51
|
Zhao H, Mayer ML, Schuck P. Analysis of protein interactions with picomolar binding affinity by fluorescence-detected sedimentation velocity. Anal Chem 2014; 86:3181-7. [PMID: 24552356 PMCID: PMC3988680 DOI: 10.1021/ac500093m] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
The study of high-affinity
protein interactions with equilibrium
dissociation constants (KD) in the picomolar
range is of significant interest in many fields, but the characterization
of stoichiometry and free energy of such high-affinity binding can
be far from trivial. Analytical ultracentrifugation has long been
considered a gold standard in the study of protein interactions but
is typically applied to systems with micromolar KD. Here we present a new approach for the study of high-affinity
interactions using fluorescence detected sedimentation velocity analytical
ultracentrifugation (FDS-SV). Taking full advantage of the large data
sets in FDS-SV by direct boundary modeling with sedimentation coefficient
distributions c(s), we demonstrate detection and
hydrodynamic resolution of protein complexes at low picomolar concentrations.
We show how this permits the characterization of the antibody–antigen
interactions with low picomolar binding constants, 2 orders of magnitude
lower than previously achieved. The strongly size-dependent separation
and quantitation by concentration, size, and shape of free and complex
species in free solution by FDS-SV has significant potential for studying
high-affinity multistep and multicomponent protein assemblies.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
52
|
Tamai H, Miyake K, Yamaguchi H, Shimada T, Dan K, Inokuchi K. Inhibition of S100A6 induces GVL effects in MLL/AF4-positive ALL in human PBMC-SCID mice. Bone Marrow Transplant 2014; 49:699-703. [PMID: 24583627 DOI: 10.1038/bmt.2014.18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/17/2013] [Accepted: 12/23/2013] [Indexed: 11/09/2022]
Abstract
Mixed-lineage leukemia (MLL)/AF4-positive ALL is associated with a poor prognosis even after allogeneic hematopoietic SCT (allo-HSCT). We reported previously that MLL/AF4-positive ALL shows resistance to TNF-α, which is the main factor in the GVL effect, by upregulation of S100A6 expression followed by interference with the p53-caspase 8-caspase 3 pathway in vitro. We examined whether inhibition of S100A6 can induce an effective GVL effect on MLL/AF4-positive ALL in a mouse model. MLL/AF4-positive ALL cell lines (SEM) transduced with lentiviral vectors expressing both S100A6 siRNA and luciferase (SEM-Luc-S100A6 siRNA) were produced. SEM-Luc-S100A6 siRNA cells and SEM-Luc-control siRNA cells were injected into groups of five SCID mice (1 × 10(7)/body). After confirmation of engraftment of SEM cells by in vivo imaging, the mice in each group were injected with 4.8 × 10(7) human PBMCs. SEM-Luc-S100A6 siRNA-injected mice showed significantly longer survival periods than SEM-Luc-control siRNA-injected mice (P=0.002). SEM-Luc-S100A6 siRNA-injected mice showed significantly slower tumor growth than those injected with SEM-Luc-control siRNA (P<0.0001). These results suggested that inhibition of S100A6 may be a promising therapeutic target for MLL/AF4-positive ALL in combination with allo-HSCT.
Collapse
Affiliation(s)
- H Tamai
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - K Miyake
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - H Yamaguchi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - T Shimada
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - K Dan
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - K Inokuchi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
53
|
Vilar JMG, Saiz L. Systems biophysics of gene expression. Biophys J 2014; 104:2574-85. [PMID: 23790365 DOI: 10.1016/j.bpj.2013.04.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/08/2013] [Accepted: 04/12/2013] [Indexed: 01/16/2023] Open
Abstract
Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses.
Collapse
Affiliation(s)
- Jose M G Vilar
- Biophysics Unit CSIC-UPV/EHU and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain.
| | | |
Collapse
|
54
|
Graczyk A, Słomnicki LP, Leśniak W. S100A6 competes with the TAZ2 domain of p300 for binding to p53 and attenuates p53 acetylation. J Mol Biol 2013; 425:3488-94. [PMID: 23796514 DOI: 10.1016/j.jmb.2013.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/08/2013] [Accepted: 06/14/2013] [Indexed: 11/30/2022]
Abstract
S100A6 is a calcium binding protein that, like some other members of the S100 protein family, is able to bind p53. This interaction may be physiologically relevant considering the numerous connotations of S100 proteins and of S100A6, in particular, with cancer and metastasis. In this work, we show that the interaction with S100A6 is limited to unmodified or phosphorylated p53 and is inhibited by p53 acetylation. Using in vitro acetylation assay, we show that the presence of S100A6 attenuates p53 acetylation by p300. Furthermore, using ELISA, we show that S100A6 and the TAZ2 domain of p300 bind p53 with similar affinities and that S100A6 effectively competes with TAZ2 for binding to p53. Our results add another element to the complicated scheme of p53 activation.
Collapse
Affiliation(s)
- Agnieszka Graczyk
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
55
|
S100A4 interacts with p53 in the nucleus and promotes p53 degradation. Oncogene 2013; 32:5531-40. [PMID: 23752197 DOI: 10.1038/onc.2013.213] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 03/31/2013] [Accepted: 05/03/2013] [Indexed: 11/09/2022]
Abstract
S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.
Collapse
|
56
|
Zhu L, Okano S, Takahara M, Chiba T, Tu Y, Oda Y, Furue M. Expression of S100 protein family members in normal skin and sweat gland tumors. J Dermatol Sci 2013; 70:211-9. [DOI: 10.1016/j.jdermsci.2013.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/18/2022]
|
57
|
Sorci G, Riuzzi F, Arcuri C, Tubaro C, Bianchi R, Giambanco I, Donato R. S100B protein in tissue development, repair and regeneration. World J Biol Chem 2013; 4:1-12. [PMID: 23580916 PMCID: PMC3622753 DOI: 10.4331/wjbc.v4.i1.1] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/01/2013] [Indexed: 02/05/2023] Open
Abstract
The Ca2+-binding protein of the EF-hand type, S100B, exerts both intracellular and extracellular regulatory activities. As an intracellular regulator, S100B is involved in the regulation of energy metabolism, transcription, protein phosphorylation, cell proliferation, survival, differentiation and motility, and Ca2+ homeostasis, by interacting with a wide array of proteins (i.e., enzymes, enzyme substrates, cytoskeletal subunits, scaffold/adaptor proteins, transcription factors, ubiquitin E3 ligases, ion channels) in a restricted number of cell types. As an extracellular signal, S100B engages the pattern recognition receptor, receptor for advanced glycation end-products (RAGE), on immune cells as well as on neuronal, astrocytic and microglial cells, vascular smooth muscle cells, skeletal myoblasts and cardiomyocytes. However, RAGE may not be the sole receptor activated by S100B, the protein being able to enhance bFGF-FGFR1 signaling by interacting with FGFR1-bound bFGF in particular cell types. Moreover, extracellular effects of S100B vary depending on its local concentration. Increasing evidence suggests that at the concentration found in extracellular fluids in normal physiological conditions and locally upon acute tissue injury, which is up to a few nM levels, S100B exerts trophic effects in the central and peripheral nervous system and in skeletal muscle tissue thus participating in tissue homeostasis. The present commentary summarizes results implicating intracellular and extracellular S100B in tissue development, repair and regeneration.
Collapse
|
58
|
Maletzki C, Bodammer P, Breitrück A, Kerkhoff C. S100 proteins as diagnostic and prognostic markers in colorectal and hepatocellular carcinoma. HEPATITIS MONTHLY 2012; 12:e7240. [PMID: 23166536 PMCID: PMC3500829 DOI: 10.5812/hepatmon.7240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 12/11/2022]
Abstract
CONTEXT Clinical and experimental studies have suggested a link between S100 gene ex-pression and neoplastic disorders, however, the molecular mechanisms of this associa-tion are not well understood. The aim of this review was to conduct a comprehensive literature search in order to understand the possible underlying molecular mechanisms of this association. We also discuss their application as diagnostic and prognostic mark-ers in colorectal and hepatocellular carcinoma. EVIDENCE ACQUISITIONS We searched Pubmed (NLM) and Web of Science (ISI Web of Knowledge). RESULTS S100 genes display a complex expression pattern in colorectal and hepatocel- lular carcinoma. They are expressed in tumor and/or tumor stroma cells, and they exert both pro- and antitumorigenic actions. In view of this complexity, it becomes clear that S100 proteins might act as both friend and foe. The biological role of the S100 genes is predicted to depend on the relative contributions of the different cell types at specific stages of tumor progression. CONCLUSIONS Further research is required in order to uncover the functional role of S100 genes in tumorigenesis. Answers to this issue are needed before we can more fully un-derstand the clinical relevance of S100 protein expression within epithelial tumors, with regard to their potential applicability as biomarkers for diagnosis and therapy decisions.
Collapse
Affiliation(s)
- Claudia Maletzki
- Department of General Surgery, Division of Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| | - Peggy Bodammer
- Department of General Surgery, Division of Gastroenterology, University of Rostock, Rostock, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Immunology, AG “Extracorporeal Immune Modulation (EXIM)”, Rostock, Germany
| | - Anne Breitrück
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Immunology, AG “Extracorporeal Immune Modulation (EXIM)”, Rostock, Germany
- Department of Internal Medicine, Division of Nephrology, University of Rostock, Rostock, Germany
| | - Claus Kerkhoff
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Immunology, AG “Extracorporeal Immune Modulation (EXIM)”, Rostock, Germany
- Department of Internal Medicine, Division of Nephrology, University of Rostock, Rostock, Germany
- Corresponding author: Claus Kerkhoff, Fraunhofer Institute for Cell Therapy and Immunology, Department of Immunology, AG EXIM, Schillingallee 68/69, 18057 Rostock, Germany. Tel.: +49-3814947368, Fax: +49-32122701962, E-mail:
| |
Collapse
|
59
|
Wafer LN, Streicher WW, McCallum SA, Makhatadze GI. Thermodynamic and kinetic analysis of peptides derived from CapZ, NDR, p53, HDM2, and HDM4 binding to human S100B. Biochemistry 2012; 51:7189-201. [PMID: 22913742 PMCID: PMC3448795 DOI: 10.1021/bi300865g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S100B is a member of the S100 subfamily of EF-hand proteins that has been implicated in malignant melanoma and neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease. Calcium-induced conformational changes expose a hydrophobic binding cleft, facilitating interactions with a wide variety of nuclear, cytoplasmic, and extracellular target proteins. Previously, peptides derived from CapZ, p53, NDR, HDM2, and HDM4 have been shown to interact with S100B in a calcium-dependent manner. However, the thermodynamic and kinetic basis of these interactions remains largely unknown. To gain further insight, we screened these peptides against the S100B protein using isothermal titration calorimetry and nuclear magnetic resonance. All peptides were found to have binding affinities in the low micromolar to nanomolar range. Binding-induced changes in the line shapes of S100B backbone (1)H and (15)N resonances were monitored to obtain the dissociation constants and the kinetic binding parameters. The large microscopic K(on) rate constants observed in this study (≥1 × 10(7) M(-1) s(-1)) suggest that S100B utilizes a "fly casting mechanism" in the recognition of these peptide targets.
Collapse
Affiliation(s)
- Lucas N. Wafer
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| | | | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| | - George I. Makhatadze
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| |
Collapse
|
60
|
Molecular dynamic simulation insights into the normal state and restoration of p53 function. Int J Mol Sci 2012; 13:9709-9740. [PMID: 22949826 PMCID: PMC3431824 DOI: 10.3390/ijms13089709] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 12/13/2022] Open
Abstract
As a tumor suppressor protein, p53 plays a crucial role in the cell cycle and in cancer prevention. Almost 50 percent of all human malignant tumors are closely related to a deletion or mutation in p53. The activity of p53 is inhibited by over-active celluar antagonists, especially by the over-expression of the negative regulators MDM2 and MDMX. Protein-protein interactions, or post-translational modifications of the C-terminal negative regulatory domain of p53, also regulate its tumor suppressor activity. Restoration of p53 function through peptide and small molecular inhibitors has become a promising strategy for novel anti-cancer drug design and development. Molecular dynamics simulations have been extensively applied to investigate the conformation changes of p53 induced by protein-protein interactions and protein-ligand interactions, including peptide and small molecular inhibitors. This review focuses on the latest MD simulation research, to provide an overview of the current understanding of interactions between p53 and its partners at an atomic level.
Collapse
|
61
|
Gabizon R, Brandt T, Sukenik S, Lahav N, Lebendiker M, Shalev DE, Veprintsev D, Friedler A. Specific recognition of p53 tetramers by peptides derived from p53 interacting proteins. PLoS One 2012; 7:e38060. [PMID: 22693587 PMCID: PMC3365014 DOI: 10.1371/journal.pone.0038060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 05/02/2012] [Indexed: 11/25/2022] Open
Abstract
Oligomerization plays a major role in regulating the activity of many proteins, and in modulating their interactions. p53 is a homotetrameric transcription factor that has a pivotal role in tumor suppression. Its tetramerization domain is contained within its C-terminal domain, which is a site for numerous protein-protein interactions. Those can either depend on or regulate p53 oligomerization. Here we screened an array of peptides derived from proteins known to bind the tetrameric p53 C-terminal domain (p53CTD) and identified ten binding peptides. We quantitatively characterized their binding to p53CTD using fluorescence anisotropy. The peptides bound tetrameric p53CTD with micromolar affinities. Despite the high charge of the binding peptides, electrostatics contributed only mildly to the interactions. NMR studies indicated that the peptides bound p53CTD at defined sites. The most significant chemical shift deviations were observed for the peptides WS100B(81-92), which bound directly to the p53 tetramerization domain, and PKCα(281-295), which stabilized p53CTD in circular dichroism thermal denaturation studies. Using analytical ultracentrifugation, we found that several of the peptides bound preferentially to p53 tetramers. Our results indicate that the protein-protein interactions of p53 are dependent on the oligomerization state of p53. We conclude that peptides may be used to regulate the oligomerization of p53.
Collapse
Affiliation(s)
- Ronen Gabizon
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tobias Brandt
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Shahar Sukenik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noa Lahav
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deborah E. Shalev
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dmitry Veprintsev
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
62
|
Crystal structure of the S100A4-nonmuscle myosin IIA tail fragment complex reveals an asymmetric target binding mechanism. Proc Natl Acad Sci U S A 2012; 109:6048-53. [PMID: 22460785 DOI: 10.1073/pnas.1114732109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
S100A4 is a member of the S100 family of calcium-binding proteins that is directly involved in tumor metastasis. It binds to the nonmuscle myosin IIA (NMIIA) tail near the assembly competence domain (ACD) promoting filament disassembly, which could be associated with increasing metastatic potential of tumor cells. Here, we investigate the mechanism of S100A4-NMIIA interaction based on binding studies and the crystal structure of S100A4 in complex with a 45-residue-long myosin heavy chain fragment. Interestingly, we also find that S100A4 binds as strongly to a homologous heavy chain fragment of nonmuscle myosin IIC as to NMIIA. The structure of the S100A4-NMIIA complex reveals a unique mode of interaction in the S100 family: A single, predominantly α-helical myosin chain is wrapped around the Ca(2+)-bound S100A4 dimer occupying both hydrophobic binding pockets. Thermal denaturation experiments of coiled-coil forming NMIIA fragments indicate that the coiled-coil partially unwinds upon S100A4 binding. Based on these results, we propose a model for NMIIA filament disassembly: Part of the random coil tailpiece and the C-terminal residues of the coiled-coil are wrapped around an S100A4 dimer disrupting the ACD and resulting in filament dissociation. The description of the complex will facilitate the design of specific drugs that interfere with the S100A4-NMIIA interaction.
Collapse
|
63
|
|
64
|
Cheng J, Wang Y, Liang A, Jia L, Du J. FSP-1 Silencing in Bone Marrow Cells Suppresses Neointima Formation in Vein Graft. Circ Res 2012; 110:230-40. [DOI: 10.1161/circresaha.111.246025] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rationale:
Fibroblast-specific protein 1 (FSP-1) plays multiple roles in promoting cell proliferation and motility. Increased FSP-1 expression in smooth muscle cells (SMCs) has been associated with their enhanced proliferation.
Objective:
To study how FSP-1 contributes to neointima formation of vein grafts.
Methods:
Arteriovenous grafts were created in wild-type or FSP-1–GFP mice (green fluorescent protein expression regulated by FSP-1 promoter). The effects of FSP-1 on bone marrow (BM) cell migration and on SMC proliferation were studied in vivo and in vitro.
Results:
On creation of a vein graft, there was rapid deposition of platelets on the denuded surface leading to secretion of the chemokine stromal cell–derived factor-1α (SDF-1α). This was followed by recruitment of BM-derived cells expressing the SDF-1α receptor CXCR4; homing of FSP-1–positive cells was found to be dependent on platelet-derived SDF-1α. FSP-1 was expressed in 8% of the BM cells, and 20% of these express CD45; 85% of FSP-1–positive cells express CD11b. We found that the FSP-1–positive cells migrated into the vein graft in a Rac-1–dependent fashion. FSP-1 expression was also found to stimulate proliferation of SMCs through a MEK5-ERK5 signaling pathway that can be suppressed by a dominant-negative Rac1. Consequently, knocking down FSP-1 expression in BM cells prevented neointimal formation.
Conclusions:
BM-derived FSP-1
+
cells enhance neointima formation through an increase in transendothelial invasion with stimulation of SMC proliferation. The Rac1 and ERK5 signaling cascade mediate FSP-1–induced responses in SMCs and BM cells. This novel pathophysiology suggests a new therapeutic target, FSP-1, for preventing the development of neointima in vein grafts.
Collapse
Affiliation(s)
- Jizhong Cheng
- From the Nephrology Division, Baylor College of Medicine, Houston, TX (J.C., Y.W., A.L.); and Beijing Anzhen Hospital Affiliated to the Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China (L.J., J.D.)
| | - Yun Wang
- From the Nephrology Division, Baylor College of Medicine, Houston, TX (J.C., Y.W., A.L.); and Beijing Anzhen Hospital Affiliated to the Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China (L.J., J.D.)
| | - Anlin Liang
- From the Nephrology Division, Baylor College of Medicine, Houston, TX (J.C., Y.W., A.L.); and Beijing Anzhen Hospital Affiliated to the Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China (L.J., J.D.)
| | - Lixin Jia
- From the Nephrology Division, Baylor College of Medicine, Houston, TX (J.C., Y.W., A.L.); and Beijing Anzhen Hospital Affiliated to the Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China (L.J., J.D.)
| | - Jie Du
- From the Nephrology Division, Baylor College of Medicine, Houston, TX (J.C., Y.W., A.L.); and Beijing Anzhen Hospital Affiliated to the Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China (L.J., J.D.)
| |
Collapse
|
65
|
Resistance of MLL-AFF1-positive acute lymphoblastic leukemia to tumor necrosis factor-alpha is mediated by S100A6 upregulation. Blood Cancer J 2011; 1:e38. [PMID: 22829076 PMCID: PMC3256756 DOI: 10.1038/bcj.2011.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/01/2011] [Accepted: 08/10/2011] [Indexed: 01/17/2023] Open
Abstract
Mixed-lineage leukemia (MLL)-AFF1 (MLL-AF4)-positive acute lymphoblastic leukemia (ALL) is associated with poor prognosis, even after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The resistance to graft-versus-leukemia (GVL) effects may be responsible for the poor effect of allo-HSCT on MLL-AFF1-positive ALL. Cytotoxic effector mechanisms mediated by tumor necrosis factor-alpha (TNF-α) was reported to contribute to the GVL effect. We showed that MLL-AFF1-positive ALL cell lines are resistant to TNF-α. To examine the mechanism of resistance to TNF-α of MLL-AFF1-positive leukemia, we focused on S100A6 as a possible factor. Upregulation of S100A6 expression and inhibition of the p53-caspase 8-caspase 3 pathway were observed only in MLL-AFF1-positive ALL cell lines in the presence of TNF-α. The effect of S100A6 on resistance to TNF-α by inhibition of the p53-caspase 8-caspase 3 pathway of MLL-AFF1-positive ALL cell lines were also confirmed by analysis using small interfering RNA against S100A6. This pathway was also confirmed in previously established MLL-AFF1 transgenic mice. These results suggest that MLL-AFF1-positive ALL escapes from TNF-α-mediated apoptosis by upregulation of S100A6 expression, followed by interfering with p53-caspase 8-caspase 3 pathway. These results suggest that S100A6 may be a promising therapeutic target for MLL-AFF1-positive ALL in combination with allo-HSCT.
Collapse
|
66
|
Huang MY, Wang HM, Tok TS, Chang HJ, Chang MS, Cheng TL, Wang JY, Lin SR. EVI2B, ATP2A2, S100B, TM4SF3, and OLFM4 as potential prognostic markers for postoperative Taiwanese colorectal cancer patients. DNA Cell Biol 2011; 31:625-35. [PMID: 22047082 DOI: 10.1089/dna.2011.1365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Undetected micrometastasis may play a key role in the early relapse of colorectal cancer (CRC) patients. The aim of this study was to detect circulating tumor cells (CTCs) for predicting early relapse of CRC patients by a weighted enzymatic chip array (WEnCA) and analyze 15 candidate genes associated with CRC carcinogenesis. The genes of 105 postoperative CRC patients were analyzed by membrane array and direct sequencing. We constructed a WEnCA platform including five prognosis-related genes and analyzed the detection rate of WEnCA for CTCs in 30 clinically confirmed CRC relapse patients. Postoperative relapse was significantly correlated with gene overexpression, including EVI2B (p=0.001, OR=4.622), ATP2A2 (p=0.006, OR=4.688), S100B (p=0.001, OR=11.521), TM4SF3 (p=0.001, OR=6.756), and OLFM4 (p=0.008, OR=3.545). Using WEnCA (weighting score of each gene: 5 to EVI2B, 5 to ATP2A2, 12 to S100B, 7 to TM4SF3, and 4 to OLFM4), we could detect CTCs presenting these genotypes in relapsed CRC patients. The sensitivity, specificity, and accuracy were 94.7%, 93.5%, and 97%, respectively. The results of the present study suggest that EVI2B, ATP2A2, S100B, TM4SF3, and OLFM4 could be potential prognostic markers for CRC patients.
Collapse
Affiliation(s)
- Ming-Yii Huang
- Department of Radiation Oncology, Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Lee K, Yun ST, Yun CO, Ahn BY, Jo EC. S100A2 promoter-driven conditionally replicative adenovirus targets non-small-cell lung carcinoma. Gene Ther 2011; 19:967-77. [PMID: 22033466 DOI: 10.1038/gt.2011.168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
S100A2, a member of the S100 family of calcium-binding proteins, has been implicated in carcinogenesis as both a tumor suppressor and stimulator. Here, we characterized promoter activity of S100A2, generated an S100A2 promoter-driven conditionally replicative adenovirus (Ad/SA), and evaluated its anti-tumor activity in vitro and in vivo. Promoter activity of S100A2 was greatly restricted to tumor cells, and the S100A2 promoter bound with typical nuclear targets of epidermal growth factor receptor (EGFR) signaling. EGF-stimulated EGFR phosphorylation induced S100A2 expression and further activated E1A expression of Ad/SA, which was restored by EGFR signal inhibition in a concentration-dependent manner in non-small-cell lung carcinoma (NSCLC). In two EGFR-activated tumor xenograft animal models, Ad/SA exhibited potent anti-tumor activity, whereas cetuximab, an EGFR-targeting anticancer drug, was active transiently or ineffective. Combined treatment with cetuximab or cisplatin plus Ad/SA resulted in enhanced anti-tumor activity. Immunohistochemical analysis of tumor sections showed moderate-to-high grade signals for EGFR and adenovirus, and a reduction in viable cells in Ad/SA-treated tumors. Collectively, these results demonstrate that the S100A2 promoter-driven adenovirus is a potent inhibitor of cancers, and further suggest that S100A2 is a target gene of EGFR signaling pathway in NSCLC.
Collapse
Affiliation(s)
- K Lee
- Gene Therapy Laboratory, MOGAM Biotechnology Research Institute, Yongin, Republic of Korea
| | | | | | | | | |
Collapse
|
68
|
Li J, Riau AK, Setiawan M, Mehta JS, Ti SE, Tong L, Tan DT, Beuerman RW. S100A expression in normal corneal-limbal epithelial cells and ocular surface squamous cell carcinoma tissue. Mol Vis 2011; 17:2263-71. [PMID: 21897749 PMCID: PMC3164687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/17/2011] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To study the expression and cellular distribution of multiple S100A genes and proteins in normal corneal-limbal epithelium and ocular surface squamous cell carcinoma (SCC) tissue. METHODS Normal corneal-limbal tissue was obtained from the Lions Eye Bank, Tampa, FL. Ocular surface SCC tissues were excised from patients undergoing surgery at Singapore National Eye Centre. S100A mRNA expression was measured by quantitative PCR. S100 protein distribution was determined by immunofluorescent staining analysis. RESULTS Twelve S100 mRNAs were identified in human corneal and limbal epithelial cells. S100A2, A6, A8, A9, A10, and A11 mRNA was expressed at high level, while S100A1, A3, A4, A5, A6, A7, and A12 mRNA expression was low. The intracellular localization of S100A2, A6, A8, A9, A10 and A11 protein was determined in normal corneal-limbal and SCC tissues. S100A2 and S100A10 proteins were enriched in basal limbal epithelial cells of the normal tissue. S100A8 and S100A9 were found only at the surface of peripheral corneal and limbal epithelium. S100A6 was uniformly found at the plasma membrane of corneal and limbal epithelial cells. S100A11 was found at the supralayer limbal epithelial cells adjacent to the conjunctiva. SCC tissue showed typical pathological changes with expression of cytokeartin (CK) 14 and CK4 in the epithelial cells. All SCC epithelial cells were positive of S100A2, S100A10, S100A6 and S100A11 staining. Intracellular staining of S100A8 and S100A9 was found in several layers of SCC epithelium. Expression of S100A2 and S100A10 decreased dramatically in cultured limbal epithelial cells with increased passaging, which was accompanied by a small increase of S100A9 mRNA, with no changes of S100A8 gene expression. Serum and growth hormone depletion of the culture serum caused a small reduction of S100A2 and S100A10 gene expression, which was accompanied by a small increase of S100A9 mRNA while no changes of S100A8 expression was measured. CONCLUSIONS Normal corneal and limbal epithelial cells express a broad spectrum of S100 genes and proteins. Ocular surface SCC express high levels of S100A2, S100A10, S100A8 and S100A9 proteins. The expression of S100A2 and S100A10 is associated with limbal epithelial cell proliferation and differentiation.
Collapse
Affiliation(s)
- Jing Li
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China,Singapore Eye Research Institute, Singapore,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Jodhbir S. Mehta
- Singapore Eye Research Institute, Singapore,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Singapore National Eye Centre, Singapore
| | - Seng-Ei Ti
- Singapore National Eye Centre, Singapore
| | - Louis Tong
- Singapore Eye Research Institute, Singapore,Singapore National Eye Centre, Singapore,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore
| | - Donald T.H. Tan
- Singapore Eye Research Institute, Singapore,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Singapore National Eye Centre, Singapore
| | - Roger W. Beuerman
- Singapore Eye Research Institute, Singapore,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,SRP Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
69
|
Interaction of the p53 DNA-binding domain with its n-terminal extension modulates the stability of the p53 tetramer. J Mol Biol 2011; 409:358-68. [PMID: 21457718 PMCID: PMC3176915 DOI: 10.1016/j.jmb.2011.03.047] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 12/30/2022]
Abstract
The tetrameric tumor suppressor p53 plays a pivotal role in the control of the cell cycle and provides a paradigm for an emerging class of oligomeric, multidomain proteins with structured and intrinsically disordered regions. Many of its biophysical and functional properties have been extrapolated from truncated variants, yet the exact structural and functional role of certain segments of the protein is unclear. We found from NMR and X-ray crystallography that the DNA-binding domain (DBD) of human p53, usually defined as residues 94-292, extends beyond these domain boundaries. Trp91, in the hinge region between the disordered proline-rich N-terminal domain and the DBD, folds back onto the latter and has a cation-π interaction with Arg174. These additional interactions increase the melting temperature of the DBD by up to 2 °C and inhibit aggregation of the p53 tetramer. They also modulate the dissociation of the p53 tetramer. The absence of the Trp91/Arg174 packing presumably allows nonnative DBD-DBD interactions that both nucleate aggregation and stabilize the interface. These data have important implications for studies of multidomain proteins in general, highlighting the fact that weak ordered-disordered domain interactions can modulate the properties of proteins of complex structure.
Collapse
|
70
|
Abstract
Numerous transcription factors self-assemble into different order oligomeric species in a way that is actively regulated by the cell. Until now, no general functional role has been identified for this widespread process. Here, we capture the effects of modulated self-assembly in gene expression with a novel quantitative framework. We show that this mechanism provides precision and flexibility, two seemingly antagonistic properties, to the sensing of diverse cellular signals by systems that share common elements present in transcription factors like p53, NF-κB, STATs, Oct and RXR. Applied to the nuclear hormone receptor RXR, this framework accurately reproduces a broad range of classical, previously unexplained, sets of gene expression data and corroborates the existence of a precise functional regime with flexible properties that can be controlled both at a genome-wide scale and at the individual promoter level.
Collapse
Affiliation(s)
- Jose M G Vilar
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | | |
Collapse
|
71
|
Kingsbury JS, Laue TM. Fluorescence-detected sedimentation in dilute and highly concentrated solutions. Methods Enzymol 2011; 492:283-304. [PMID: 21333796 DOI: 10.1016/b978-0-12-381268-1.00021-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Analytical ultracentrifugation (AUC) is a powerful, first-principles method for characterizing macromolecules in solution. The recent development of fluorescence-detected sedimentation for the AUC (AU-FDS) has extended the sensitivity and selectivity of the instrument which, in turn, has enabled the study of both higher affinity interactions and the sedimentation of one component in complex, concentrated solutions. While still in its infancy, AU-FDS is becoming more widespread as shown by the increasing number of literature reports citing its use. While AU-FDS enables the analysis of systems not amenable to absorbance or interferometric detection, its use is not without limitations. In most cases, preparing samples for AU-FDS analyses requires chemical conjugation with fluorescent dyes, a step that may influence the size or shape of a molecule sufficiently to alter its transport during sedimentation. Careful preparation and characterization of the amount of free dye and the degree and site specificity of labeling is required for robust interpretation of AU-FDS data. In some cases, studies of the effect of labeling on the structure, activity, or association properties of the macromolecule may be warranted. However, these complications are of minor consequence compared to the unique information that can be obtained by AU-FDS. In particular, its ability to provide direct, physical characterization of the thermodynamic behavior of molecules in complex and concentrated solutions makes AU-FDS a powerful technology for understanding the physical underpinnings of living systems.
Collapse
Affiliation(s)
- Jonathan S Kingsbury
- Therapeutic Protein Research, Genzyme Corporation, Framingham, Massachusetts, USA
| | | |
Collapse
|
72
|
Rajagopalan S, Huang F, Fersht AR. Single-Molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53. Nucleic Acids Res 2010; 39:2294-303. [PMID: 21097469 PMCID: PMC3064802 DOI: 10.1093/nar/gkq800] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The state of oligomerization of the tumor suppressor p53 is an important factor in its various biological functions. It has a well-defined tetramerization domain, and the protein exists as monomers, dimers and tetramers in equilibrium. The dissociation constants between oligomeric forms are so low that they are at the limits of measurement by conventional methods in vitro. Here, we have used the high sensitivity of single-molecule methods to measure the equilibria and kinetics of oligomerization of full-length p53 and its isolated tetramerization domain, p53tet, at physiological temperature, pH and ionic strength using fluorescence correlation spectroscopy (FCS) in vitro. The dissociation constant at 37°C for tetramers dissociating into dimers for full-length p53 was 50 ± 7 nM, and the corresponding value for dimers into monomers was 0.55 ± 0.08 nM. The half-lives for the two processes were 20 and 50 min, respectively. The equivalent quantities for p53tet were 150 ± 10 nM, 1.0 ± 0.14 nM, 2.5 ± 0.4 min and 13 ± 2 min. The data suggest that unligated p53 in unstressed cells should be predominantly dimeric. Single-molecule FCS is a useful procedure for measuring dissociation equilibria, kinetics and aggregation at extreme sensitivity.
Collapse
|
73
|
Kamada R, Nomura T, Anderson CW, Sakaguchi K. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. J Biol Chem 2010; 286:252-8. [PMID: 20978130 DOI: 10.1074/jbc.m110.174698] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor p53, a 393-amino acid transcription factor, induces cell cycle arrest and apoptosis in response to genotoxic stress. Its inactivation via the mutation of its gene is a key step in tumor progression, and tetramer formation is critical for p53 post-translational modification and its ability to activate or repress the transcription of target genes vital in inhibiting tumor growth. About 50% of human tumors have TP53 gene mutations; most are missense ones that presumably lower the tumor suppressor activity of p53. In this study, we explored the effects of known tumor-derived missense mutations on the stability and oligomeric structure of p53; our comprehensive, quantitative analyses encompassed the tetramerization domain peptides representing 49 such substitutions in humans. Their effects on tetrameric structure were broad, and the stability of the mutant peptides varied widely (ΔT(m) = 4.8 ∼ -46.8 °C). Because formation of a tetrameric structure is critical for protein-protein interactions, DNA binding, and the post-translational modification of p53, a small destabilization of the tetrameric structure could result in dysfunction of tumor suppressor activity. We suggest that the threshold for loss of tumor suppressor activity in terms of the disruption of the tetrameric structure of p53 could be extremely low. However, other properties of the tetramerization domain, such as electrostatic surface potential and its ability to bind partner proteins, also may be important.
Collapse
Affiliation(s)
- Rui Kamada
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
74
|
Fernandez-Fernandez MR, Sot B. The relevance of protein-protein interactions for p53 function: the CPE contribution. Protein Eng Des Sel 2010; 24:41-51. [PMID: 20952436 DOI: 10.1093/protein/gzq074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The relevance of p53 as a tumour suppressor is evident from the fact that more than 50% of the human cancers hold mutations in the gene coding for p53, and of the remaining cancers a considerable number have alterations in the p53 pathway. From its discovery 30 years ago, the importance of p53 as an essential transcription factor for tumour suppression has become clear. More recently, new and seemingly diverse roles of p53 have been discovered. It soon became clear that protein-protein interactions play an important role in the regulation of the p53 function at different levels. Here we review the contribution by Prof. Fersht and his group towards understanding the basis and functional relevance of p53 protein-protein interactions, and the important role that protein science, biophysics and structural biology have played in the science produced in the Centre for Protein Engineering over the years.
Collapse
|
75
|
Cancemi P, Di Cara G, Albanese NN, Costantini F, Marabeti MR, Musso R, Lupo C, Roz E, Pucci-Minafra I. Large-scale proteomic identification of S100 proteins in breast cancer tissues. BMC Cancer 2010; 10:476. [PMID: 20815901 PMCID: PMC2944176 DOI: 10.1186/1471-2407-10-476] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 09/03/2010] [Indexed: 01/24/2023] Open
Abstract
Background Attempts to reduce morbidity and mortality in breast cancer is based on efforts to identify novel biomarkers to support prognosis and therapeutic choices. The present study has focussed on S100 proteins as a potentially promising group of markers in cancer development and progression. One reason of interest in this family of proteins is because the majority of the S100 genes are clustered on a region of human chromosome 1q21 that is prone to genomic rearrangements. Moreover, there is increasing evidence that S100 proteins are often up-regulated in many cancers, including breast, and this is frequently associated with tumour progression. Methods Samples of breast cancer tissues were obtained during surgical intervention, according to the bioethical recommendations, and cryo-preserved until used. Tissue extracts were submitted to proteomic preparations for 2D-IPG. Protein identification was performed by N-terminal sequencing and/or peptide mass finger printing. Results The majority of the detected S100 proteins were absent, or present at very low levels, in the non-tumoral tissues adjacent to the primary tumor. This finding strengthens the role of S100 proteins as putative biomarkers. The proteomic screening of 100 cryo-preserved breast cancer tissues showed that some proteins were ubiquitously expressed in almost all patients while others appeared more sporadic. Most, if not all, of the detected S100 members appeared reciprocally correlated. Finally, from the perspective of biomarkers establishment, a promising finding was the observation that patients which developed distant metastases after a three year follow-up showed a general tendency of higher S100 protein expression, compared to the disease-free group. Conclusions This article reports for the first time the comparative proteomic screening of several S100 protein members among a large group of breast cancer patients. The results obtained strongly support the hypothesis that a significant deregulation of multiple S100 protein members is associated with breast cancer progression, and suggest that these proteins might act as potential prognostic factors for patient stratification. We propose that this may offer a significant contribution to the knowledge and clinical applications of the S100 protein family to breast cancer.
Collapse
Affiliation(s)
- Patrizia Cancemi
- Dipartimento di Oncologia Sperimentale e Applicazioni Cliniche (DOSAC), Università di Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Koch M, Diez J, Wagner A, Fritz G. Crystallization and calcium/sulfur SAD phasing of the human EF-hand protein S100A2. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1032-6. [PMID: 20823519 DOI: 10.1107/s1744309110030691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/01/2010] [Indexed: 02/05/2023]
Abstract
Human S100A2 is an EF-hand protein and acts as a major tumour suppressor, binding and activating p53 in a Ca2+-dependent manner. Ca2+-bound S100A2 was crystallized and its structure was determined based on the anomalous scattering provided by six S atoms from methionine residues and four calcium ions present in the asymmetric unit. Although the diffraction data were recorded at a wavelength of 0.90 A, which is usually not assumed to be suitable for calcium/sulfur SAD, the anomalous signal was satisfactory. A nine-atom substructure was determined at 1.8 A resolution using SHELXD, and SHELXE was used for density modification and phase extension to 1.3 A resolution. The electron-density map obtained was well interpretable and could be used for automated model building by ARP/wARP.
Collapse
Affiliation(s)
- Michael Koch
- Department of Biology, University of Konstanz, Postfach M665, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
77
|
The Calcium-Dependent Interaction of S100B with Its Protein Targets. Cardiovasc Psychiatry Neurol 2010; 2010. [PMID: 20827422 PMCID: PMC2933916 DOI: 10.1155/2010/728052] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/09/2010] [Indexed: 01/16/2023] Open
Abstract
S100B is a calcium signaling protein that is a member of the S100 protein family. An important feature of S100B and most other S100 proteins (S100s) is that they often bind Ca2+ ions relatively weakly in the absence of a protein target; upon binding their target proteins, Ca2+-binding then increases by as much as from 200- to 400-fold. This manuscript reviews the structural basis and physiological significance of increased Ca2+-binding affinity in the presence of protein targets. New information regarding redundancy among family members and the structural domains that mediate the interaction of S100B, and other S100s, with their targets is also presented. It is the diversity among individual S100s, the protein targets that they interact with, and the Ca2+ dependency of these protein-protein interactions that allow S100s to transduce changes in [Ca2+]intracellular levels into spatially and temporally unique biological responses.
Collapse
|
78
|
Hwang CC, Chai HT, Chen HW, Tsai HL, Lu CY, Yu FJ, Huang MY, Wang JY. S100B protein expressions as an independent predictor of early relapse in UICC stages II and III colon cancer patients after curative resection. Ann Surg Oncol 2010; 18:139-45. [PMID: 20628824 DOI: 10.1245/s10434-010-1209-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND S100 calcium-binding proteins such as S100B are elevated in primary malignant melanoma and are used as tumor markers for malignant melanoma and numerous other cancers. The purpose of this study was to identify the novel predictors of early relapse in UICC stages II and III colon cancer patients and thus to identify a subgroup of patients who are at high risk for postoperative early relapse. METHODS Clinicopathological factors and S100B expression by immunohistochemical staining were retrospectively analyzed in 357 postoperative UICC stages II and III colon cancer patients to determine the predictors of early relapse. RESULTS Of 357 patients, 114 patients developed postoperative relapse during the follow-up period. Among 114 relapsed colon cancer patients, postoperative early relapse and non-early relapse were found in 56 patients (49.1%) and 58 patients (50.9%), respectively. Multivariate Cox proportional hazards analysis revealed that the presence of vascular invasion (P = .025; hazard ratio [HR], 5.532; 95% confidence interval [95% CI], 1.985-14.729), high postoperative CEA levels (P = .019; HR, 6.845; 95% CI, 2.393-15.256), and S100B overexpression (P < .001; HR, 26.250; 95% CI, 7.463-96.804) were demonstrated to be independent predictors of postoperative early relapse. Furthermore, postoperative relapsed colon cancer patients with S100B overexpression were demonstrated to have significantly lower overall survival rates than those without S100B overexpression (P < .001). CONCLUSIONS This study suggests that S100B protein expression is a crucial predictor of early relapse in UICC stages II and III postoperative colon cancer patients and thus could help to define patients with this tumor entity who would benefit from enhanced follow-up and therapeutic program(s).
Collapse
Affiliation(s)
- Chi-Ching Hwang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Wilder PT, Charpentier TH, Liriano MA, Gianni K, Varney KM, Pozharski E, Coop A, Toth EA, Mackerell AD, Weber DJ. In vitro screening and structural characterization of inhibitors of the S100B-p53 interaction. ACTA ACUST UNITED AC 2010; 2010:109-126. [PMID: 21132089 DOI: 10.2147/ijhts.s8210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
S100B is highly over-expressed in many cancers, including malignant melanoma. In such cancers, S100B binds wild-type p53 in a calcium-dependent manner, sequestering it, and promoting its degradation, resulting in the loss of p53-dependent tumor suppression activities. Therefore, S100B inhibitors may be able to restore wild-type p53 levels in certain cancers and provide a useful therapeutic strategy. In this regard, an automated and sensitive fluorescence polarization competition assay (FPCA) was developed and optimized to screen rapidly for lead compounds that bind Ca(2+)-loaded S100B and inhibit S100B target complex formation. A screen of 2000 compounds led to the identification of 26 putative S100B low molecular weight inhibitors. The binding of these small molecules to S100B was confirmed by nuclear magnetic resonance spectroscopy, and additional structural information was provided by x-ray crystal structures of several compounds in complexes with S100B. Notably, many of the identified inhibitors function by chemically modifying Cys84 in protein. These results validate the use of high-throughput FPCA to facilitate the identification of compounds that inhibit S100B. These lead compounds will be the subject of future optimization studies with the ultimate goal of developing a drug with therapeutic activity for the treatment of malignant melanoma and/or other cancers with elevated S100B.
Collapse
Affiliation(s)
- Paul T Wilder
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Lin J, Yang Q, Wilder PT, Carrier F, Weber DJ. The calcium-binding protein S100B down-regulates p53 and apoptosis in malignant melanoma. J Biol Chem 2010; 285:27487-27498. [PMID: 20587415 DOI: 10.1074/jbc.m110.155382] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The S100B-p53 protein complex was discovered in C8146A malignant melanoma, but the consequences of this interaction required further study. When S100B expression was inhibited in C8146As by siRNA (siRNA(S100B)), wt p53 mRNA levels were unchanged, but p53 protein, phosphorylated p53, and p53 gene products (i.e. p21 and PIDD) were increased. siRNA(S100B) transfections also restored p53-dependent apoptosis in C8146As as judged by poly(ADP-ribose) polymerase cleavage, DNA ladder formation, caspase 3 and 8 activation, and aggregation of the Fas death receptor (+UV); whereas, siRNA(S100B) had no effect in SK-MEL-28 cells containing elevated S100B and inactive p53 (p53R145L mutant). siRNA(S100B)-mediated apoptosis was independent of the mitochondria, because no changes were observed in mitochondrial membrane potential, cytochrome c release, caspase 9 activation, or ratios of pro- and anti-apoptotic proteins (BAX, Bcl-2, and Bcl-X(L)). As expected, cells lacking S100B (LOX-IM VI) were not affected by siRNA(S100B), and introduction of S100B reduced their UV-induced apoptosis activity by 7-fold, further demonstrating that S100B inhibits apoptosis activities in p53-containing cells. In other wild-type p53 cells (i.e. C8146A, UACC-2571, and UACC-62), S100B was found to contribute to cell survival after UV treatment, and for C8146As, the decrease in survival after siRNA(S100B) transfection (+UV) could be reversed by the p53 inhibitor, pifithrin-alpha. In summary, reducing S100B expression with siRNA was sufficient to activate p53, its transcriptional activation activities, and p53-dependent apoptosis pathway(s) in melanoma involving the Fas death receptor and perhaps PIDD. Thus, a well known marker for malignant melanoma, S100B, likely contributes to cancer progression by down-regulating the tumor suppressor protein, p53.
Collapse
Affiliation(s)
- Jing Lin
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Maryland 21201
| | - Qingyuan Yang
- Department of Radiation Oncology, University of Maryland School of Medicine, Maryland 21201
| | - Paul T Wilder
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Maryland 21201; Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201
| | - France Carrier
- Department of Radiation Oncology, University of Maryland School of Medicine, Maryland 21201; Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201.
| | - David J Weber
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Maryland 21201; Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201.
| |
Collapse
|
81
|
van Dieck J, Lum JK, Teufel DP, Fersht AR. S100 proteins interact with the N-terminal domain of MDM2. FEBS Lett 2010; 584:3269-74. [PMID: 20591429 DOI: 10.1016/j.febslet.2010.06.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/01/2010] [Accepted: 06/14/2010] [Indexed: 01/16/2023]
Abstract
S100 proteins interact with the transactivation domain and the C-terminus of p53. Further, S100B has been shown to interact with MDM2, a central negative regulator of p53. Here, we show that S100B bound directly to the folded N-terminal domain of MDM2 (residues 2-125) by size exclusion chromatography and surface plasmon resonance experiments. This interaction with MDM2 (2-125) is a general feature of S100 proteins; S100A1, S100A2, S100A4 and S100A6 also interact with MDM2 (2-125). These interactions with S100 proteins do not result in a ternary complex with MDM2 (2-125) and p53. Instead, we observe the ability of a subset of S100 proteins to disrupt the extent of MDM2-mediated p53 ubiquitylation in vitro.
Collapse
Affiliation(s)
- Jan van Dieck
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | |
Collapse
|
82
|
Wolf S, Haase-Kohn C, Pietzsch J. S100A2 in cancerogenesis: a friend or a foe? Amino Acids 2010; 41:849-61. [PMID: 20521072 DOI: 10.1007/s00726-010-0623-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 05/05/2010] [Indexed: 12/11/2022]
Abstract
Owing to the exceptional intracellular distribution and the heterogeneous expression pattern during transformation and metastasis in various tumors, the EF-hand calcium-binding protein S100A2 attracts increasing attention. Unlike the majority of S100 proteins, S100A2 expression is downregulated in many cancers and the loss in nuclear expression has been associated with poor prognosis. On the other hand, S100A2 is upregulated in some cancers. This mini review highlights the general characteristics of S100A2 and discusses recent findings on its putative functional implication as a suppressor or promoter in cancerogenesis.
Collapse
Affiliation(s)
- Susann Wolf
- Department of Radiopharmaceutical Biology, Institute of Radiopharmacy, Research Center Dresden-Rossendorf, POB 51 01 19, 01314, Dresden, Germany
| | | | | |
Collapse
|
83
|
Li ZH, Dulyaninova NG, House RP, Almo SC, Bresnick AR. S100A4 regulates macrophage chemotaxis. Mol Biol Cell 2010; 21:2598-610. [PMID: 20519440 PMCID: PMC2912347 DOI: 10.1091/mbc.e09-07-0609] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Using a targeted genetic deletion, we show that the S100A4 metastasis factor is required for macrophage recruitment to sites of inflammation in vivo. S100A4−/− primary macrophages display defects in chemotaxis due to myosin-IIA overassembly and altered CSF-1 receptor signaling. These studies establish S100A4 as a regulator of macrophage motility. S100A4, a member of the S100 family of Ca2+-binding proteins, is directly involved in tumor metastasis. In addition to its expression in tumor cells, S100A4 is expressed in normal cells and tissues, including fibroblasts and cells of the immune system. To examine the contribution of S100A4 to normal physiology, we established S100A4-deficient mice by gene targeting. Homozygous S100A4−/− mice are fertile, grow normally and exhibit no overt abnormalities; however, the loss of S100A4 results in impaired recruitment of macrophages to sites of inflammation in vivo. Consistent with these observations, primary bone marrow macrophages (BMMs) derived from S100A4−/− mice display defects in chemotactic motility in vitro. S100A4−/− BMMs form unstable protrusions, overassemble myosin-IIA, and exhibit altered colony-stimulating factor-1 receptor signaling. These studies establish S100A4 as a regulator of physiological macrophage motility and demonstrate that S100A4 mediates macrophage recruitment and chemotaxis in vivo.
Collapse
Affiliation(s)
- Zhong-Hua Li
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
84
|
Słomnicki LP, Leśniak W. S100A6 (calcyclin) deficiency induces senescence-like changes in cell cycle, morphology and functional characteristics of mouse NIH 3T3 fibroblasts. J Cell Biochem 2010; 109:576-84. [PMID: 20013795 DOI: 10.1002/jcb.22434] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
S100A6 (calcyclin) is a calcium binding protein with two EF-hand structures expressed mostly in fibroblasts and epithelial cells. We have established a NIH 3T3 fibroblast cell line stably transfected with siRNA against S100A6 to examine the effect of S100A6 deficiency on non-transformed cell physiology. We found that NIH 3T3 fibroblasts with decreased level of S100A6 manifested altered cell morphology and proliferated at a much slower pace than the control cells. Cell cycle analysis showed that a large population of these cells lost the ability to respond to serum and persisted in the G0/G1 phase. Furthermore, fibroblasts with diminished S100A6 level exhibited morphological changes and biochemical features of cellular senescence as revealed by beta-galactosidase and gelatinase assays. Also, S100A6 deficiency induced changes in the actin cytoskeleton and had a profound impact on cell adhesion and migration. Thus, we have shown that the S100A6 protein is involved in multiple aspects of fibroblast physiology and that its presence ensures normal fibroblast proliferation and function.
Collapse
Affiliation(s)
- Lukasz P Słomnicki
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur St, 02-093 Warsaw, Poland
| | | |
Collapse
|
85
|
The calcium-dependent interaction between S100B and the mitochondrial AAA ATPase ATAD3A and the role of this complex in the cytoplasmic processing of ATAD3A. Mol Cell Biol 2010; 30:2724-36. [PMID: 20351179 DOI: 10.1128/mcb.01468-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
S100 proteins comprise a multigene family of EF-hand calcium binding proteins that engage in multiple functions in response to cellular stress. In one case, the S100B protein has been implicated in oligodendrocyte progenitor cell (OPC) regeneration in response to demyelinating insult. In this example, we report that the mitochondrial ATAD3A protein is a major, high-affinity, and calcium-dependent S100B target protein in OPC. In OPC, ATAD3A is required for cell growth and differentiation. Molecular characterization of the S100B binding domain on ATAD3A by nuclear magnetic resonance (NMR) spectroscopy techniques defined a consensus calcium-dependent S100B binding motif. This S100B binding motif is conserved in several other S100B target proteins, including the p53 protein. Cellular studies using a truncated ATAD3A mutant that is deficient for mitochondrial import revealed that S100B prevents cytoplasmic ATAD3A mutant aggregation and restored its mitochondrial localization. With these results in mind, we propose that S100B could assist the newly synthesized ATAD3A protein, which harbors the consensus S100B binding domain for proper folding and subcellular localization. Such a function for S100B might also help to explain the rescue of nuclear translocation and activation of the temperature-sensitive p53val135 mutant by S100B at nonpermissive temperatures.
Collapse
|
86
|
Berge G, Costea DE, Berg M, Rasmussen H, Grotterød I, Lothe RA, Mælandsmo GM, Flatmark K. Coexpression and nuclear colocalization of metastasis-promoting protein S100A4 and p53 without mutual regulation in colorectal carcinoma. Amino Acids 2010; 41:875-84. [PMID: 20191297 DOI: 10.1007/s00726-010-0514-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 02/03/2010] [Indexed: 12/31/2022]
Abstract
Nuclear localization of the metastasis-associated protein S100A4 has been shown to correlate with advanced disease stage in primary colorectal carcinomas (CRC), but nuclear function and its relevance for the metastatic capacity of tumor cells is still unclear. Among several nuclear interacting protein partners suggested for S100A4, the tumor suppressor protein p53 has attracted particular interest, and previous studies suggest direct and indirect modes of interaction between the two proteins. The present study was undertaken to assess coexpression and potential interaction in CRC. TP53 mutational status and S100A4 expression were investigated in a selected series of primary CRC specimens (n = 40) and cell lines (n = 17) using DNA sequencing, western blot, and double immunostaining. Additionally, S100A4 and p53 were experimentally up- and down-regulated in vitro to assess reciprocal effects. For the first time, S100A4 and p53 coexpression was demonstrated in individual CRC cells, with nuclear colocalization as a particularly interesting feature. In contrast to previous studies, no correlation was observed between TP53 mutational status and S100A4 expression, and no evidence was obtained to support reciprocal regulation between the two molecules in the HCT116 isogenic cell line model. In conclusion, S100A4 and p53 were shown to be colocalized in individual nuclei of CRC cells, and it might be speculated whether the proteins interact in this subcellular compartment.
Collapse
Affiliation(s)
- Gisle Berge
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0310, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Berge G, Mælandsmo GM. Evaluation of potential interactions between the metastasis-associated protein S100A4 and the tumor suppressor protein p53. Amino Acids 2010; 41:863-73. [DOI: 10.1007/s00726-010-0497-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 01/22/2010] [Indexed: 12/01/2022]
|
88
|
Joerger AC, Fersht AR. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol 2010; 2:a000919. [PMID: 20516128 DOI: 10.1101/cshperspect.a000919] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Even 30 years after its discovery, the tumor suppressor protein p53 is still somewhat of an enigma. p53's intimate and multifaceted role in the cell cycle is mirrored in its equally complex structural biology that is being unraveled only slowly. Here, we discuss key structural aspects of p53 function and its inactivation by oncogenic mutations. Concerted action of folded and intrinsically disordered domains of the highly dynamic p53 protein provides binding promiscuity and specificity, allowing p53 to process a myriad of cellular signals to maintain the integrity of the human genome. Importantly, progress in elucidating the structural biology of p53 and its partner proteins has opened various avenues for structure-guided rescue of p53 function in tumors. These emerging anticancer strategies include targeting mutant-specific lesions on the surface of destabilized cancer mutants with small molecules and selective inhibition of p53's degradative pathways.
Collapse
Affiliation(s)
- Andreas C Joerger
- MRC Centre for Protein Engineering, Hills Road, Cambridge, United Kingdom.
| | | |
Collapse
|
89
|
van Dieck J, Brandt T, Teufel DP, Veprintsev DB, Joerger AC, Fersht AR. Molecular basis of S100 proteins interacting with the p53 homologs p63 and p73. Oncogene 2010; 29:2024-35. [PMID: 20140014 DOI: 10.1038/onc.2009.490] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
S100 proteins modulate p53 activity by interacting with its tetramerization (p53TET, residues 325-355) and transactivation (residues 1-57) domains. In this study, we characterized biophysically the binding of S100A1, S100A2, S100A4, S100A6 and S100B to homologous domains of p63 and p73 in vitro by fluorescence anisotropy, analytical ultracentrifugation and analytical gel filtration. We found that S100A1, S100A2, S100A4, S100A6 and S100B proteins bound different p63 and p73 tetramerization domain variants and naturally occurring isoforms with varying affinities in a calcium-dependent manner. Additional interactions were observed with peptides derived from the p63 and p73 N-terminal transactivation domains. Importantly, S100 proteins bound p63 and p73 with different affinities in their different oligomeric states, similarly to the differential modes of binding to p53. On the basis of our data, we hypothesize that S100 proteins regulate the oligomerization state of all three p53 family members and their isoforms, with a potential physiological relevance in developmental and disease-related processes. The regulation of the p53 family by S100 is complicated and depends on the target preference of each individual S100 protein, the concentration of the proteins and calcium, as well as the splicing variation of p63 or p73. Our results outlining the complexity of the interaction should be considered when studying the functional effects of S100 proteins in their biological context.
Collapse
Affiliation(s)
- J van Dieck
- MRC Centre for Protein Engineering, Hills Road, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
90
|
Brandt T, Petrovich M, Joerger AC, Veprintsev DB. Conservation of DNA-binding specificity and oligomerisation properties within the p53 family. BMC Genomics 2009; 10:628. [PMID: 20030809 PMCID: PMC2807882 DOI: 10.1186/1471-2164-10-628] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 12/23/2009] [Indexed: 12/01/2022] Open
Abstract
Background Transcription factors activate their target genes by binding to specific response elements. Many transcription factor families evolved from a common ancestor by gene duplication and subsequent divergent evolution. Members of the p53 family, which play key roles in cell-cycle control and development, share conserved DNA binding and oligomerisation domains but exhibit distinct functions. In this study, the molecular basis of the functional divergence of related transcription factors was investigated. Results We characterised the DNA-binding specificity and oligomerisation properties of human p53, p63 and p73, as well as p53 from other organisms using novel biophysical approaches. All p53 family members bound DNA cooperatively as tetramers with high affinity. Despite structural differences in the oligomerisation domain, the dissociation constants of the tetramers was in the low nanomolar range for all family members, indicating that the strength of tetramerisation was evolutionarily conserved. However, small differences in the oligomerisation properties were observed, which may play a regulatory role. Intriguingly, the DNA-binding specificity of p53 family members was highly conserved even for evolutionarily distant species. Additionally, DNA recognition was only weakly affected by CpG methylation. Prediction of p53/p63/p73 binding sites in the genome showed almost complete overlap between the different homologs. Conclusion Diversity of biological function of p53 family members is not reflected in differences in sequence-specific DNA binding. Hence, additional specificity factors must exist, which allowed the acquisition of novel functions during evolution while preserving original roles.
Collapse
Affiliation(s)
- Tobias Brandt
- MRC Laboratory of Molecular Biology, Cambridge CB20QH, UK
| | | | | | | |
Collapse
|
91
|
Posttranslational Modifications Affect the Interaction of S100 Proteins with Tumor Suppressor p53. J Mol Biol 2009; 394:922-30. [DOI: 10.1016/j.jmb.2009.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/30/2009] [Accepted: 10/04/2009] [Indexed: 11/24/2022]
|
92
|
Leśniak W, Słomnicki ŁP, Filipek A. S100A6 – New facts and features. Biochem Biophys Res Commun 2009; 390:1087-92. [DOI: 10.1016/j.bbrc.2009.10.150] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 10/29/2009] [Indexed: 01/15/2023]
|
93
|
Rajagopalan S, Sade RS, Townsley FM, Fersht AR. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Nucleic Acids Res 2009; 38:893-906. [PMID: 19933256 PMCID: PMC2817464 DOI: 10.1093/nar/gkp1041] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
p53 maintains genome integrity by initiating the transcription of genes involved in cell-cycle arrest, senescence, apoptosis and DNA repair. The activity of p53 is regulated by both post-translational modifications and protein–protein interactions. p53 that has been phosphorylated at S366, S378 and T387 binds 14-3-3 proteins in vitro. Here, we show that these sites are potential 14-3-3 binding sites in vivo. Epsilon (ε) and gamma (γ) isoforms required phosphorylation at either of these sites for efficient interaction with p53, while for sigma (σ) and tau (τ) these sites are dispensable. Further, σ and τ bound more weakly to p53 C-terminal phosphopeptides than did ε and γ. However, the four isoforms bound tightly to di-phosphorylated p53 C-terminal peptides than did the mono-phosphorylated counterparts. Interestingly, all the isoforms studied transcriptionally activated wild-type p53. σ and τ stabilized p53 levels in cells, while ε and γ stimulated p53-DNA binding activity in vitro. Overall, the results suggest that structurally and functionally similar 14-3-3 isoforms may exert their regulatory potential on p53 through different mechanisms. We discuss the isoform-specific roles of 14-3-3 in p53 stabilization and activation of specific-DNA binding.
Collapse
|
94
|
Ghavami S, Chitayat S, Hashemi M, Eshraghi M, Chazin WJ, Halayko AJ, Kerkhoff C. S100A8/A9: a Janus-faced molecule in cancer therapy and tumorgenesis. Eur J Pharmacol 2009; 625:73-83. [PMID: 19835859 DOI: 10.1016/j.ejphar.2009.08.044] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/31/2009] [Accepted: 08/19/2009] [Indexed: 11/28/2022]
Abstract
Correlations exist between the abundance of S100 proteins and disease pathologies. Indeed, this is evidenced by the heterodimeric S100 protein complex S100A8/A9 which has been shown to be involved in inflammatory and neoplastic disorders. However, S100A8/A9 appears as a Janus-faced molecule in this context. On the one hand, it is a powerful apoptotic agent produced by immune cells, making it a very fascinating tool in the battle against cancer. It spears the risk to induce auto-immune response and may serve as a lead compound for cancer-selective therapeutics. In contrast, S100A8/A9 expression in cancer cells has also been associated with tumor development, cancer invasion or metastasis. Clearly, there is a dichotomy and future investigations into the role of S100A8/A9 in cancer biology need to consider both sides of the same coin.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
95
|
Wu SY, Chiang CM. p53 sumoylation: mechanistic insights from reconstitution studies. Epigenetics 2009; 4:445-51. [PMID: 19838051 DOI: 10.4161/epi.4.7.10030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sumoylation represents a cascade of enzymatic reactions mediated by SUMO-activating enzyme (SAE1/SAE2 heterodimer), SUMO-conjugating enzyme Ubc9, and SUMO E3 ligases that include five protein inhibitors of activated STATs (PIAS1, PIAS3, PIASy, PIASxalpha and PIASxbeta), and culminates in the formation of an isopeptide bond between the C-terminal glycine of a small ubiquitin-related modifier (SUMO) and the lysine residue of a protein substrate. Conjugation of a SUMO moiety, ranging from 92 (for SUMO-2) to 97 (for SUMO-1) amino acids, not only increases the molecular size but also alters the property and function of the modified protein. Although sumoylation has been observed with many cellular proteins and the majority of transcription factors including the p53 tumor suppressor, this covalent modification is normally detectable only in a small population, often less than 5%, of a given substrate in vivo. This low abundance of SUMO-modified proteins, due to the presence of sentrin/SUMO-specific proteases (SENPs) that actively cleave the reversible SUMO linkage, has posed a challenge to define the biological effect of SUMO in living cells. Nevertheless, the recent development of reconstituted modification and chromatin-dependent transcription assays has provided unique insights into the molecular action of SUMO in modifying protein function. The availability of these reconstitution systems has unraveled the interplay between sumoylation and acetylation in regulating the DNA binding and transcriptional activity of p53 tetramers and further allow the identification of transcriptional corepressors, such as mSin3A, CoREST1/LSD1 and Mi-2/NuRD implicated in SUMO-dependent gene silencing events.
Collapse
Affiliation(s)
- Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
96
|
Wong TS, Rajagopalan S, Freund SM, Rutherford TJ, Andreeva A, Townsley FM, Petrovich M, Fersht AR. Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53. Nucleic Acids Res 2009; 37:6765-83. [PMID: 19755502 PMCID: PMC2777442 DOI: 10.1093/nar/gkp750] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human mitochondrial transcription factor A (TFAM) is a multi-functional protein, involved in different aspects of maintaining mitochondrial genome integrity. In this report, we characterized TFAM and its interaction with tumor suppressor p53 using various biophysical methods. DNA-free TFAM is a thermally unstable protein that is in equilibrium between monomers and dimers. Self-association of TFAM is modulated by its basic C-terminal tail. The DNA-binding ability of TFAM is mainly contributed by its first HMG-box, while the second HMG-box has low-DNA-binding capability. We also obtained backbone resonance assignments from the NMR spectra of both HMG-boxes of TFAM. TFAM binds primarily to the N-terminal transactivation domain of p53, with a Kd of 1.95 ± 0.19 μM. The C-terminal regulatory domain of p53 provides a secondary binding site for TFAM. The TFAM–p53-binding interface involves both TAD1 and TAD2 sub-domains of p53. Helices α1 and α2 of the HMG-box constitute the main p53-binding region. Since both TFAM and p53 binds preferentially to distorted DNA, the TFAM–p53 interaction is implicated in DNA damage and repair. In addition, the DNA-binding mechanism of TFAM and biological relevance of the TFAM–p53 interaction are discussed.
Collapse
Affiliation(s)
- Tuck Seng Wong
- MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
The tumor suppressor p53 is in equilibrium at cellular concentrations between dimers and tetramers. Oncogenic mutant p53 (mut) exerts a dominant-negative effect on co-expression of p53 wild-type (wt) and mut alleles in cancer cells. It is believed that wt and mut form hetero-tetramers of attenuated activity, via their tetramerization domains. Using electrospray mass spectrometry on isotopically labeled samples, we measured directly the composition and rates of formation of p53 complexes in the presence and absence of response element DNA. The dissociation of tetramers was unexpectedly very slow (t(1/2) = 40 min) at 37 degrees C, matched by slow association of dimers, which is approximately four times longer than the half-life of spontaneous denaturation of wt p53. On mixing wt tetramers with the oncogenic contact mutant R273H of low DNA affinity, we observed the same slow formation of only wt(4), wt(2)mut(2), and mut(4), in the ratio 1:2:1, on a cellular time scale. On mixing wt and mut with response element DNAs P21 and BAX, we observed only the complexes wt(4)xDNA, wt(2)mut(2)xDNA, and mut(4)xDNA, with relative dissociation constants 1:4:71 and 1:13:85, respectively, accounting for the dominant-negative effect by weakened affinity. p53 dimers assemble rapidly to tetramers on binding to response element DNA, initiated by the p53 DNA binding domains. The slow oligomerization of free p53, competing with spontaneous denaturation, has implications for the possible regulation of p53 by binding proteins and DNA that affect tetramerization kinetics as well as equilibria.
Collapse
|
98
|
He H, Li J, Weng S, Li M, Yu Y. S100A11: diverse function and pathology corresponding to different target proteins. Cell Biochem Biophys 2009; 55:117-26. [PMID: 19649745 DOI: 10.1007/s12013-009-9061-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
S100A11, as a member of S100 protein family, while featuring the common identities as the other EF-hand Ca(2+)-binding family members, has its own individual characteristics. S100A11 is widely expressed in multiple tissues, and is located in cytoplasm, nucleus, and even cell periphery. S100A11 exists as a non-covalent homodimer with an antiparallel conformation. Ca(2+) binding to S100A11 would trigger conformational changes which would expose the hydrophobic cleft of S100A11 and facilitate its interaction with target proteins. Since S100A11 appears to lack enzymatic activity, in this article, corresponding to a variety of its target proteins, we systematically describe the biological roles of S100A11 and its possible mechanism in the processes of inflammation, regulation of enzyme activity, and cell growth regulation. As a dual cell growth mediator, S100A11 acts as either a tumor suppressor or promoter in many different types of tumors and would play respective roles in influencing the proliferation of the cancer cells. We intend to illustrate the biological function of the S100 protein, and shed light on the further research, which will provide us with a better understanding of it.
Collapse
Affiliation(s)
- Honglin He
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | | | | | | | | |
Collapse
|