also be a downstream actor of L1 in metastasis.
Collapse
Affiliation(s)
- Carina Figge
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
55
|
Tejani AD, Walsh MP, Rembold CM. Tissue length modulates "stimulated actin polymerization," force augmentation, and the rate of swine carotid arterial contraction. Am J Physiol Cell Physiol 2011; 301:C1470-8. [PMID: 21865586 DOI: 10.1152/ajpcell.00149.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
"Stimulated actin polymerization" has been proposed to be involved in force augmentation, in which prior submaximal activation of vascular smooth muscle increases the force of a subsequent maximal contraction by ∼15%. In this study, we altered stimulated actin polymerization by adjusting tissue length and then measured the effect on force augmentation. At optimal tissue length (1.0 L(o)), force augmentation was observed and was associated with increased prior stimulated actin polymerization, as evidenced by increased prior Y118 paxillin phosphorylation without changes in prior S3 cofilin or cross-bridge phosphorylation. Tissue length, per se, regulated Y118 paxillin, but not S3 cofilin, phosphorylation. At short tissue length (0.6 L(o)), force augmentation was observed and was associated with increased prior stimulated actin polymerization, as evidenced by reduced prior S3 cofilin phosphorylation without changes in Y118 paxillin or cross-bridge phosphorylation. At long tissue length (1.4 L(o)), force augmentation was not observed, and there were no prior changes in Y118 paxillin, S3 cofilin, or cross-bridge phosphorylation. There were no significant differences in the cross-bridge phosphorylation transients before and after the force augmentation protocol at all three lengths tested. Tissues contracted faster at longer tissue lengths; contractile rate correlated with prior Y118 paxillin phosphorylation. Total stress, per se, predicted Y118 paxillin phosphorylation. These data suggest that force augmentation is regulated by stimulated actin polymerization and that stimulated actin polymerization is regulated by total arterial stress. We suggest that K(+) depolarization first leads to cross-bridge phosphorylation and contraction, and the contraction-induced increase in mechanical strain increases Y118 paxillin phosphorylation, leading to stimulated actin polymerization, which further increases force, i.e., force augmentation and, possibly, latch.
Collapse
Affiliation(s)
- Ankit D Tejani
- Cardiovascular Division, University of Virginia Health System, Charlottesville, VA 22908-0146, USA
| | | | | |
Collapse
|
56
|
Xue Z, Yu Y, Gao H, Gunst SJ, Tepper RS. Chronic continuous positive airway pressure (CPAP) reduces airway reactivity in vivo in an allergen-induced rabbit model of asthma. J Appl Physiol (1985) 2011; 111:353-7. [PMID: 21493723 DOI: 10.1152/japplphysiol.01345.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies have demonstrated that chronic mechanical strain produced by continuous positive airway pressure (CPAP) reduces in vivo airway reactivity in rabbits and ferrets. For CPAP to potentially have a therapeutic benefit for asthmatic subjects, the reduction in airway responsiveness would need to persist for 12-24 h after its discontinuation, require application for only part of the day, and be effective in the presence of atopic airway inflammation. In the present study, airway responsiveness to acetylcholine or methacholine was measured during mechanical ventilation following three different protocols in which active, nonanesthetized, tracheotomized rabbits were treated with High vs. Low CPAP (6 vs. 0 cmH(2)O). 1) High CPAP was applied continuously for 4 days followed by 1 day of Low CPAP; 2) High CPAP was applied at night and Low CPAP during the daytime for 4 days, and 3) High CPAP was applied for 4 days in animals following ovalbumin (Ova) sensitization and challenge. For all three protocols, treatment with High CPAP resulted in significantly reduced airway responsiveness compared with treatment with Low CPAP. Cumulatively, our in vivo results in rabbits suggest that high CPAP, even when applied only at night, produces a persistent reduction of airway responsiveness. In addition, CPAP reduces airway responsiveness even in the presence of atopic airway inflammation.
Collapse
Affiliation(s)
- Z Xue
- Department of Pediatrics, H. B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | |
Collapse
|
57
|
Fujita H, Hirano M, Shimizu K, Nagamori E. Rapid decrease in active tension generated by C2C12 myotubes after termination of artificial exercise. J Muscle Res Cell Motil 2010; 31:279-88. [DOI: 10.1007/s10974-010-9230-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022]
|
58
|
Huang Y, Zhang W, Gunst SJ. Activation of vinculin induced by cholinergic stimulation regulates contraction of tracheal smooth muscle tissue. J Biol Chem 2010; 286:3630-44. [PMID: 21071443 DOI: 10.1074/jbc.m110.139923] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vinculin localizes to membrane adhesion junctions where it links actin filaments to the extracellular matrix by binding to the integrin-binding protein talin at its head domain (Vh) and to actin filaments at its tail domain (Vt). Vinculin can assume an inactive (closed) conformation in which Vh and Vt bind to each other, masking the binding sites for actin and talin, and an active (open) conformation in which the binding sites for talin and actin are exposed. We hypothesized that the contractile activation of smooth muscle tissues might regulate the activation of vinculin and thereby contribute to the regulation of contractile tension. Stimulation of tracheal smooth muscle tissues with acetylcholine (ACh) induced the recruitment of vinculin to cell membrane and its interaction with talin and increased the phosphorylation of membrane-localized vinculin at the C-terminal Tyr-1065. Expression of recombinant vinculin head domain peptide (Vh) in smooth muscle tissues, but not the talin-binding deficient mutant head domain, VhA50I, inhibited the ACh-induced recruitment of endogenous vinculin to the membrane and the interaction of vinculin with talin and also inhibited vinculin phosphorylation. Expression of Vh peptide also inhibited ACh-induced smooth muscle contraction and inhibited ACh-induced actin polymerization; however, it did not affect myosin light chain phosphorylation, which is necessary for cross-bridge cycling. Inactivation of RhoA inhibited vinculin activation in response to ACh. We conclude that ACh stimulation regulates vinculin activation in tracheal smooth muscle via RhoA and that vinculin activation contributes to the regulation of active tension by facilitating connections between actin filaments and talin-integrin adhesion complexes and by mediating the initiation of actin polymerization.
Collapse
Affiliation(s)
- Youliang Huang
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
59
|
Walsh MP, Thornbury K, Cole WC, Sergeant G, Hollywood M, McHale N. Rho-associated kinase plays a role in rabbit urethral smooth muscle contraction, but not via enhanced myosin light chain phosphorylation. Am J Physiol Renal Physiol 2010; 300:F73-85. [PMID: 20861082 DOI: 10.1152/ajprenal.00011.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The involvement of Rho-associated kinase (ROK) in activation of rabbit urethral smooth muscle contraction was investigated by examining the effects of two structurally distinct inhibitors of ROK, Y27632 and H1152, on the contractile response to electric field stimulation, membrane depolarization with KCl, and α1-adrenoceptor stimulation with phenylephrine. Both compounds inhibited contractions elicited by all three stimuli. The protein kinase C inhibitor GF109203X, on the other hand, had no effect. Urethral smooth muscle strips were analyzed for phosphorylation of three potential direct or indirect substrates of ROK: 1) myosin regulatory light chains (LC20) at S19, 2) the myosin-targeting subunit of myosin light chain phosphatase (MYPT1) at T697 and T855, and 3) cofilin at S3. The following results were obtained: 1) under resting tension, LC20 was phosphorylated to 0.65±0.02 mol Pi/mol LC20 (n=21) at S19; 2) LC20 phosphorylation did not change in response to KCl or phenylephrine; 3) ROK inhibition had no effect on LC20 phosphorylation in the absence or presence of contractile stimuli; 4) under resting conditions, MYPT1 was partially phosphorylated at T697 and T855 and cofilin at S3; 5) phosphorylation of MYPT1 and cofilin was unaffected by KCl or phenylephrine; and 6) KCl- and phenylephrine-induced contraction-relaxation cycles did not correlate with actin polymerization-depolymerization. We conclude that ROK plays an important role in urethral smooth muscle contraction, but not via inhibition of MLCP or polymerization of actin.
Collapse
Affiliation(s)
- Michael P Walsh
- Smooth Muscle Research Group and Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | | | |
Collapse
|
60
|
Zhang W, Du L, Gunst SJ. The effects of the small GTPase RhoA on the muscarinic contraction of airway smooth muscle result from its role in regulating actin polymerization. Am J Physiol Cell Physiol 2010; 299:C298-306. [PMID: 20445174 DOI: 10.1152/ajpcell.00118.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The small GTPase RhoA increases the Ca(2+) sensitivity of smooth muscle contraction and myosin light chain (MLC) phosphorylation by inhibiting the activity of MLC phosphatase. RhoA is also a known regulator of cytoskeletal dynamics and actin polymerization in many cell types. In airway smooth muscle (ASM), contractile stimulation induces MLC phosphorylation and actin polymerization, which are both required for active tension generation. The objective of this study was to evaluate the primary mechanism by which RhoA regulates active tension generation in intact ASM during stimulation with acetylcholine (ACh). RhoA activity was inhibited in canine tracheal smooth muscle tissues by expressing the inactive RhoA mutant, RhoA T19N, in the intact tissues or by treating them with the cell-permeant RhoA inhibitor, exoenzyme C3 transferase. RhoA inactivation reduced ACh-induced contractile force by approximately 60% and completely inhibited ACh-induced actin polymerization but inhibited ACh-induced MLC phosphorylation by only approximately 20%. Inactivation of MLC phosphatase with calyculin A reversed the reduction in MLC phosphorylation caused by RhoA inactivation, but calyculin A did not reverse the depression of active tension and actin polymerization caused by RhoA inactivation. The MLC kinase inhibitor, ML-7, inhibited ACh-induced MLC phosphorylation by approximately 80% and depressed active force by approximately 70% but did not affect ACh-induced actin polymerization, demonstrating that ACh-stimulated actin polymerization occurs independently of MLC phosphorylation. We conclude that the RhoA-mediated regulation of ACh-induced contractile tension in ASM results from its role in mediating actin polymerization rather than from effects on MLC phosphatase or MLC phosphorylation.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
61
|
Kim HR, Graceffa P, Ferron F, Gallant C, Boczkowska M, Dominguez R, Morgan KG. Actin polymerization in differentiated vascular smooth muscle cells requires vasodilator-stimulated phosphoprotein. Am J Physiol Cell Physiol 2009; 298:C559-71. [PMID: 20018948 DOI: 10.1152/ajpcell.00431.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Our group has previously shown that vasoconstrictors increase net actin polymerization in differentiated vascular smooth muscle cells (dVSMC) and that increased actin polymerization is linked to contractility of vascular tissue (Kim et al., Am J Physiol Cell Physiol 295: C768-778, 2008). However, the underlying mechanisms are largely unknown. Here, we evaluated the possible functions of the Ena/vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongation factors in dVSMC. Inhibition of actin filament elongation by cytochalasin D decreases contractility without changing myosin light-chain phosphorylation levels, suggesting that actin filament elongation is necessary for dVSM contraction. VASP is the only Ena/VASP protein highly expressed in aorta tissues, and VASP knockdown decreased smooth muscle contractility. VASP partially colocalizes with alpha-actinin and vinculin in dVSMC. Profilin, known to associate with G actin and VASP, also colocalizes with alpha-actinin and vinculin, potentially identifying the dense bodies and the adhesion plaques as hot spots of actin polymerization. The EVH1 domain of Ena/VASP is known to target these proteins to their sites of action. Introduction of an expressed EVH1 domain as a dominant negative inhibits stimulus-induced increases in actin polymerization. VASP phosphorylation, known to inhibit actin polymerization, is decreased during phenylephrine stimulation in dVSMC. We also directly visualized, for the first time, rhodamine-labeled actin incorporation in dVSMC and identified hot spots of actin polymerization in the cell cortex that colocalize with VASP. These results indicate a role for VASP in actin filament assembly, specifically at the cell cortex, that modulates contractility in dVSMC.
Collapse
Affiliation(s)
- Hak Rim Kim
- Dept. of Health Sciences, Boston Univ., 635 Commonwealth Ave, Boston MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|