51
|
Villeneuve C, Baricault L, Canelle L, Barboule N, Racca C, Monsarrat B, Magnaldo T, Larminat F. Mitochondrial proteomic approach reveals galectin-7 as a novel BCL-2 binding protein in human cells. Mol Biol Cell 2011; 22:999-1013. [PMID: 21289092 PMCID: PMC3069024 DOI: 10.1091/mbc.e10-06-0534] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Our results reveal a network of new potential Bcl-2 partners identified through the Bcl-2 immunocapture and mass spectrometry approach and analyzed by gene ontology mining. Importantly, we report for the first time the identification of galectin-7, a member of a family of β-galactoside-binding lectins, as a new mitochondrial Bcl-2 interacting partner. Although the anti-apoptotic activity of Bcl-2 has been extensively studied, its mode of action remains incompletely understood. Deciphering the network of Bcl-2 interacting factors is necessary to better understand the key function of Bcl-2 in apoptosis initiation. To identify novel Bcl-2 mitochondrial partners, we have combined a Bcl-2 immunocapture with a mass spectrometry analysis using highly pure mitochondrial fractions isolated from human cancer cells. We identified at high confidence 127 potential Bcl-2–interacting proteins. Gene ontology mining reveals enrichment for mitochondrial proteins, endoplasmic reticulum–associated proteins, and cytoskeleton-associated proteins. Importantly, we report the identification of galectin-7 (Gal7), a member of a family of β-galactoside–binding lectins that was already known to exhibit a pro-apoptotic function, as a new mitochondrial Bcl-2 interacting partner. Our data further show that endogenous Bcl-2 coimmunoprecipitates with Gal7 and that recombinant Gal7 directly interacts with recombinant Bcl-2. A fraction of Gal7 is constitutively localized at mitochondria in a Bcl-2–dependent manner and sensitizes the mitochondria to the apoptotic signal. In addition, we show that the Bcl-2/Gal7 interaction is abolished following genotoxic stress. Taken together, our findings suggest that the binding of Gal7 to Bcl-2 may constitute a new target for enhancing the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Christelle Villeneuve
- LBCMCP, CNRS-UMR5088 IPBS, CNRS-UMR5089, Université de Toulouse, 31077 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
52
|
CD98hc (SLC3A2) is a key regulator of keratinocyte adhesion. J Dermatol Sci 2011; 61:169-79. [PMID: 21282044 DOI: 10.1016/j.jdermsci.2010.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/21/2010] [Accepted: 12/24/2010] [Indexed: 11/22/2022]
Abstract
BACKGROUND Adhesion of keratinocytes is crucial for maintaining the integrity of the skin, as demonstrated by the number of dermatological disorders of genetic origin that are associated with a defect of basal keratinocyte adhesion. Integrins are the main component of the molecular networks involved in this phenomenon, but there are many others. In a recent description of proteins associated to caveolae at the plasma membrane of human basal epidermal cells, we demonstrated that CD98hc is localized with β1 integrin. OBJECTIVES We investigated the CD98hc proteins interactions and the role of CD98hc in keratinocyte adhesion. METHODS CD98hc protein interaction was identified following co-immunoprecipitation and proteomic analysis using LTQ-FT mass spectrometer. Extinction of CD98hc gene expression using specific short hairpin RNA or over-expression of CD98hc lacking the β1 integrin binding site was used to evaluate the role of this protein in keratinocyte fate. RESULTS We show that CD98hc forms molecular complexes with β1 and β4 integrins in primary human keratinocytes and, using immunofluorescence, that these complexes are localized at the plasma membrane, in keeping with a role in adhesion. We confirmed that this protein is a key player of keratinocyte adhesion because in absence of interaction between CD98hc and integrins, β1 integrin failed to translocate from the cytoplasm to the plasma membrane and keratinocytes expressed epidermal differentiation markers. CONCLUSIONS All these data strongly suggested that CD98hc is involved in integrin trafficking and by consequence, in keratinocyte adhesion and differentiation.
Collapse
|
53
|
Strassberger V, Fugmann T, Neri D, Roesli C. Chemical proteomic and bioinformatic strategies for the identification and quantification of vascular antigens in cancer. J Proteomics 2010; 73:1954-73. [DOI: 10.1016/j.jprot.2010.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
|
54
|
Henry L, Lavabre-Bertrand T, Douche T, Uttenweiler-Joseph S, Fabbro-Peray P, Monsarrat B, Martinez J, Meunier L, Stoebner PE. Diagnostic value and prognostic significance of plasmatic proteasome level in patients with melanoma. Exp Dermatol 2010; 19:1054-9. [PMID: 20707810 DOI: 10.1111/j.1600-0625.2010.01151.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmatic proteasome (p-proteasome) also called circulating proteasome has recently been described as a tumor marker. We investigated the diagnostic and prognostic accuracies of p-proteasome levels in a melanoma population classified according to the American Joint Committee on Cancer staging system. Using an ELISA test, we measured p-proteasome levels in 90 patients and 40 controls between March 2003 and March 2008. The subunit composition of p-proteasomes was determined in metastatic melanoma by proteomic analysis. The mean p-proteasome levels were correlated with stages (P < 0.0001; r(S) = 0.664). They were significantly higher in patients with stage IV and stage III with lymph node metastasis (9187 ± 1294 and 5091 ± 454 ng/ml, respectively) compared to controls (2535 ± 187 ng/ml; P < 0.001), to stage I/II (2864 ± 166 ng/ml; P < 0.001) and to stage III after curative lymphadenectomy (2859 ± 271 ng/ml; P < 0.001). The diagnostic accuracy of p-proteasome was evaluated by receiver operating characteristic analysis. With a cut-off of 4300 ng/ml, diagnostic specificity and sensitivity of p-proteasome for regional or visceral metastases were respectively 96.3% and 72.2%. In univariate analysis, high p-proteasome levels (>4300 ng/ml) were significantly correlated with an increased risk of progression [hazard ratio (HR) = 7.34; 95% CI 3.54-15.21, P < 0.0001] and a risk of death (HR = 5.92; 95% CI 2.84-12.33, P < 0.0001). In multivariate analysis, high p-proteasome levels were correlated with a poorer clinical outcome in the subgroup analysis limited to patients with disease stages I, II and III. Proteomic analysis confirmed the presence of all proteasome and immunoproteasome subunits. Taken together, these results indicate that p-proteasomes are a new marker for metastatic dissemination in patients with melanoma.
Collapse
Affiliation(s)
- Laurent Henry
- Laboratoire d'Histologie-Embryologie-Cytogénétique, Université Montpellier 1, Faculté de Médecine Montpellier-Nîmes, CHU de Nîmes, Nîmes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Barsan C, Sanchez-Bel P, Rombaldi C, Egea I, Rossignol M, Kuntz M, Zouine M, Latché A, Bouzayen M, Pech JC. Characteristics of the tomato chromoplast revealed by proteomic analysis. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2413-31. [PMID: 20363867 DOI: 10.1093/jxb/erq070] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chromoplasts are non-photosynthetic specialized plastids that are important in ripening tomato fruit (Solanum lycopersicum) since, among other functions, they are the site of accumulation of coloured compounds. Analysis of the proteome of red fruit chromoplasts revealed the presence of 988 proteins corresponding to 802 Arabidopsis unigenes, among which 209 had not been listed so far in plastidial databanks. These data revealed several features of the chromoplast. Proteins of lipid metabolism and trafficking were well represented, including all the proteins of the lipoxygenase pathway required for the synthesis of lipid-derived aroma volatiles. Proteins involved in starch synthesis co-existed with several starch-degrading proteins and starch excess proteins. Chromoplasts lacked proteins of the chlorophyll biosynthesis branch and contained proteins involved in chlorophyll degradation. None of the proteins involved in the thylakoid transport machinery were discovered. Surprisingly, chromoplasts contain the entire set of Calvin cycle proteins including Rubisco, as well as the oxidative pentose phosphate pathway (OxPPP). The present proteomic analysis, combined with available physiological data, provides new insights into the metabolic characteristics of the tomato chromoplast and enriches our knowledge of non-photosynthetic plastids.
Collapse
Affiliation(s)
- Cristina Barsan
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, F-31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, De Medina P, Monsarrat B, Perret B, Silvente-Poirot S, Poirot M, Record M. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 2010; 51:2105-20. [PMID: 20424270 DOI: 10.1194/jlr.m003657] [Citation(s) in RCA: 469] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exosomes are bioactive vesicles released from multivesicular bodies (MVB) by intact cells and participate in intercellular signaling. We investigated the presence of lipid-related proteins and bioactive lipids in RBL-2H3 exosomes. Besides a phospholipid scramblase and a fatty acid binding protein, the exosomes contained the whole set of phospholipases (A2, C, and D) together with interacting proteins such as aldolase A and Hsp 70. They also contained the phospholipase D (PLD) / phosphatidate phosphatase 1 (PAP1) pathway leading to the formation of diglycerides. RBL-2H3 exosomes also carried members of the three phospholipase A2 classes: the calcium-dependent cPLA(2)-IVA, the calcium-independent iPLA(2)-VIA, and the secreted sPLA(2)-IIA and V. Remarkably, almost all members of the Ras GTPase superfamily were present, and incubation of exosomes with GTPgammaS triggered activation of phospholipase A(2) (PLA(2))and PLD(2). A large panel of free fatty acids, including arachidonic acid (AA) and derivatives such as prostaglandin E(2) (PGE(2)) and 15-deoxy-Delta(12,14)-prostaglandinJ(2) (15-d PGJ(2)), were detected. We observed that the exosomes were internalized by resting and activated RBL cells and that they accumulated in an endosomal compartment. Endosomal concentrations were in the micromolar range for prostaglandins; i.e., concentrations able to trigger prostaglandin-dependent biological responses. Therefore exosomes are carriers of GTP-activatable phospholipases and lipid mediators from cell to cell.
Collapse
Affiliation(s)
- Caroline Subra
- Metabolism, Oncogenesis and Cell Differentiation Group, INSERM Research Center 563, Pathophysiology Center of Toulouse Purpan, Hôpital Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Liu X, Zhang J, Zheng Z, Yang X, Jia W, Li L, Gong Y, Cai Y, Zhu Y, He F, Ying W, Qian X. A systematic N-terminal peptide quantitative labeling strategy for differential proteomic analysis. Proteomics Clin Appl 2010; 4:633-43. [DOI: 10.1002/prca.200900065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 11/07/2022]
|
58
|
Mouton-Barbosa E, Roux-Dalvai F, Bouyssié D, Berger F, Schmidt E, Righetti PG, Guerrier L, Boschetti E, Burlet-Schiltz O, Monsarrat B, Gonzalez de Peredo A. In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification. Mol Cell Proteomics 2010; 9:1006-21. [PMID: 20093276 DOI: 10.1074/mcp.m900513-mcp200] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cerebrospinal fluid (CSF) is the biological fluid in closest contact with the brain and thus contains proteins of neural cell origin. Hence, CSF is a biochemical window into the brain and is particularly attractive for the search for biomarkers of neurological diseases. However, as in the case of other biological fluids, one of the main analytical challenges in proteomic characterization of the CSF is the very wide concentration range of proteins, largely exceeding the dynamic range of current analytical approaches. Here, we used the combinatorial peptide ligand library technology (ProteoMiner) to reduce the dynamic range of protein concentration in CSF and unmask previously undetected proteins by nano-LC-MS/MS analysis on an LTQ-Orbitrap mass spectrometer. This method was first applied on a large pool of CSF from different sources with the aim to better characterize the protein content of this fluid, especially for the low abundance components. We were able to identify 1212 proteins in CSF, and among these, 745 were only detected after peptide library treatment. However, additional difficulties for clinical studies of CSF are the low protein concentration of this fluid and the low volumes typically obtained after lumbar puncture, precluding the conventional use of ProteoMiner with large volume columns for treatment of patient samples. The method has thus been optimized to be compatible with low volume samples. We could show that the treatment is still efficient with this miniaturized protocol and that the dynamic range of protein concentration is actually reduced even with small amounts of beads, leading to an increase of more than 100% of the number of identified proteins in one LC-MS/MS run. Moreover, using a dedicated bioinformatics analytical work flow, we found that the method is reproducible and applicable for label-free quantification of series of samples processed in parallel.
Collapse
Affiliation(s)
- Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Muth T, Keller D, Puetz SM, Martens L, Sickmann A, Boehm AM. jTraqX: A free, platform independent tool for isobaric tag quantitation at the protein level. Proteomics 2010; 10:1223-5. [DOI: 10.1002/pmic.200900374] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
60
|
Abstract
Mass spectrometry instrumentation has continued to develop rapidly in the last two decades, enabled in part by advances in microelectronic hardware controllers and computerized control and data acquisition systems. The wealth and complexity of data produced by a modern instrument is such that the data can no longer be analyzed manually. Computerized data analysis has become de rigueur and the bioinformatics field has expanded to provide software applications for all aspects of the data analysis needed by LC-MS/MS. The bioinformatics field is evolving rapidly and software applications are continually being improved or replaced for existing applications as well as developed to support new types of experiments and analysis enabled by modern instrumentation. Entire books have been written on MS data analysis in proteomics but this review will be necessarily brief. In this chapter we will review the bioinformatics software applications available for different LC-MS/MS analysis tasks.
Collapse
|
61
|
Wu HJ, Seib KL, Srikhanta YN, Edwards J, Kidd SP, Maguire TL, Hamilton A, Pan KT, Hsiao HH, Yao CW, Grimmond SM, Apicella MA, McEwan AG, Wang AHJ, Jennings MP. Manganese regulation of virulence factors and oxidative stress resistance in Neisseria gonorrhoeae. J Proteomics 2009; 73:899-916. [PMID: 20004262 DOI: 10.1016/j.jprot.2009.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/13/2009] [Accepted: 12/01/2009] [Indexed: 01/19/2023]
Abstract
Neisseria gonorrhoeae has evolved a complex and novel network of oxidative stress responses, including defence mechanisms that are dependent on manganese (Mn). We performed systematic analyses at the transcriptomic and proteomic (1D SDS-PAGE and Isotope-Coded Affinity Tag [ICAT]) levels to investigate the global expression changes that take place in a high Mn environment, which results in a Mn-dependent oxidative stress resistance phenotype. These studies revealed that there were proteins regulated at the post-transcriptional level under conditions of increased Mn concentration, including proteins involved in virulence (e.g., pilin, a key adhesin), oxidative stress defence (e.g., superoxide dismutase), cellular metabolism, protein synthesis, RNA processing and cell division. Mn regulation of inorganic pyrophosphatase (Ppa) indicated the potential involvement of phosphate metabolism in the Mn-dependent oxidative stress defence. A detailed analysis of the role of Ppa and polyphosphate kinase (Ppk) in the gonococcal oxidative stress response revealed that ppk and ppa mutant strains showed increased resistance to oxidative stress. Investigation of these mutants grown with high Mn suggests that phosphate and pyrophosphate are involved in Mn-dependent oxidative stress resistance.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Core Facilities for Proteomics Research, Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Emadali A, Gallagher-Gambarelli M. La protéomique quantitative par la méthode SILAC. Med Sci (Paris) 2009; 25:835-42. [DOI: 10.1051/medsci/20092510835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
63
|
Bousquet-Dubouch MP, Nguen S, Bouyssié D, Burlet-Schiltz O, French SW, Monsarrat B, Bardag-Gorce F. Chronic ethanol feeding affects proteasome-interacting proteins. Proteomics 2009; 9:3609-22. [PMID: 19609968 DOI: 10.1002/pmic.200800959] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies on alcoholic liver injury mechanisms show a significant inhibition of the proteasome activity. To investigate this phenomenon, we isolated proteasome complexes from the liver of rats fed ethanol chronically, and from the liver of their pair-fed controls, using a non-denaturing multiple centrifugations procedure to preserve proteasome-interacting proteins (PIPs). ICAT and MS/MS spectral counting, further confirmed by Western blot, showed that the levels of several PIPs were significantly decreased in the isolated ethanol proteasome fractions. This was the case of PA28alpha/beta proteasome activator subunits, and of three proteasome-associated deubiquitinases, Rpn11, ubiquitin C-terminal hydrolase 14, and ubiquitin carboxyl-terminal hydrolase L5. Interestingly, Rpn13 C-terminal end was missing in the ethanol proteasome fraction, which probably altered the linking of ubiquitin carboxyl-terminal hydrolase L5 to the proteasome. 20S proteasome and most 19S subunits were however not changed but Ecm29, a protein known to stabilize the interactions between the 20S and its activators, was decreased in the isolated ethanol proteasome fractions. It is proposed that ethanol metabolism causes proteasome inhibition by several mechanisms, including by altering PIPs and proteasome regulatory complexes binding to the proteasome.
Collapse
|
64
|
Stanislas T, Bouyssie D, Rossignol M, Vesa S, Fromentin J, Morel J, Pichereaux C, Monsarrat B, Simon-Plas F. Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco. Mol Cell Proteomics 2009; 8:2186-98. [PMID: 19525550 PMCID: PMC2742443 DOI: 10.1074/mcp.m900090-mcp200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/02/2009] [Indexed: 11/06/2022] Open
Abstract
A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains playing important roles in protein sorting, signal transduction, or infection by pathogens. In plants, as previously observed for animal microdomains, detergent-resistant fractions, enriched in sphingolipids and sterols, were isolated from plasma membrane. A characterization of their proteic content revealed their enrichment in proteins involved in signaling and response to biotic and abiotic stress and cell trafficking suggesting that these domains were likely to be involved in such physiological processes. In the present study, we used (14)N/(15)N metabolic labeling to compare, using a global quantitative proteomics approach, the content of tobacco detergent-resistant membranes extracted from cells treated or not with cryptogein, an elicitor of defense reaction. To analyze the data, we developed a software allowing an automatic quantification of the proteins identified. The results obtained indicate that, although the association to detergent-resistant membranes of most proteins remained unchanged upon cryptogein treatment, five proteins had their relative abundance modified. Four proteins related to cell trafficking (four dynamins) were less abundant in the detergent-resistant membrane fraction after cryptogein treatment, whereas one signaling protein (a 14-3-3 protein) was enriched. This analysis indicates that plant microdomains could, like their animal counterpart, play a role in the early signaling process underlying the setup of defense reaction. Furthermore proteins identified as differentially associated to tobacco detergent-resistant membranes after cryptogein challenge are involved in signaling and vesicular trafficking as already observed in similar studies performed in animal cells upon biological stimuli. This suggests that the ways by which the dynamic association of proteins to microdomains could participate in the regulation of the signaling process may be conserved between plant and animals.
Collapse
Affiliation(s)
- Thomas Stanislas
- From the ‡Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon, France
| | - David Bouyssie
- ¶Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, 205 route de Narbonne, F-31077 Toulouse, France
- ‖IPBS, Université Paul Sabatier, Université de Toulouse, F-31077 Toulouse, France, and
| | - Michel Rossignol
- ¶Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, 205 route de Narbonne, F-31077 Toulouse, France
- ‖IPBS, Université Paul Sabatier, Université de Toulouse, F-31077 Toulouse, France, and
- **IPBS, Institut Fédératif de Recherche 40 Plateforme Protéomique, 205 route de Narbonne, F-31077 Toulouse, France
| | - Simona Vesa
- From the ‡Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon, France
| | - Jérôme Fromentin
- From the ‡Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon, France
| | - Johanne Morel
- From the ‡Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon, France
| | - Carole Pichereaux
- ¶Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, 205 route de Narbonne, F-31077 Toulouse, France
- ‖IPBS, Université Paul Sabatier, Université de Toulouse, F-31077 Toulouse, France, and
- **IPBS, Institut Fédératif de Recherche 40 Plateforme Protéomique, 205 route de Narbonne, F-31077 Toulouse, France
| | - Bernard Monsarrat
- ¶Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, 205 route de Narbonne, F-31077 Toulouse, France
- ‖IPBS, Université Paul Sabatier, Université de Toulouse, F-31077 Toulouse, France, and
| | - Françoise Simon-Plas
- From the ‡Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon, France
| |
Collapse
|
65
|
Tsou CC, Tsui YH, Yian YH, Chen YJ, Yang HY, Yu CY, Lynn KS, Chen YJ, Sung TY, Hsu WL. MaXIC-Q Web: a fully automated web service using statistical and computational methods for protein quantitation based on stable isotope labeling and LC-MS. Nucleic Acids Res 2009; 37:W661-9. [PMID: 19528069 PMCID: PMC2703943 DOI: 10.1093/nar/gkp476] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Isotope labeling combined with liquid chromatography-mass spectrometry (LC-MS) provides a robust platform for analyzing differential protein expression in proteomics research. We present a web service, called MaXIC-Q Web (http://ms.iis.sinica.edu.tw/MaXIC-Q_Web/), for quantitation analysis of large-scale datasets generated from proteomics experiments using various stable isotope-labeling techniques, e.g. SILAC, ICAT and user-developed labeling methods. It accepts spectral files in the standard mzXML format and search results from SEQUEST, Mascot and ProteinProphet as input. Furthermore, MaXIC-Q Web uses statistical and computational methods to construct two kinds of elution profiles for each ion, namely, PIMS (projected ion mass spectrum) and XIC (extracted ion chromatogram) from MS data. Toward accurate quantitation, a stringent validation procedure is performed on PIMSs to filter out peptide ions interfered with co-eluting peptides or noise. The areas of XICs determine ion abundances, which are used to calculate peptide and protein ratios. Since MaXIC-Q Web adopts stringent validation on spectral data, it achieves high accuracy so that manual validation effort can be substantially reduced. Furthermore, it provides various visualization diagrams and comprehensive quantitation reports so that users can conveniently inspect quantitation results. In summary, MaXIC-Q Web is a user-friendly, interactive, robust, generic web service for quantitation based on ICAT and SILAC labeling techniques.
Collapse
Affiliation(s)
- Chih-Chiang Tsou
- Institute of Information Science and Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan 115
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Dupierris V, Masselon C, Court M, Kieffer-Jaquinod S, Bruley C. A toolbox for validation of mass spectrometry peptides identification and generation of database: IRMa. ACTA ACUST UNITED AC 2009; 25:1980-1. [PMID: 19420053 DOI: 10.1093/bioinformatics/btp301] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SUMMARY The IRMa toolbox provides an interactive application to assist in the validation of Mascot search results. It allows automatic filtering of Mascot identification results as well as manual confirmation or rejection of individual PSM (a match between a fragmentation mass spectrum and a peptide). Dynamic grouping and coherence of information are maintained by the software in real time. Validated results can be exported under various forms, including an identification database (MSIdb). This allows biologists to compile search results from a whole study in a unique repository in order to provide a summarized view of their project. IRMa also features a fully automated version that can be used in a high-throughput pipeline. Given filter parameters, it can delete hits with no significant PSM, regroup hits identified by the same peptide(s) and export the result to the specified format without user intervention. AVAILABILITY http://biodev.extra.cea.fr/docs/irma (java 1.5 or higher needed).
Collapse
|
67
|
Burande CF, Heuzé ML, Lamsoul I, Monsarrat B, Uttenweiler-Joseph S, Lutz PG. A label-free quantitative proteomics strategy to identify E3 ubiquitin ligase substrates targeted to proteasome degradation. Mol Cell Proteomics 2009; 8:1719-27. [PMID: 19376791 DOI: 10.1074/mcp.m800410-mcp200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome system is a central mechanism for controlled proteolysis that regulates numerous cellular processes in eukaryotes. As such, defects in this system can contribute to disease pathogenesis. In this pathway, E3 ubiquitin ligases provide platforms for binding specific substrates, thereby coordinating their ubiquitylation and subsequent degradation by the proteasome. Despite the identification of many E3 ubiquitin ligases, the identities of their specific substrates are still largely unresolved. The ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2 (ASB2) gene that we initially identified as a retinoic acid-response gene in acute promyelocytic leukemia cells encodes the specificity subunit of an E3 ubiquitin ligase complex that is involved in hematopoietic cell differentiation. We have recently identified filamin A and filamin B as the first ASB2 targets and shown that ASB2 triggers ubiquitylation and proteasome-mediated degradation of these proteins. Here a global quantitative proteomics strategy is provided to identify substrates of E3 ubiquitin ligases targeted to proteasomal degradation. Indeed we used label-free methods for quantifying proteins identified by shotgun proteomics in extracts of cells expressing wild-type ASB2 or an E3 ubiquitin ligase-defective mutant of ASB2 under the control of an inducible promoter. Measurements of spectral count and mass spectrometric signal intensity demonstrated a drastic decrease of filamin A and filamin B in myeloid leukemia cells expressing wild-type ASB2 compared with cells expressing an E3 ubiquitin ligase-defective mutant of ASB2. Altogether we provide an original strategy that enables identification of E3 ubiquitin ligase substrates that have to be degraded.
Collapse
Affiliation(s)
- Clara F Burande
- Institut de Pharmacologie et de Biologie Structurale (IPBS) CNRS 205 Route de Narbonne and IPBS, Université Paul Sabatier Université de Toulouse, Toulouse France
| | | | | | | | | | | |
Collapse
|
68
|
Bousquet-Dubouch MP, Baudelet E, Guérin F, Matondo M, Uttenweiler-Joseph S, Burlet-Schiltz O, Monsarrat B. Affinity purification strategy to capture human endogenous proteasome complexes diversity and to identify proteasome-interacting proteins. Mol Cell Proteomics 2009; 8:1150-64. [PMID: 19193609 DOI: 10.1074/mcp.m800193-mcp200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An affinity purification strategy was developed to characterize human proteasome complexes diversity as well as endogenous proteasome-interacting proteins (PIPs). This single step procedure, initially used for 20 S proteasome purification, was adapted to purify all existing physiological proteasome complexes associated to their various regulatory complexes and to their interacting partners. The method was applied to the purification of proteasome complexes and their PIPs from human erythrocytes but can be used to purify proteasomes from any human sample as starting material. The benefit of in vivo formaldehyde cross-linking as a stabilizer of protein-protein interactions was studied by comparing the status of purified proteasomes and the identified proteins in both protocols (with or without formaldehyde cross-linking). Subsequent proteomics analyses identified all proteasomal subunits, known regulators, and recently assigned partners. Moreover other proteins implicated at different levels of the ubiquitin-proteasome system were also identified for the first time as PIPs. One of them, the ubiquitin-specific protease USP7, also known as HAUSP, is an important player in the p53-HDM2 pathway. The specificity of the interaction was further confirmed using a complementary approach that consisted of the reverse immunoprecipitation with HAUSP as a bait. Altogether we provide a valuable tool that should contribute, through the identification of partners likely to affect proteasomal function, to a better understanding of this complex proteolytic machinery in any living human cell and/or organ/tissue and in different cell physiological states.
Collapse
|
69
|
Strande V, Canelle L, Tastet C, Burlet-Schiltz O, Monsarrat B, Hondermarck H. The proteome of the human breast cancer cell line MDA-MB-231: Analysis by LTQ-Orbitrap mass spectrometry. Proteomics Clin Appl 2009; 3:41-50. [DOI: 10.1002/prca.200800083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Indexed: 01/04/2023]
|
70
|
Raymond AA, de Peredo AG, Stella A, Ishida-Yamamoto A, Bouyssie D, Serre G, Monsarrat B, Simon M. Lamellar Bodies of Human Epidermis. Mol Cell Proteomics 2008; 7:2151-75. [DOI: 10.1074/mcp.m700334-mcp200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
71
|
Proteomic analysis reveals selective impediment of neuronal remodeling upon Borna disease virus infection. J Virol 2008; 82:12265-79. [PMID: 18829749 DOI: 10.1128/jvi.01615-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neurotropic virus Borna disease virus (BDV) persists in the central nervous systems of a wide variety of vertebrates and causes behavioral disorders. BDV represents an intriguing example of a virus whose persistence in neurons leads to altered brain function in the absence of overt cytolysis and inflammation. The bases of BDV-induced behavioral impairment remain largely unknown. To better characterize the neuronal response to BDV infection, we compared the proteomes of primary cultures of cortical neurons with and without BDV infection. We used two-dimensional liquid chromatography fractionation, followed by protein identification by nanoliquid chromatography-tandem mass spectrometry. This analysis revealed distinct changes in proteins implicated in neurotransmission, neurogenesis, cytoskeleton dynamics, and the regulation of gene expression and chromatin remodeling. We also demonstrated the selective interference of BDV with processes related to the adaptative response of neurons, i.e., defects in proteins regulating synaptic function, global rigidification of the cytoskeleton network, and altered expression of transcriptional and translational repressors. Thus, this work provides a global view of the neuronal changes induced by BDV infection together with new clues to understand the mechanisms underlying the selective interference with neuronal plasticity and remodeling that characterizes BDV persistence.
Collapse
|
72
|
Abstract
Schizophrenia is a multifaceted neuropsychiatric disorder. Its onset is the result of complex interactions between genetic, developmental and environmental factors. It almost certainly presents a heterogeneous group of aetiologies which may not be reflected in the symptomatic/clinical presentation of patients. Therefore, a better molecular understanding of the disease onset and progression is urgently needed. The high complexity of the disorder and the heterogeneity of patient populations account for the slow progress of biomarker discovery approaches. Multi-omics profiling approaches can be employed to investigate large numbers of patient and control samples in a single experiment. These large scale experiments are required to identify disease intrinsic molecular signatures as well as patient subgroups with potentially distinct biochemical pathways underpinning their symptoms. In this overview, we describe some of the most important challenges for biomarker discovery for psychiatric disorders and emphasize how these problems contribute to the requirement of large sample numbers. Results of MS-based protein profiling studies in schizophrenia research are reviewed and technical advantages and difficulties of the methodologies described. We outline recent technological advances that generated impressive results in other areas of research and point to their applicability for biomarker discovery in psychiatric disorders.
Collapse
Affiliation(s)
- Emanuel Schwarz
- Institute of Biotechnology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
73
|
Roux-Dalvai F, Gonzalez de Peredo A, Simó C, Guerrier L, Bouyssié D, Zanella A, Citterio A, Burlet-Schiltz O, Boschetti E, Righetti PG, Monsarrat B. Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry. Mol Cell Proteomics 2008; 7:2254-69. [PMID: 18614565 DOI: 10.1074/mcp.m800037-mcp200] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The erythrocyte cytoplasmic proteome is composed of 98% hemoglobin; the remaining 2% is largely unexplored. Here we used a combinatorial library of hexameric peptides as a capturing agent to lower the signal of hemoglobin and amplify the signal of low to very low abundance proteins in the cytoplasm of human red blood cells (RBCs). Two types of hexapeptide library beads have been adopted: amino-terminal hexapeptide beads and beads in which the peptides have been further derivatized by carboxylation. The amplification of the signal of low abundance and suppression of the signal of high abundance species were fully demonstrated by two-dimensional gel maps and nano-LC-MSMS analysis. The effect of this new methodology on quantitative information also was explored. Moreover using this approach on an LTQ-Orbitrap mass spectrometer, we could identify with high confidence as many as 1578 proteins in the cytoplasmic fraction of a highly purified preparation of RBCs, allowing a deep exploration of the classical RBC pathways as well as the identification of unexpected minor proteins. In addition, we were able to detect the presence of eight different hemoglobin chains including embryonic and newly discovered globin chains. Thus, this extensive study provides a huge data set of proteins that are present in the RBC cytoplasm that may help to better understand the biology of this simplified cell and may open the way to further studies on blood pathologies using targeted approaches.
Collapse
Affiliation(s)
- Florence Roux-Dalvai
- Institute of Pharmacology and Structural Biology, CNRS, Université de Toulouse, 31077 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Quantitative proteomics as a new piece of the systems biology puzzle. J Proteomics 2008; 71:357-67. [PMID: 18640294 DOI: 10.1016/j.jprot.2008.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/30/2008] [Accepted: 07/02/2008] [Indexed: 12/19/2022]
Abstract
The definition of the role of each gene product in its cellular context is of outstanding importance in the post-genomics era. Recent technological innovations have driven research in proteomics from single protein characterization to global approaches, aiming to achieve a comprehensive qualitative and quantitative description of complex molecular mechanisms. In this review, we discuss the methodology of quantitative proteomics as it applies to the analysis of complex biological model systems. A special attention will be given to model systems that are suitable for functional genomic studies, where the potential of quantitative proteomics can be effectively demonstrated.
Collapse
|
75
|
Experimental and computational approaches to quantitative proteomics: Status quo and outlook. J Proteomics 2008; 71:19-33. [DOI: 10.1016/j.jprot.2007.12.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 01/11/2023]
|