51
|
Craciun S, Marks JA, Balskus EP. Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes. ACS Chem Biol 2014; 9:1408-13. [PMID: 24854437 DOI: 10.1021/cb500113p] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recently identified glycyl radical enzyme (GRE) homologue choline trimethylamine-lyase (CutC) participates in the anaerobic conversion of choline to trimethylamine (TMA), a widely distributed microbial metabolic transformation that occurs in the human gut and is linked to disease. The proposed biochemical function of CutC, C-N bond cleavage, represents new reactivity for the GRE family. Here we describe the in vitro characterization of CutC and its activating protein CutD. We have observed CutD-mediated formation of a glycyl radical on CutC using EPR spectroscopy and have demonstrated that activated CutC processes choline to trimethylamine and acetaldehyde. Surveys of potential alternate CutC substrates uncovered a strict specificity for choline. Homology modeling and mutagenesis experiments revealed essential CutC active site residues. Overall, this work establishes that CutC is a GRE of unique function and a molecular marker for anaerobic choline metabolism.
Collapse
Affiliation(s)
- Smaranda Craciun
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jonathan A. Marks
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
52
|
Perez C, Faust B, Mehdipour AR, Francesconi KA, Forrest LR, Ziegler C. Substrate-bound outward-open state of the betaine transporter BetP provides insights into Na+ coupling. Nat Commun 2014; 5:4231. [PMID: 25023443 DOI: 10.1038/ncomms5231] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/28/2014] [Indexed: 12/26/2022] Open
Abstract
The Na(+)-coupled betaine symporter BetP shares a highly conserved fold with other sequence unrelated secondary transporters, for example, with neurotransmitter symporters. Recently, we obtained atomic structures of BetP in distinct conformational states, which elucidated parts of its alternating-access mechanism. Here, we report a structure of BetP in a new outward-open state in complex with an anomalous scattering substrate, adding a fundamental piece to an unprecedented set of structural snapshots for a secondary transporter. In combination with molecular dynamics simulations these structural data highlight important features of the sequential formation of the substrate and sodium-binding sites, in which coordinating water molecules play a crucial role. We observe a strictly interdependent binding of betaine and sodium ions during the coupling process. All three sites undergo progressive reshaping and dehydration during the alternating-access cycle, with the most optimal coordination of all substrates found in the closed state.
Collapse
Affiliation(s)
- Camilo Perez
- 1] Structural Biology Department, Max-Planck Institute of Biophysics, Frankfurt am Main 60438, Germany [2] [3]
| | - Belinda Faust
- 1] Structural Biology Department, Max-Planck Institute of Biophysics, Frankfurt am Main 60438, Germany [2] [3]
| | - Ahmad Reza Mehdipour
- 1] Computational Structural Biology Group, Max-Planck Institute of Biophysics, Frankfurt am Main 60438, Germany [2]
| | - Kevin A Francesconi
- Institute of Chemistry-Analytical Chemistry, University of Graz, Graz 8010, Austria
| | - Lucy R Forrest
- 1] Computational Structural Biology Group, Max-Planck Institute of Biophysics, Frankfurt am Main 60438, Germany [2]
| | - Christine Ziegler
- 1] Structural Biology Department, Max-Planck Institute of Biophysics, Frankfurt am Main 60438, Germany [2] Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Regensburg 95053, Germany
| |
Collapse
|
53
|
Highly constrained guests in complexes of p-tert-butylcalix[6]arene dianion: Pentane-1,5-diammonium and choline. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
54
|
Chu BCH, Chan DI, DeWolf T, Periole X, Vogel HJ. Molecular dynamics simulations reveal that apo-HisJ can sample a closed conformation. Proteins 2013; 82:386-98. [DOI: 10.1002/prot.24396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 11/11/2022]
Affiliation(s)
- B. C. H. Chu
- Department of Biological Sciences; University of Calgary; Calgary Alberta T2N 1N4 Canada
| | - D. I. Chan
- Department of Biological Sciences; University of Calgary; Calgary Alberta T2N 1N4 Canada
| | - T. DeWolf
- Department of Biological Sciences; University of Calgary; Calgary Alberta T2N 1N4 Canada
| | - X. Periole
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - H. J. Vogel
- Department of Biological Sciences; University of Calgary; Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
55
|
Siuda I, Thøgersen L. Conformational flexibility of the leucine binding protein examined by protein domain coarse-grained molecular dynamics. J Mol Model 2013; 19:4931-45. [DOI: 10.1007/s00894-013-1991-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/29/2013] [Indexed: 11/24/2022]
|
56
|
Ahmed HH, Salem AM, Sabry GM, Husein AA, Kotob SE. Possible therapeutic uses of Salvia triloba and Piper nigrum in Alzheimer's disease-induced rats. J Med Food 2013; 16:437-46. [PMID: 23631499 DOI: 10.1089/jmf.2012.0165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the role of Salvia triloba L. and Piper nigrum extracts in ameliorating neuroinflammatory insults characteristic of Alzheimer's disease (AD) in an experimentally induced rat model. Adult male Sprague-Dawley rats were classified into Group 1 (n=10): normal healthy animals serving as the negative control group; Group 2 (n=60): the AD-induced group. After AD induction, animals in the AD-induced group were divided randomly and equally into 6 subgroups. The first subgroup served as AD control; the second one, which served as positive control, was treated orally with the conventional therapy for AD (rivastigmine) at a dose of 0.3 mg/kg body weight (b.w.) daily for 3 months. The third and fourth subgroups were, respectively, treated orally with the S. triloba extract at a dose of 750 and 375 mg/kg b.w. daily for 3 months. The fifth and sixth subgroups were, respectively, treated orally with the P. nigrum extract at a dose of 187.5 and 93.75 mg/kg b.w. daily for 3 months. Levels of brain acetylcholine (Ach), serum and brain acetylcholinesterase (AchE) activity, C-reactive protein (CRP), total nuclear factor kappa-B (NF-κB), and monocyte chemoattractant protein-1 (MCP-1) were estimated. The results showed that administration of AlCl3 resulted in a significant elevation in the levels of AchE activity, CRP, NF-κB, and MCP-1 accompanied with a significant depletion in the Ach level. Treatment of AD rats with each of the selected medicinal plant extracts caused marked improvement in the measured biochemical parameters. In conclusion, S. triloba and P. nigrum methanolic extracts have potent anti-inflammatory effects against neuroinflammation characterizing AD.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, National Research Center, Cairo 12622, Egypt.
| | | | | | | | | |
Collapse
|
57
|
Cheng J, Goldstein R, Gershenson A, Stec B, Roberts MF. The cation-π box is a specific phosphatidylcholine membrane targeting motif. J Biol Chem 2013; 288:14863-73. [PMID: 23576432 DOI: 10.1074/jbc.m113.466532] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Peripheral membrane proteins can be targeted to specific organelles or the plasma membrane by differential recognition of phospholipid headgroups. Although molecular determinants of specificity for several headgroups, including phosphatidylserine and phosphoinositides are well defined, specific recognition of the headgroup of the zwitterionic phosphatidylcholine (PC) is less well understood. In cytosolic proteins the cation-π box provides a suitable receptor for choline recognition and binding through the trimethylammonium moiety. In PC, this moiety might provide a sufficient handle to bind to peripheral proteins via a cation-π cage, where the π systems of two or more aromatic residues are within 4-5 Å of the quaternary amine. We prove this hypothesis by engineering the cation-π box into secreted phosphatidylinositol-specific phospholipase C from Staphylococcus aureus, which lacks specific PC recognition. The N254Y/H258Y variant selectively binds PC-enriched vesicles, and x-ray crystallography reveals N254Y/H258Y binds choline and dibutyroylphosphatidylcholine within the cation-π motif. Such simple PC recognition motifs could be engineered into a wide variety of secondary structures providing a generally applicable method for specific recognition of PC.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
58
|
Ahmed HH, Estefan SF, Mohamd EM, Farrag AERH, Salah RS. Does melatonin ameliorate neurological changes associated with Alzheimer's disease in ovariectomized rat model? Indian J Clin Biochem 2012; 28:381-9. [PMID: 24426241 DOI: 10.1007/s12291-012-0284-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/21/2012] [Indexed: 02/07/2023]
Abstract
This study aimed to elucidate the mechanisms of melatonin to manage neurological damage in Alzheimer's disease (AD) induced in ovariectomized rats. Forty adult female rats were enrolled in our study and were classified as; gonad intact control, ovariectomized control group, ovariectomized rats received melatonin, ovariectomized rats injected with AlCl3 to induce AD and AD-induced rats treated with melatonin. Hydrogen peroxide (H2O2), malondialdehyde (MDA), total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT), B cell lymphoma 2 (Bcl-2), brain derived neurotrophic factor (BDNF), acetylcholinesterase (AchE) and acetylcholine (Ach) were estimated in the brain tissues of the different groups. Treatment of AD-induced rats with melatonin produced marked improvement in the most studied biomarkers which was confirmed by histological investigation of the brain. In Conclusion, melatonin significantly ameliorates the neurodegeneration characteristic of AD in experimental animal model due to its antioxidant, antiapoptotic, neurotrophic and anti-amyloidogenic activities.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Cairo, 12622 Egypt
| | - Selim F Estefan
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Cairo, 12622 Egypt
| | - Ehab M Mohamd
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Rania S Salah
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Cairo, 12622 Egypt
| |
Collapse
|
59
|
Identification and characterization of a high-affinity choline uptake system of Brucella abortus. J Bacteriol 2012; 195:493-501. [PMID: 23161032 DOI: 10.1128/jb.01929-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylcholine (PC), a common phospholipid of the eukaryotic cell membrane, is present in the cell envelope of the intracellular pathogen Brucella abortus, the etiological agent of bovine brucellosis. In this pathogen, the biosynthesis of PC proceeds mainly through the phosphatidylcholine synthase pathway; hence, it relies on the presence of choline in the milieu. These observations imply that B. abortus encodes an as-yet-unknown choline uptake system. Taking advantage of the requirement of choline uptake for PC synthesis, we devised a method that allowed us to identify a homologue of ChoX, the high-affinity periplasmic binding protein of the ABC transporter ChoXWV. Disruption of the choX gene completely abrogated PC synthesis at low choline concentrations in the medium, thus indicating that it is a high-affinity transporter needed for PC synthesis via the PC synthase (PCS) pathway. However, the synthesis of PC was restored when the mutant was incubated in media with higher choline concentrations, suggesting the presence of an alternative low-affinity choline uptake activity. By means of a fluorescence-based equilibrium-binding assay and using the kinetics of radiolabeled choline uptake, we show that ChoX binds choline with an extremely high affinity, and we also demonstrate that its activity is inhibited by increasing choline concentrations. Cell infection assays indicate that ChoX activity is required during the first phase of B. abortus intracellular traffic, suggesting that choline concentrations in the early and intermediate Brucella-containing vacuoles are limited. Altogether, these results suggest that choline transport and PC synthesis are strictly regulated in B. abortus.
Collapse
|
60
|
Michalska K, Chang C, Mack JC, Zerbs S, Joachimiak A, Collart FR. Characterization of transport proteins for aromatic compounds derived from lignin: benzoate derivative binding proteins. J Mol Biol 2012; 423:555-75. [PMID: 22925578 PMCID: PMC3836681 DOI: 10.1016/j.jmb.2012.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/27/2012] [Accepted: 08/20/2012] [Indexed: 10/28/2022]
Abstract
In vitro growth experiments have demonstrated that aromatic compounds derived from lignin can be metabolized and represent a major carbon resource for many soil bacteria. However, the proteins that mediate the movement of these metabolites across the cell membrane have not been thoroughly characterized. To address this deficiency, we used a library representative of lignin degradation products and a thermal stability screen to determine ligand specificity for a set of solute-binding proteins (SBPs) from ATP-binding cassette (ABC) transporters. The ligand mapping process identified a set of proteins from Alphaproteobacteria that recognize various benzoate derivatives. Seven high-resolution crystal structures of these proteins in complex with four different aromatic compounds were obtained. The protein-ligand complexes provide details of molecular recognition that can be used to infer binding specificity. This structure-function characterization provides new insight for the biological roles of these ABC transporters and their SBPs, which had been previously annotated as branched-chain amino-acid-binding proteins. The knowledge derived from the crystal structures provides a foundation for development of sequence-based methods to predict the ligand specificity of other uncharacterized transporters. These results also demonstrate that Alphaproteobacteria possess a diverse set of transport capabilities for lignin-derived compounds. Characterization of this new class of transporters improves genomic annotation projects and provides insight into the metabolic potential of soil bacteria.
Collapse
Affiliation(s)
- Karolina Michalska
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Changsoo Chang
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL 60439, USA
- Structural Biology Center, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jamey C. Mack
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sarah Zerbs
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Andrzej Joachimiak
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL 60439, USA
- Structural Biology Center, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Frank R. Collart
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| |
Collapse
|
61
|
Wuttge S, Bommer M, Jäger F, Martins BM, Jacob S, Licht A, Scheffel F, Dobbek H, Schneider E. Determinants of substrate specificity and biochemical properties of the sn-glycerol-3-phosphate ATP binding cassette transporter (UgpB-AEC2 ) of Escherichia coli. Mol Microbiol 2012; 86:908-20. [PMID: 23013274 DOI: 10.1111/mmi.12025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2012] [Indexed: 12/20/2022]
Abstract
Under phosphate starvation conditions, Escherichia coli can utilize sn-glycerol-3-phosphate (G3P) and G3P diesters as phosphate source when transported by an ATP binding cassette importer composed of the periplasmic binding protein, UgpB, the transmembrane subunits, UgpA and UgpE, and a homodimer of the nucleotide binding subunit, UgpC. The current knowledge on the Ugp transporter is solely based on genetic evidence and transport assays using intact cells. Thus, we set out to characterize its properties at the level of purified protein components. UgpB was demonstrated to bind G3P and glycerophosphocholine with dissociation constants of 0.68 ± 0.02 μM and 5.1 ± 0.3 μM, respectively, while glycerol-2-phosphate (G2P) is not a substrate. The crystal structure of UgpB in complex with G3P was solved at 1.8 Å resolution and revealed the interaction with two tryptophan residues as key to the preferential binding of linear G3P in contrast to the branched G2P. Mutational analysis validated the crucial role of Trp-169 for G3P binding. The purified UgpAEC2 complex displayed UgpB/G3P-stimulated ATPase activity in proteoliposomes that was neither inhibited by phosphate nor by the signal transducing protein PhoU or the phosphodiesterase UgpQ. Furthermore, a hybrid transporter composed of MalFG-UgpC could be functionally reconstituted while a UgpAE-MalK complex was unstable.
Collapse
Affiliation(s)
- Steven Wuttge
- Division of Microbial Physiology, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Nau-Wagner G, Opper D, Rolbetzki A, Boch J, Kempf B, Hoffmann T, Bremer E. Genetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine-responsive GbsR repressor. J Bacteriol 2012; 194:2703-14. [PMID: 22408163 PMCID: PMC3347207 DOI: 10.1128/jb.06642-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 02/27/2012] [Indexed: 11/20/2022] Open
Abstract
Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent K(D) (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine.
Collapse
Affiliation(s)
- Gabriele Nau-Wagner
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
Pan J, Chen Q, Willenbring D, Yoshida K, Tillman T, Kashlan OB, Cohen A, Kong XP, Xu Y, Tang P. Structure of the pentameric ligand-gated ion channel ELIC cocrystallized with its competitive antagonist acetylcholine. Nat Commun 2012; 3:714. [PMID: 22395605 PMCID: PMC3316889 DOI: 10.1038/ncomms1703] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 01/24/2012] [Indexed: 11/10/2022] Open
Abstract
ELIC, the pentameric ligand-gated ion channel from Erwinia chrysanthemi, is a prototype for Cys-loop receptors. Here we show that acetylcholine is a competitive antagonist for ELIC. We determine the acetylcholine–ELIC cocrystal structure to a 2.9-Å resolution and find that acetylcholine binding to an aromatic cage at the subunit interface induces a significant contraction of loop C and other structural rearrangements in the extracellular domain. The side chain of the pore-lining residue F247 reorients and the pore size consequently enlarges, but the channel remains closed. We attribute the inability of acetylcholine to activate ELIC primarily to weak cation-π and electrostatic interactions in the pocket, because an acetylcholine derivative with a simple quaternary-to-tertiary ammonium substitution activates the channel. This study presents a compelling case for understanding the structural underpinning of the functional relationship between agonism and competitive antagonism in the Cys-loop receptors, providing a new framework for developing novel therapeutic drugs. The pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) is similar in structure to the nicotinic acetylcholine receptor, a member of the Cys-loop receptor family. This study reports the crystal structure of ELIC bound to acetylcholine and shows that acetylcholine is a competitive antagonist of ELIC.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Anesthesiology, 2057 Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 2012; 482:547-51. [PMID: 22278061 PMCID: PMC3345277 DOI: 10.1038/nature10753] [Citation(s) in RCA: 619] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/01/2011] [Indexed: 12/31/2022]
Abstract
The parasympathetic limb of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G protein coupled receptors (GPCRs) that mediate the response to acetylcholine released from parasympathetic nerves.1–5 Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiologic control of cardiovascular function through activation of G protein-coupled inwardly-rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of antagonist-bound M2 receptor, the first human acetylcholine receptor to be characterized structurally. The antagonist QNB binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all 5 muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The M2 receptor structure provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.
Collapse
|
65
|
Pistolesi S, Tjandra N. Temperature dependence of molecular interactions involved in defining stability of glutamine binding protein and its complex with L-glutamine. Biochemistry 2012; 51:643-52. [PMID: 22206385 PMCID: PMC3513781 DOI: 10.1021/bi201494h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The temperature dependence of dynamic parameters derived from nuclear magnetic resonance (NMR) relaxation data is related to conformational entropy of the system under study. This provides information such as macromolecules stability and thermodynamics of ligand binding. We studied the temperature dependence of NMR order parameter of glutamine binding protein (GlnBP), a periplasmic binding protein (PBP) highly specific to L-glutamine associated with its ABC transporter, with the goal of elucidating the dynamical differences between the respective ligand bound and free forms. We found that the protein-ligand interaction, which is stabilized at higher temperature, has a striking effect on the stability of the hydrophobic core of the large domain of GlnBP. Moreover, in contrast to what was found for less specific PBPs, the decreasing backbone motion of the hinge region at increasing temperature supports the idea that the likelihood that GlnBP can adopt a ligand free closed conformation in solution diminishes at higher temperatures. Our results support the induced-fit model as mode of action for GlnBP. In addition, we found that the backbones of residues involved in a salt bridge do not necessarily become more rigid as the temperature rises as it was previously suggested [Vinther, J. M., et al. (2011) J. Am. Chem. Soc., 133, 271-278]. Our results show that for this to happen these residues have to also directly interact with a region of the protein that is becoming more rigid as the temperature increases.
Collapse
Affiliation(s)
- Sara Pistolesi
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892
| |
Collapse
|
66
|
Bucher D, Grant BJ, McCammon JA. Induced fit or conformational selection? The role of the semi-closed state in the maltose binding protein. Biochemistry 2011; 50:10530-9. [PMID: 22050600 PMCID: PMC3226325 DOI: 10.1021/bi201481a] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
A full characterization of the thermodynamic forces underlying
ligand-associated conformational changes in proteins is essential
for understanding and manipulating diverse biological processes, including
transport, signaling, and enzymatic activity. Recent experiments on
the maltose binding protein (MBP) have provided valuable data about
the different conformational states implicated in the ligand recognition
process; however, a complete picture of the accessible pathways and
the associated changes in free energy remains elusive. Here we describe
results from advanced accelerated molecular dynamics (aMD) simulations,
coupled with adaptively biased force (ABF) and thermodynamic integration
(TI) free energy methods. The combination of approaches allows us
to track the ligand recognition process on the microsecond time scale
and provides a detailed characterization of the protein’s dynamic
and the relative energy of stable states. We find that an induced-fit
(IF) mechanism is most likely and that a mechanism involving both
a conformational selection (CS) step and an IF step is also possible.
The complete recognition process is best viewed as a “Pac Man”
type action where the ligand is initially localized to one domain
and naturally occurring hinge-bending vibrations in the protein are
able to assist the recognition process by increasing the chances of
a favorable encounter with side chains on the other domain, leading
to a population shift. This interpretation is consistent with experiments
and provides new insight into the complex recognition mechanism. The
methods employed here are able to describe IF and CS effects and provide
formally rigorous means of computing free energy changes. As such,
they are superior to conventional MD and flexible docking alone and
hold great promise for future development and applications to drug
discovery.
Collapse
Affiliation(s)
- Denis Bucher
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California 92093, United States.
| | | | | |
Collapse
|
67
|
Choline uptake in Agrobacterium tumefaciens by the high-affinity ChoXWV transporter. J Bacteriol 2011; 193:5119-29. [PMID: 21803998 DOI: 10.1128/jb.05421-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called "Venus flytrap mechanism" of substrate binding.
Collapse
|
68
|
Structures of the substrate-binding protein provide insights into the multiple compatible solute binding specificities of the Bacillus subtilis ABC transporter OpuC. Biochem J 2011; 436:283-9. [PMID: 21366542 DOI: 10.1042/bj20102097] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/17/2022]
Abstract
The compatible solute ABC (ATP-binding cassette) transporters are indispensable for acquiring a variety of compatible solutes under osmotic stress in Bacillus subtilis. The substrate-binding protein OpuCC (Opu is osmoprotectant uptake) of the ABC transporter OpuC can recognize a broad spectrum of compatible solutes, compared with its 70% sequence-identical paralogue OpuBC that can solely bind choline. To explore the structural basis of this difference of substrate specificity, we determined crystal structures of OpuCC in the apo-form and in complex with carnitine, glycine betaine, choline and ectoine respectively. OpuCC is composed of two α/β/α globular sandwich domains linked by two hinge regions, with a substrate-binding pocket located at the interdomain cleft. Upon substrate binding, the two domains shift towards each other to trap the substrate. Comparative structural analysis revealed a plastic pocket that fits various compatible solutes, which attributes themultiple-substrate binding property to OpuCC. This plasticity is a gain-of-function via a single-residue mutation of Thr⁹⁴ in OpuCC compared with Asp⁹⁶ in OpuBC.
Collapse
|
69
|
Tschapek B, Pittelkow M, Sohn-Bösser L, Holtmann G, Smits SHJ, Gohlke H, Bremer E, Schmitt L. Arg149 is involved in switching the low affinity, open state of the binding protein AfProX into its high affinity, closed state. J Mol Biol 2011; 411:36-52. [PMID: 21664363 DOI: 10.1016/j.jmb.2011.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/21/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
The substrate binding protein AfProX from the Archaeoglobus fulgidus ProU ATP binding cassette transporter is highly selective for the compatible solutes glycine betaine (GB) and proline betaine, which confer thermoprotection to this hyperthermophilic archaeon. A detailed mutational analysis of the substrate binding site revealed the contribution of individual amino acids for ligand binding. Replacement of Arg149 by an Ala residue displayed the largest impact on substrate binding. The structure of a mutant AfProX protein (substitution of Tyr111 with Ala) in complex with GB was solved in the open liganded conformation to gain further insight into ligand binding. In this crystal structure, GB is bound differently compared to the GB closed liganded structure of the wild-type AfProX protein. We found that a network of amino acid side chains communicates the presence of GB toward Arg149, which increases ligand affinity and induces domain closure of AfProX. These results were corroborated by molecular dynamics studies and support the view that Arg149 finalizes the high-affinity state of the AfProX substrate binding protein.
Collapse
Affiliation(s)
- Britta Tschapek
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Pittelkow M, Tschapek B, Smits SHJ, Schmitt L, Bremer E. The crystal structure of the substrate-binding protein OpuBC from Bacillus subtilis in complex with choline. J Mol Biol 2011; 411:53-67. [PMID: 21658392 DOI: 10.1016/j.jmb.2011.05.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis can synthesize the compatible solute glycine betaine as an osmoprotectant from an exogenous supply of the precursor choline. Import of choline is mediated by two osmotically inducible ABC transport systems: OpuB and OpuC. OpuC catalyzes the import of various osmoprotectants, whereas OpuB is highly specific for choline. OpuBC is the substrate-binding protein of the OpuB transporter, and we have analyzed the affinity of the OpuBC/choline complex by intrinsic tryptophan fluorescence and determined a K(d) value of about 30 μM. The X-ray crystal structure of the OpuBC/choline complex was solved at a resolution of 1.6 Å and revealed a fold typical of class II substrate-binding proteins. The positively charged trimethylammonium head group of choline is wedged into an aromatic cage formed by four tyrosine residues and is bound via cation-pi interactions. The hydroxyl group of choline protrudes out of this aromatic cage and makes a single interaction with residue Gln19. The substitution of this residue by Ala decreases choline binding affinity by approximately 15-fold. A water network stabilizes choline within its substrate-binding site and promotes indirect interactions between the two lobes of the OpuBC protein. Disruption of this intricate water network by site-directed mutagenesis of selected residues in OpuBC either strongly reduces choline binding affinity (between 18-fold and 25-fold) or abrogates ligand binding. The crystal structure of the OpuBC/choline complex provides a rational for the observed choline specificity of the OpuB ABC importer in vivo and explains its inability to catalyze the import of glycine betaine into osmotically stressed B. subtilis cells.
Collapse
Affiliation(s)
- Marco Pittelkow
- Laboratory for Microbiology, Department of Biology, Philipps University Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
71
|
Silva DA, Bowman GR, Sosa-Peinado A, Huang X. A role for both conformational selection and induced fit in ligand binding by the LAO protein. PLoS Comput Biol 2011; 7:e1002054. [PMID: 21637799 PMCID: PMC3102756 DOI: 10.1371/journal.pcbi.1002054] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/31/2011] [Indexed: 11/30/2022] Open
Abstract
Molecular recognition is determined by the structure and dynamics of both a protein and its ligand, but it is difficult to directly assess the role of each of these players. In this study, we use Markov State Models (MSMs) built from atomistic simulations to elucidate the mechanism by which the Lysine-, Arginine-, Ornithine-binding (LAO) protein binds to its ligand. We show that our model can predict the bound state, binding free energy, and association rate with reasonable accuracy and then use the model to dissect the binding mechanism. In the past, this binding event has often been assumed to occur via an induced fit mechanism because the protein's binding site is completely closed in the bound state, making it impossible for the ligand to enter the binding site after the protein has adopted the closed conformation. More complex mechanisms have also been hypothesized, but these have remained controversial. Here, we are able to directly observe roles for both the conformational selection and induced fit mechanisms in LAO binding. First, the LAO protein tends to form a partially closed encounter complex via conformational selection (that is, the apo protein can sample this state), though the induced fit mechanism can also play a role here. Then, interactions with the ligand can induce a transition to the bound state. Based on these results, we propose that MSMs built from atomistic simulations may be a powerful way of dissecting ligand-binding mechanisms and may eventually facilitate a deeper understanding of allostery as well as the prediction of new protein-ligand interactions, an important step in drug discovery.
Collapse
Affiliation(s)
- Daniel-Adriano Silva
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Biochemistry, Medicine School, Universidad Nacional Autónoma de México, México D.F., México
| | - Gregory R. Bowman
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Alejandro Sosa-Peinado
- Department of Biochemistry, Medicine School, Universidad Nacional Autónoma de México, México D.F., México
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
72
|
Substrate specificity and ion coupling in the Na+/betaine symporter BetP. EMBO J 2011; 30:1221-9. [PMID: 21364531 DOI: 10.1038/emboj.2011.46] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 01/31/2011] [Indexed: 11/09/2022] Open
Abstract
BetP is an Na(+)-coupled betaine-specific transporter of the betaine-choline-carnitine (BCC) transporter family involved in the response to hyperosmotic stress. The crystal structure of BetP revealed an overall fold of two inverted structurally related repeats (LeuT-fold) that BetP shares with other sequence-unrelated Na(+)-coupled symporters. Numerous structures of LeuT-fold transporters in distinct conformational states have contributed substantially to our understanding of the alternating access mechanism of transport. Nevertheless, coupling of substrate and co-transported ion fluxes has not been structurally corroborated to the same extent. We converted BetP by a single-point mutation--glycine to aspartate--into an H(+)-coupled choline-specific transporter and solved the crystal structure of this mutant in complex with choline. The structure of BetP-G153D demonstrates a new inward-facing open conformation for BetP. Choline binding to a location close to the second, low-affinity sodium-binding site (Na2) of LeuT-fold transporters is facilitated by the introduced aspartate. Our data confirm the importance of a cation-binding site in BetP, playing a key role in a proposed molecular mechanism of Na(+) and H(+) coupling in BCC transporters.
Collapse
|
73
|
|
74
|
Durrant JD, McCammon JA. BINANA: a novel algorithm for ligand-binding characterization. J Mol Graph Model 2011; 29:888-93. [PMID: 21310640 DOI: 10.1016/j.jmgm.2011.01.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/06/2011] [Indexed: 11/15/2022]
Abstract
Computational chemists and structural biologists are often interested in characterizing ligand-receptor complexes for hydrogen-bond, hydrophobic, salt-bridge, van der Waals, and other interactions in order to assess ligand binding. When done by hand, this characterization can become tedious, especially when many complexes need be analyzed. In order to facilitate the characterization of ligand binding, we here present a novel Python-implemented computer algorithm called BINANA (BINding ANAlyzer), which is freely available for download at http://www.nbcr.net/binana/. To demonstrate the utility of the new algorithm, we use BINANA to confirm that the number of hydrophobic contacts between a ligand and its protein receptor is positively correlated with ligand potency. Additionally, we show how BINANA can be used to search through a large ligand-receptor database to identify those complexes that are remarkable for selected binding features, and to identify lead candidates from a virtual screen with specific, desirable binding characteristics. We are hopeful that BINANA will be useful to computational chemists and structural biologists who wish to automatically characterize many ligand-receptor complexes for key binding characteristics.
Collapse
Affiliation(s)
- Jacob D Durrant
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093-0365, United States.
| | | |
Collapse
|
75
|
Ziegler C, Bremer E, Krämer R. The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol 2011; 78:13-34. [PMID: 20923416 DOI: 10.1111/j.1365-2958.2010.07332.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increases in the environmental osmolarity are key determinants for the growth of microorganisms. To ensure a physiologically acceptable level of cellular hydration and turgor at high osmolarity, many bacteria accumulate compatible solutes. Osmotically controlled uptake systems allow the scavenging of these compounds from scarce environmental sources as effective osmoprotectants. A number of these systems belong to the BCCT family (betaine-choline-carnitine-transporter), sodium- or proton-coupled transporters (e.g. BetP and BetT respectively) that are ubiquitous in microorganisms. The BCCT family also contains CaiT, an L-carnitine/γ-butyrobetaine antiporter that is not involved in osmotic stress responses. The glycine betaine transporter BetP from Corynebacterium glutamicum is a representative for osmoregulated symporters of the BCCT family and functions both as an osmosensor and osmoregulator. The crystal structure of BetP in an occluded conformation in complex with its substrate glycine betaine and two crystal structures of CaiT in an inward-facing open conformation in complex with L-carnitine and γ-butyrobetaine were reported recently. These structures and the wealth of biochemical data on the activity control of BetP in response to osmotic stress enable a correlation between the sensing of osmotic stress by a transporter protein with the ensuing regulation of transport activity. Molecular determinants governing the high-affinity binding of the compatible solutes by BetP and CaiT, the coupling in symporters and antiporters, and the osmoregulatory properties are discussed in detail for BetP and various BCCT carriers.
Collapse
Affiliation(s)
- Christine Ziegler
- Max-Planck Institute for Biophysics, Max-von-Laue Street 3, D-60438 Frankfurt, Germany
| | | | | |
Collapse
|
76
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
77
|
3-D-QSAR and docking studies on the neuronal choline transporter. Bioorg Med Chem Lett 2010; 20:4870-7. [DOI: 10.1016/j.bmcl.2010.06.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 11/21/2022]
|
78
|
Wolters JC, Berntsson RPA, Gul N, Karasawa A, Thunnissen AMWH, Slotboom DJ, Poolman B. Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA. PLoS One 2010; 5:e10361. [PMID: 20454456 PMCID: PMC2861598 DOI: 10.1371/journal.pone.0010361] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 03/31/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The ABC transporter OpuA from Lactococcus lactis transports glycine betaine upon activation by threshold values of ionic strength. In this study, the ligand binding characteristics of purified OpuA in a detergent-solubilized state and of its substrate-binding domain produced as soluble protein (OpuAC) was characterized. PRINCIPAL FINDINGS The binding of glycine betaine to purified OpuA and OpuAC (K(D) = 4-6 microM) did not show any salt dependence or cooperative effects, in contrast to the transport activity. OpuAC is highly specific for glycine betaine and the related proline betaine. Other compatible solutes like proline and carnitine bound with affinities that were 3 to 4 orders of magnitude lower. The low affinity substrates were not noticeably transported by membrane-reconstituted OpuA. OpuAC was crystallized in an open (1.9 A) and closed-liganded (2.3 A) conformation. The binding pocket is formed by three tryptophans (Trp-prism) coordinating the quaternary ammonium group of glycine betaine in the closed-liganded structure. Even though the binding site of OpuAC is identical to that of its B. subtilis homolog, the affinity for glycine betaine is 4-fold higher. CONCLUSIONS Ionic strength did not affect substrate binding to OpuA, indicating that regulation of transport is not at the level of substrate binding, but rather at the level of translocation. The overlap between the crystal structures of OpuAC from L.lactis and B.subtilis, comprising the classical Trp-prism, show that the differences observed in the binding affinities originate from outside of the ligand binding site.
Collapse
Affiliation(s)
- Justina C. Wolters
- Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Ronnie P-A. Berntsson
- Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Nadia Gul
- Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Akira Karasawa
- Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Biophysical Chemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Slotboom
- Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Bert Poolman
- Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
79
|
Pierri CL, Parisi G, Porcelli V. Computational approaches for protein function prediction: a combined strategy from multiple sequence alignment to molecular docking-based virtual screening. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1695-712. [PMID: 20433957 DOI: 10.1016/j.bbapap.2010.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/04/2010] [Accepted: 04/14/2010] [Indexed: 12/12/2022]
Abstract
The functional characterization of proteins represents a daily challenge for biochemical, medical and computational sciences. Although finally proved on the bench, the function of a protein can be successfully predicted by computational approaches that drive the further experimental assays. Current methods for comparative modeling allow the construction of accurate 3D models for proteins of unknown structure, provided that a crystal structure of a homologous protein is available. Binding regions can be proposed by using binding site predictors, data inferred from homologous crystal structures, and data provided from a careful interpretation of the multiple sequence alignment of the investigated protein and its homologs. Once the location of a binding site has been proposed, chemical ligands that have a high likelihood of binding can be identified by using ligand docking and structure-based virtual screening of chemical libraries. Most docking algorithms allow building a list sorted by energy of the lowest energy docking configuration for each ligand of the library. In this review the state-of-the-art of computational approaches in 3D protein comparative modeling and in the study of protein-ligand interactions is provided. Furthermore a possible combined/concerted multistep strategy for protein function prediction, based on multiple sequence alignment, comparative modeling, binding region prediction, and structure-based virtual screening of chemical libraries, is described by using suitable examples. As practical examples, Abl-kinase molecular modeling studies, HPV-E6 protein multiple sequence alignment analysis, and some other model docking-based characterization reports are briefly described to highlight the importance of computational approaches in protein function prediction.
Collapse
Affiliation(s)
- Ciro Leonardo Pierri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Va E. Orabona, 4 - 70125 Bari, Italy.
| | | | | |
Collapse
|
80
|
Beale J, Lee SY, Iwata S, Beis K. Structure of the aliphatic sulfonate-binding protein SsuA from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:391-6. [PMID: 20383006 PMCID: PMC2852328 DOI: 10.1107/s1744309110006226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/16/2010] [Indexed: 11/10/2022]
Abstract
Sulfur is an essential component for the biosynthesis of the sulfur-containing amino acids L-methionine and L-cysteine. Under sulfur-starvation conditions, bacteria are capable of scavenging sulfur from sulfur-containing compounds and transporting it across membranes. Here, the crystal structure of the periplasmic aliphatic sulfonate-binding protein SsuA from Escherichia coli is reported at 1.75 A resolution in the substrate-free state. The overall structure of SsuA resembles the structures of other periplasmic binding proteins and contains two globular domains that form a cleft. Comparison with other periplasmic binding proteins revealed that one of the domains has been displaced by a rigid movement of 17 degrees . Interestingly, the tight crystal packing appears to be mediated by a 13-amino-acid tail from the cloning that folds within the cleft of the next monomer.
Collapse
Affiliation(s)
- John Beale
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, England
| | - Sang Yun Lee
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, England
| | - So Iwata
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, England
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, England
| | - Konstantinos Beis
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, England
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, England
| |
Collapse
|
81
|
Bermejo GA, Strub MP, Ho C, Tjandra N. Ligand-free open-closed transitions of periplasmic binding proteins: the case of glutamine-binding protein. Biochemistry 2010; 49:1893-902. [PMID: 20141110 PMCID: PMC2831130 DOI: 10.1021/bi902045p] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability to undergo large-scale domain rearrangements is essential for the substrate-binding function of periplasmic binding proteins (PBPs), which are indispensable for nutrient uptake in Gram-negative bacteria. Crystal structures indicate that PBPs typically adopt either an "open" unliganded configuration or a "closed" liganded one. However, it is not clear whether, as a general rule, PBPs remain open until ligand-induced interdomain closure or are in equilibrium with a minor population of unliganded, closed species. Evidence for the latter has been recently reported on maltose-binding protein (MBP) in aqueous solution [Tang, C., et al. (2007) Nature 449, 1078-1082] via paramagnetic relaxation enhancement (PRE), a technique able to probe lowly populated regions of conformational space. Here, we use PRE to study the unliganded open-closed transition of another PBP: glutamine-binding protein (GlnBP). Through a combination of domain structure knowledge and intermolecular and concentration dependence PRE experiments, a set of surface residues was found to be involved in intermolecular interactions. Barring such residues, PRE data on ligand-free GlnBP, paramagnetically labeled at two sites (one at a time), could be appropriately explained by the unliganded, open crystal structure in that it both yielded a good PRE fit and was not significantly affected by PRE-based refinement. Thus, contrary to MBP, our data did not particularly suggest the coexistence of a minor closed conformer. Several possibilities were explored to explain the observed differences in such closely structurally related systems; among them, a particularly interesting one arises from close inspection of the interdomain "hinge" region of various PBPs: strong hydrogen bond interactions discourage large-scale interdomain dynamics.
Collapse
Affiliation(s)
- Guillermo A. Bermejo
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Marie-Paule Strub
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Chien Ho
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
82
|
Smirnova I, Kasho V, Sugihara J, Kaback HR. Probing of the rates of alternating access in LacY with Trp fluorescence. Proc Natl Acad Sci U S A 2009; 106:21561-6. [PMID: 19959662 PMCID: PMC2799877 DOI: 10.1073/pnas.0911434106] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Indexed: 11/18/2022] Open
Abstract
Sugar/H(+) symport by lactose permease (LacY) utilizes an alternating access mechanism in which sugar and H(+) binding sites in the middle of the molecule are alternatively exposed to either side of the membrane by sequential opening and closing of inward- and outward-facing hydrophilic cavities. Here, we introduce Trp residues on either side of LacY where they are predicted to be in close proximity to side chains of natural Trp quenchers in either the inward- or outward-facing conformers. In the inward-facing conformer, LacY is tightly packed on the periplasmic side, and Trp residues placed at positions 245 (helix VII) or 378 (helix XII) are in close contact with His-35 (helix I) or Lys-42 (helix II), respectively. Sugar binding leads to unquenching of Trp fluorescence in both mutants, a finding clearly consistent with opening of the periplasmic cavity. The pH dependence of Trp-245 unquenching exhibits a pK(a) of 8, typical for a His side chain interacting with an aromatic group. As estimated from stopped-flow studies, the rate of sugar-induced opening is approximately 100 s(-1). On the cytoplasmic side, Phe-140 (helix V) and Phe-334 (helix X) are located on opposite sides of a wide-open hydrophilic cavity. In precisely the opposite fashion from the periplasmic side, mutant Phe-140-->Trp/Phe-334-->His exhibits sugar-induced Trp quenching. Again, quenching is pH dependent (pK(a) = 8), but remarkably, the rate of sugar-induced quenching is only approximately 0.4 s(-1). The results provide yet another strong, independent line of evidence for the alternating access mechanism and demonstrate that the methodology described provides a sensitive probe to measure rates of conformational change in membrane transport proteins.
Collapse
Affiliation(s)
| | | | | | - H. Ronald Kaback
- Departments of Physiology and
- Microbiology, Immunology, and Molecular Genetics, and
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-7327
| |
Collapse
|
83
|
Chen C, Malek AA, Wargo MJ, Hogan DA, Beattie GA. The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds. Mol Microbiol 2009; 75:29-45. [PMID: 19919675 DOI: 10.1111/j.1365-2958.2009.06962.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We identified a choline, betaine and carnitine transporter, designated Cbc, from Pseudomonas syringae and Pseudomonas aeruginosa that is unusual among members of the ATP-binding cassette (ABC) transporter family in its use of multiple periplasmic substrate-binding proteins (SBPs) that are highly specific for their substrates. The SBP encoded by the cbcXWV operon, CbcX, binds choline with a high affinity (K(m), 2.6 microM) and, although it also binds betaine (K(m), 24.2 microM), CbcXWV-mediated betaine uptake did not occur in the presence of choline. The CbcX orthologue ChoX from Sinorhizobium meliloti was similar to CbcX in these binding properties. The core transporter CbcWV also interacts with the carnitine-specific SBP CaiX (K(m), 24 microM) and the betaine-specific SBP BetX (K(m), 0.6 microM). Unlike most ABC transporter loci, caiX, betX and cbcXWV are separated in the genome. CaiX-mediated carnitine uptake was reduced by CbcX and BetX only when they were bound by their individual ligands, providing the first in vivo evidence for a higher affinity for ligand-bound than ligand-free SBPs by an ABC transporter. These studies demonstrate not only that the Cbc transporter serves as a useful model for exploring ABC transporter component interactions, but also that the orphan SBP genes common to bacterial genomes can encode functional SBPs.
Collapse
Affiliation(s)
- Chiliang Chen
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
84
|
Structural analysis of the choline-binding protein ChoX in a semi-closed and ligand-free conformation. Biol Chem 2009; 390:1163-70. [DOI: 10.1515/bc.2009.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe periplasmic ligand-binding protein ChoX is part of the ABC transport system ChoVWX that imports choline as a nutrient into the soil bacteriumSinorhizobium meliloti. We have recently reported the crystal structures of ChoX in complex with its ligands choline and acetylcholine and the structure of a fully closed but substrate-free state of ChoX. This latter structure revealed an architecture of the ligand-binding site that is superimposable to the closed, ligand-bound form of ChoX. We report here the crystal structure of ChoX in an unusual, ligand-free conformation that represents a semi-closed form of ChoX. The analysis revealed a subdomain movement in the N-lobe of ChoX. Comparison with the two well-characterized substrate binding proteins, MBP and HisJ, suggests the presence of a similar subdomain in these proteins.
Collapse
|
85
|
Gould AD, Telmer PG, Shilton BH. Stimulation of the maltose transporter ATPase by unliganded maltose binding protein. Biochemistry 2009; 48:8051-61. [PMID: 19630440 PMCID: PMC2809251 DOI: 10.1021/bi9007066] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP hydrolysis by the maltose transporter (MalFGK(2)) is regulated by maltose binding protein (MBP). Binding of maltose to MBP brings about a conformational change from open to closed that leads to a strong stimulation of the MalFGK(2) ATPase. In this study, we address the long-standing but enigmatic observation that unliganded MBP is also able to stimulate MalFGK(2). Although the mechanism of this stimulation is not understood, it is sometimes attributed to a small amount of closed (but unliganded) MBP that may exist in solution. To gain insight into how MBP regulates the MalFGK(2) ATPase, we have investigated whether the open or the closed conformation of MBP is responsible for MalFGK(2) stimulation in the absence of maltose. The effect of MBP concentration on the stimulation of MalFGK(2) was assessed: for unliganded MBP, the apparent K(M) for stimulation of MalFGK(2) was below 1 microM, while for maltose-bound MBP, the K(M) was approximately 15 microM. We show that engineered MBP molecules in which the open-closed equilibrium has been shifted toward the closed conformation have a decreased ability to stimulate MalFGK(2). These results indicate that stimulation of the MalFGK(2) ATPase by unliganded MBP does not proceed through a closed conformation and instead must operate through a different mechanism than stimulation by liganded MBP. One possible explanation is that the open conformation is able to activate the MalFGK(2) ATPase directly.
Collapse
Affiliation(s)
| | | | - Brian H. Shilton
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario Canada N6A 5C1
| |
Collapse
|
86
|
Cuneo MJ, Changela A, Beese LS, Hellinga HW. Structural Adaptations that Modulate Monosaccharide, Disaccharide, and Trisaccharide Specificities in Periplasmic Maltose-Binding Proteins. J Mol Biol 2009; 389:157-66. [DOI: 10.1016/j.jmb.2009.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 11/25/2022]
|
87
|
Lecher J, Pittelkow M, Zobel S, Bursy J, Bönig T, Smits SHJ, Schmitt L, Bremer E. The crystal structure of UehA in complex with ectoine-A comparison with other TRAP-T binding proteins. J Mol Biol 2009; 389:58-73. [PMID: 19362561 DOI: 10.1016/j.jmb.2009.03.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 11/24/2022]
Abstract
Substrate-binding proteins or extracellular solute receptors (ESRs) are components of both ABC (ATP binding cassette) and TRAP-T (tripartite ATP-independent periplasmic transporter). The TRAP-T system UehABC from Silicibacter pomeroyi DSS-3 imports the compatible solutes ectoine and 5-hydroxyectoine as nutrients. UehA, the ESR of the UehABC operon, binds both ectoine and 5-hydroxyectoine with high affinity (K(d) values of 1.4+/-0.1 and 1.1+/-0.1 microM, respectively) and delivers them to the TRAP-T complex. The crystal structure of UehA in complex with ectoine was determined at 2.9-A resolution and revealed an overall fold common for all ESR proteins from TRAP systems determined so far. A comparison of the recently described structure of TeaA from Halomonas elongata and an ectoine-binding protein (EhuB) from an ABC transporter revealed a conserved ligand binding mode that involves both directed and cation-pi interactions. Furthermore, a comparison with other known TRAP-T ESRs revealed a helix that might act as a selectivity filter imposing restraints on the ESRs that fine-tune ligand recognition and binding and finally might determine the selection of the cognate substrate.
Collapse
Affiliation(s)
- Justin Lecher
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|