51
|
Genomic Instability:Signaling Pathways Orchestrating the Responsesto Ionizing Radiation and Cisplatin. Genome Integr 2005. [DOI: 10.1007/7050_010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
52
|
Koul HK, Maroni PD, Meacham RB, Crawford D, Koul S. p42/p44 Mitogen-Activated Protein Kinase Signal Transduction Pathway: A Novel Target for the Treatment of Hormone-Resistant Prostate Cancer? Ann N Y Acad Sci 2004; 1030:243-52. [PMID: 15659803 DOI: 10.1196/annals.1329.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prostate cancer is the second leading cause of cancer deaths in men. Conventional therapies produce a high rate of cure for patients with localized prostate cancer, but there is no cure once the disease has spread beyond the prostate. Androgen withdrawal remains the only treatment for these men with clinically advanced disease; however, most of these men, who initially respond to hormone ablation therapy, fail and the disease progresses. There is at present no effective treatment for hormone-independent prostate cancer. Several lines of evidence suggest a role of p42/p44 mitogen-activated protein kinase (p42/p44 MAP kinase) signal transduction pathways in prostate cancer. At the molecular level, a variety of genetic alterations lead to an epigenetic mechanism by which a feedback autocrine loop between membrane receptors and associated ligands serves as an essential component of the growth, proliferation, and metastasis of prostate cancer at an advanced and androgen-independent stage. Peptide growth factors are known to exert their effects by a complex array of mechanisms primarily mediated by the p42/p44 MAP kinase signal transduction pathway. Thus, we hypothesized that MAP kinase signal transduction pathways could serve as new and novel targets in prostate cancer therapy. In this article we provide an overview of the role played by MAP kinase signal transduction in the prostate.
Collapse
Affiliation(s)
- Hari K Koul
- Signal Transduction and Molecular Biology Laboratory, University of Colorado School of Medicine, Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
53
|
Hagan M, Yacoub A, Dent P. Ionizing Radiation Causes a Dose-Dependent Release of Transforming Growth Factor α In vitro from Irradiated Xenografts and during Palliative Treatment of Hormone-Refractory Prostate Carcinoma. Clin Cancer Res 2004; 10:5724-31. [PMID: 15355899 DOI: 10.1158/1078-0432.ccr-04-0420] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Characterize the radiation response for transforming growth factor (TGF) alpha shedding in vitro and in vivo. We also report the shedding of TGF alpha by patients undergoing irradiation for hormone-refractory prostate cancer. EXPERIMENTAL DESIGN TGF alpha levels were determined by ELISA. DU145 xenografts were established on the flanks of athymic nu/nu mice. Expression of phospho-extracellular signal-regulated kinase (ERK)1/2 and phospho-epidermal growth factor receptor (EGFR) and the DNA repair proteins XRCC1 and ERCC1 were determined by Western analyses. RESULTS Exposure to ionizing radiation results in a dose-dependent release of TGF alpha. Once released, TGF alpha stimulates EGFR-ERK1/2 signaling in unirradiated cells. Blockade of the EGFR with the tyrphostin AG1478 eliminates the up-regulation XRCC1 and ERCC1 by TGF alpha or irradiation. After irradiation, cells are refractory to additional transactivation of EGFR by additional irradiation for 8 to 12 hours. Irradiation during this refractory period does not increase the expression of XRCC1 or ERCC1. Ligand activation of EGFR is maintained during the refractory period. Irradiation of DU145 xenografts also results in the activation of ERK1/2, release of TGF alpha, and a similar refractory period. Ionizing irradiation also results in the release of TGF alpha for patients undergoing radiation therapy for hormone-refractory prostate cancer. CONCLUSIONS Irradiation results in a dose-dependent increase in TGF alpha capable of enhancing the growth of DU145 xenografts. TGF alpha is also shed following radiation therapy of patients treated for hormone-refractory prostate cancer. Radiation transactivation of the EGFR produces a radio-refractory period, which lasts for several hours. During this period, additional irradiation fails to induce XRCC1, ERCC1, or additional TGF alpha release.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/radiotherapy
- Animals
- Blotting, Western
- Case-Control Studies
- DNA Repair
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Radiation
- Endonucleases/metabolism
- Enzyme-Linked Immunosorbent Assay
- ErbB Receptors/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/radiation effects
- Humans
- In Vitro Techniques
- Male
- Mice
- Mice, Nude
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/radiotherapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/radiotherapy
- Radiation, Ionizing
- Transforming Growth Factor alpha/metabolism
- Transplantation, Heterologous
- Tumor Cells, Cultured
- Up-Regulation
- Whole-Body Irradiation
- X-ray Repair Cross Complementing Protein 1
Collapse
Affiliation(s)
- Michael Hagan
- Department of Radiation, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | |
Collapse
|
54
|
Maroni PD, Koul S, Meacham RB, Koul HK. Mitogen Activated Protein kinase signal transduction pathways in the prostate. Cell Commun Signal 2004; 2:5. [PMID: 15219238 PMCID: PMC449737 DOI: 10.1186/1478-811x-2-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 06/25/2004] [Indexed: 01/03/2023] Open
Abstract
The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy.
Collapse
Affiliation(s)
- Paul D Maroni
- Signal Transduction and Molecular Biology Laboratory, Division of Urology, Department of Surgery, University of Colorado School of Medicine, 4200 East Ninth Avenue, C-319, Denver, CO 80262, USA
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, 4200 East Ninth Avenue, C-319, Denver, CO 80262, USA
| | - Sweaty Koul
- Signal Transduction and Molecular Biology Laboratory, Division of Urology, Department of Surgery, University of Colorado School of Medicine, 4200 East Ninth Avenue, C-319, Denver, CO 80262, USA
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, 4200 East Ninth Avenue, C-319, Denver, CO 80262, USA
| | - Randall B Meacham
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, 4200 East Ninth Avenue, C-319, Denver, CO 80262, USA
| | - Hari K Koul
- Signal Transduction and Molecular Biology Laboratory, Division of Urology, Department of Surgery, University of Colorado School of Medicine, 4200 East Ninth Avenue, C-319, Denver, CO 80262, USA
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, 4200 East Ninth Avenue, C-319, Denver, CO 80262, USA
| |
Collapse
|
55
|
Narang H, Krishna M. Mitogen-activated protein kinases: specificity of response to dose of ionizing radiation in liver. JOURNAL OF RADIATION RESEARCH 2004; 45:213-220. [PMID: 15304963 DOI: 10.1269/jrr.45.213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ionizing radiation is known to activate both the cytotoxic stress-activated kinases (SAPK/JNK, p38) and the cytoprotective mitogen-activated protein kinases (MAPKs, ERKs), which send divergent signals to the nucleus. However, all these kinases could not be activated simultaneously and at all the doses. An attempt has been made in this study to establish the dose and temporal response of these kinases with a view to establish the identity of the transcription factors that remain activated because only these will be translated into an effect. The study indicates that the stress-activated kinases (SAPK/JNK and p38) are activated by very low doses (0.1 Gy) of ionizing radiation. An induction of expression of MKK4, precursor to SAPK and p38, was found at lower doses (0.1-0.5 Gy). However, the cytoprotective ERK2 showed a progressive increase in expression with dose, except at 3 Gy where it shows a marginal decline. The stress-activated kinases show an increased expression or activation at early periods, unlike ERK2, which shows a prolonged response to stimuli. This study reveals that in the in vivo condition there is a chronological order of activation of the kinases and a dose-dependent activation. The activations of the cytoplasmic kinases and the transcription factors, Elk-1 and c-Jun, both show prolonged activation and maximum response at high doses.
Collapse
Affiliation(s)
- H Narang
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre Trombay, Mumbai, India
| | | |
Collapse
|
56
|
Inoue M, Shen GP, Chaudhry MA, Galick H, Blaisdell JO, Wallace SS. Expression of the oxidative base excision repair enzymes is not induced in TK6 human lymphoblastoid cells after low doses of ionizing radiation. Radiat Res 2004; 161:409-17. [PMID: 15038771 DOI: 10.1667/3163] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Most of the DNA damage produced by ionizing radiation is repaired by the base excision repair (BER) pathway. To determine whether the BER genes were up-regulated by low doses of ionizing radiation, we investigated their expression in TK6 human lymphoblastoid cells by measuring mRNA levels using real-time quantitative PCR. No induction at the transcriptional level of any of the base excision repair genes, NTH1 (NTHL1), OGG1, NEIL1, NEIL2, NEIL3, APE1, POLB, or accessory protein genes, LIG3, XRCC1 or XPG, was found at gamma-radiation doses ranging from 1 cGy to 2 Gy in a 24-h period. As has been measured in other cell lines, a dose-dependent induction of CDKN1A (WAF1) mRNA levels was observed in TK6 cells in the dose range of 0.5 to 2.0 Gy. We also examined BER enzyme activity on 8-oxoguanine-, dihydrouracil- and furan-containing oligonucleotide substrates and found no increase in extracts of TK6 cells after gamma-ray doses of 0.5-2.0 Gy. These data were corroborated by Western blot analysis of APE1 and NTH1, suggesting that the BER enzymes are also not up-regulated at the post-transcriptional level after ionizing radiation exposure.
Collapse
Affiliation(s)
- M Inoue
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, Burlington, Vermont 05405-0068, USA
| | | | | | | | | | | |
Collapse
|
57
|
Zhao W, Goswami PC, Robbins MEC. Radiation-Induced Up-regulation of Mmp2 Involves Increased mRNA Stability, Redox Modulation, and MAPK Activation. Radiat Res 2004; 161:418-29. [PMID: 15038770 DOI: 10.1667/3155] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have previously observed time- and dose-dependent increases in matrix metalloproteinase 2 (Mmp2) protein levels in rat tubule epithelial cells (NRK52E) after irradiation. However, the mechanism(s) involved remains unclear. In the present study, irradiating NRK52E cells with 0-20 Gy gamma rays was associated with time- and dose-dependent increases in Mmp2 mRNA. Studies using the transcription inhibitor actinomycin D (ActD) added 24 h after irradiation revealed the t(1/2) of Mmp2 mRNA to be approximately 8 h in control cells. In contrast, the increase in Mmp2 mRNA levels in irradiated cells was essentially unchanged after incubation with ActD for up to 12 h. Incubating cells with the antioxidants N-acetylcysteine or ebselen or the MEK pathway inhibitors PD98059 and U0126 prior to irradiation abolished the radiation-induced up-regulation of Mmp2. Irradiating NRK52E cells led to reactive oxygen species-mediated Erk1/2 activation; preincubation with NAC prevented the radiation-induced increase in phosphorylated Erk1/2. Transfecting cells with a dominant-negative ERK mutant completely inhibited radiation-induced Erk phosphorylation and abolished the radiation-induced up-regulation of Mmp2 protein. Thus the radiation-induced up-regulation of Mmp2 mRNA is due in part to increased mRNA stability and is mediated by redox; the ERK MAPK signaling pathway may be involved.
Collapse
Affiliation(s)
- Weiling Zhao
- Department of Radiation Oncology, Brain Tumor Center of Wake Forest University, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
58
|
Szkanderová S, Port M, Stulík J, Hernychová L, Kasalová I, Van Beuningen D, Abend M. Comparison of the abundance of 10 radiation-induced proteins with their differential gene expression in L929 cells. Int J Radiat Biol 2003; 79:623-33. [PMID: 14555345 DOI: 10.1080/09553000310001606821] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To determine whether radiation-induced changes in protein abundance can be correlated with their differential gene expression in a murine fibroblast L929 cell line. MATERIALS AND METHODS L929 cells were irradiated with 6 Gy. Cell lysates were collected at different points in time (20 min, 12, 24, 36, 48 and 72 h). The extracted proteins were separated by two-dimensional gel electrophoresis and quantified using computerized image analysis. Proteins exhibiting a differential expression equal to or more than twofold were identified by mass spectrometry following trypsin digestion. From these, 10 proteins characterized by large changes of radiation-induced abundance were selected in order to measure their corresponding gene expression using RTQ-PCR (real-time quantitative polymerase chain reaction). RESULTS Up to 15-fold changes in the abundance of these 10 proteins were associated with no detectable changes more than twofold on the gene expression level. However, one gene (VEGF-D) showed a significant (p=0.005) up-regulation (1.8-fold). CONCLUSIONS Deducing protein abundance from mRNA expression levels and vice versa appears to be of limited use. Furthermore, examination of transcriptional and translational changes provides different but complementary information.
Collapse
Affiliation(s)
- S Szkanderová
- Institute of Radiobiology and Immunology, Purkyne Military Medical Academy, Hradec Králové, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Within the last 15 years, multiple new signal transduction pathways within cells have been discovered. Many of these pathways belong to what is now termed 'the mitogen-activated protein kinase (MAPK) superfamily.' These pathways have been linked to the growth factor-mediated regulation of diverse cellular events such as proliferation, senescence, differentiation and apoptosis. Based on currently available data, exposure of cells to ionizing radiation and a variety of other toxic stresses induces simultaneous compensatory activation of multiple MAPK pathways. These signals play critical roles in controlling cell survival and repopulation effects following irradiation, in a cell-type-dependent manner. Some of the signaling pathways activated following radiation exposure are those normally activated by mitogens, such as the 'classical' MAPK (also known as the ERK) pathway. Other MAPK pathways activated by radiation include those downstream of death receptors and procaspases, and DNA-damage signals, including the JNK and P38 MAPK pathways. The expression and release of autocrine growth factor ligands, such as (transforming growth factor alpha) and TNF-alpha, following irradiation can also enhance the responses of MAPK pathways in cells and, consequently, of bystander cells. Thus, the ability of radiation to activate MAPK signaling pathways may depend on the expression of multiple growth factor receptors, autocrine factors and Ras mutation. Enhanced basal signaling by proto-oncogenes such as K-/H-/N-RAS may provide a radioprotective and growth-promoting signal. In many cell types, this may be via the PI3K pathway; in others, this may occur through nuclear factor-kappa B or multiple MAPK pathways. This review will describe the enzymes within the known MAPK signaling pathways and discuss their activation and roles in cellular radiation responses.
Collapse
Affiliation(s)
- Paul Dent
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298-0058, USA.
| | | | | | | | | |
Collapse
|
60
|
Amundson SA, Bittner M, Fornace AJ. Functional genomics as a window on radiation stress signaling. Oncogene 2003; 22:5828-33. [PMID: 12947389 DOI: 10.1038/sj.onc.1206681] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exposure to ionizing radiation, as well as other stresses, results in the activation of complex signal transduction pathways, which eventually shape the response of cells and organisms. Some of the important pathways responding to radiation include the ATM/P53 pathway, MAPK cascades and NF-kappaB activation, as well as signaling events initiated at the cell membrane and within the cytoplasm. Alterations in gene expression play roles both as intermediaries in signaling and as downstream effector genes. Differences in cell type, interindividual genetic differences and crosstalk occurring between signaling pathways may help to channel radiation stress signals between cell cycle delay, enhanced DNA repair, and apoptosis. These differences may in turn help determine the likelihood of late effects of radiation exposure, including carcinogenesis and fibrosis. The tools of the postgenomic era enable high-throughput studies of the multiple changes resulting from the interplay of radiation signaling pathways. Gene expression profiling, in particular shows great promise, both in terms of insight into basic molecular mechanisms and for the future hope of biomarker development and individual tailoring of cancer therapy.
Collapse
Affiliation(s)
- Sally A Amundson
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
61
|
Amorino GP, Mikkelsen RB, Valerie K, Schmidt-Ullrich RK. Dominant-negative cAMP-responsive element-binding protein inhibits proliferating cell nuclear antigen and DNA repair, leading to increased cellular radiosensitivity. J Biol Chem 2003; 278:29394-9. [PMID: 12734192 DOI: 10.1074/jbc.m304012200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selective inhibition of the epidermal growth factor receptor or mitogen-activated protein kinase (MAPK) results in radiosensitization of cancer cells. One potential mechanism involves cAMP-responsive element-binding protein, which is activated by radiation via the epidermal growth factor receptor/MAPK pathway and which regulates synthesis of proliferating cell nuclear antigen (PCNA), a protein involved in repair of ionizing radiation-induced DNA damage. To test for a role of CREB in cellular radiosensitivity, CHO cells were transfected with plasmids expressing dominant-negative CREB mutants (CR133 or KCREB), and various end-points were measured 48 h later. Basal levels of PCNA-CAT reporter construct activity were reduced by 60 and 40% following expression of CR133 and KCREB, respectively; similar decreases were observed in PCNA protein levels. Pulsed-field gel electrophoresis measurements showed that CR133 inhibited the repair of radiation-induced DNA double-strand breaks, and this effect was reversed by over-expression of PCNA; dominant-negative CREB also significantly inhibited split-dose recovery. Clonogenic assays were used to determine surviving fraction; the dose enhancement ratios for dominant-negative CREB-expressing cells compared with control (vector alone) were 1.5 and 1.3 for CR133 and KCREB, respectively. Importantly, co-transfection of mutant CREB and a construct constitutively expressing PCNA protein restored radiosensitivity of CHO cells back to wild-type levels. Moreover, cells expressing either CREB mutant showed no significant cell cycle redistribution. These data demonstrate that genetic disruption of CREB results in radiosensitization, and that this effect can be explained by a mechanism involving decreased PCNA expression and inhibition of DNA repair.
Collapse
Affiliation(s)
- George P Amorino
- Department of Radiation Oncology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
62
|
Carroll PM, Dougherty B, Ross-Macdonald P, Browman K, FitzGerald K. Model systems in drug discovery: chemical genetics meets genomics. Pharmacol Ther 2003; 99:183-220. [PMID: 12888112 DOI: 10.1016/s0163-7258(03)00059-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Animal model systems are an intricate part of the discovery and development of new medicines. The sequencing of not only the human genome but also those of the various pathogenic bacteria, the nematode Caenorhabditis elegans, the fruitfly Drosophila, and the mouse has enabled the discovery of new drug targets to push forward at an unprecedented pace. The knowledge and tools in these "model" systems are allowing researchers to carry out experiments more efficiently and are uncovering previously hidden biological connections. While the history of bacteria, yeast, and mice in drug discovery are long, their roles are ever evolving. In contrast, the history of Drosophila and C. elegans at pharmaceutical companies is short. We will briefly review the historic role of each model organism in drug discovery and then update the readers as to the abilities and liabilities of each model within the context of drug development.
Collapse
Affiliation(s)
- Pamela M Carroll
- Department of Applied Genomics, Bristol-Myers Squibb, Pennington NJ 08534, USA
| | | | | | | | | |
Collapse
|
63
|
Yacoub A, McKinstry R, Hinman D, Chung T, Dent P, Hagan MP. Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling. Radiat Res 2003; 159:439-52. [PMID: 12643788 DOI: 10.1667/0033-7587(2003)159[0439:egfair]2.0.co;2] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This work examined the importance of radiation-induced and ligand-induced EGFR-ERK signaling for the regulation of DNA repair proteins XRCC1 and ERCC1 in prostate carcinoma cells, DU145 (TP53(mut)), displaying EGFR-TGFA-dependent autocrine growth and high MAPK (ERK1/2) activity, and LNCaP (TP53(wt)) cells expressing low constitutive levels of ERK1/2 activity. Using quantitative RT-PCR and Western analyses, we determined that ionizing radiation activated the DNA repair genes XRCC1 and ERCC1 in an ERK1/2-dependent fashion for each cell line. After irradiation, a rapid increase followed by a decrease in ERK1/2 activity preceded the increase in XRCC1/ERCC1 expression in DU145 cells, while only the rapid decrease in ERK1/2 preceded the increase in XRCC1/ERCC1 expression in LNCaP cells. Administration of EGF, however, markedly increased the up-regulation of phospho-ERK, ERCC1 and XRCC1 in both cell lines. Although the EGFR inhibitor tyrphostin (AG-1478) and the MEK inhibitor PD90859 both attenuated EGF-induced levels of the ERCC1 and XRCC1 protein, PD98059 blocked the induction of ERCC1 and XRCC1 by radiation more effectively in both cell lines. Inhibition of ERK at a level that reduced the up-regulation of DNA repair led to the persistence of apurinic/apyrimidinic (AP) sites of DNA damage and increased cell killing. Taken together, these data imply a complex control of DNA repair activation that may be more generally dependent on MAPK (ERK1/2) signaling than was previously noted. These data provide novel insights into the capacity of the EGFR-ERK signaling to modulate DNA repair in cancer cells and into the functional significance of this signaling.
Collapse
Affiliation(s)
- Adly Yacoub
- Department of Radiation Oncology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | |
Collapse
|
64
|
Dent P, Yacoub A, Contessa J, Caron R, Amorino G, Valerie K, Hagan MP, Grant S, Schmidt-Ullrich R. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res 2003; 159:283-300. [PMID: 12600231 DOI: 10.1667/0033-7587(2003)159[0283:sariao]2.0.co;2] [Citation(s) in RCA: 356] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure of cells to a variety of stresses induces compensatory activations of multiple intracellular signaling pathways. These activations can play critical roles in controlling cell survival and repopulation effects in a stress-specific and cell type-dependent manner. Some stress-induced signaling pathways are those normally activated by mitogens such as the EGFR/RAS/PI3K-MAPK pathway. Other pathways activated by stresses such as ionizing radiation include those downstream of death receptors, including pro-caspases and the transcription factor NFKB. This review will attempt to describe some of the complex network of signals induced by ionizing radiation and other cellular stresses in animal cells, with particular attention to signaling by growth factor and death receptors. This includes radiation-induced signaling via the EGFR and IGFI-R to the PI3K, MAPK, JNK, and p38 pathways as well as FAS-R and TNF-R signaling to pro-caspases and NFKB. The roles of autocrine ligands in the responses of cells and bystander cells to radiation and cellular stresses will also be discussed. Based on the data currently available, it appears that radiation can simultaneously activate multiple signaling pathways in cells. Reactive oxygen and nitrogen species may play an important role in this process by inhibiting protein tyrosine phosphatase activity. The ability of radiation to activate signaling pathways may depend on the expression of growth factor receptors, autocrine factors, RAS mutation, and PTEN expression. In other words, just because pathway X is activated by radiation in one cell type does not mean that pathway X will be activated in a different cell type. Radiation-induced signaling through growth factor receptors such as the EGFR may provide radioprotective signals through multiple downstream pathways. In some cell types, enhanced basal signaling by proto-oncogenes such as RAS may provide a radioprotective signal. In many cell types, this may be through PI3K, in others potentially by NFKB or MAPK. Receptor signaling is often dependent on autocrine factors, and synthesis of autocrine factors will have an impact on the amount of radiation-induced pathway activity. For example, cells expressing TGFalpha and HB-EGF will generate protection primarily through EGFR. Heregulin and neuregulins will generate protective signals through ERBB4/ERBB3. The impact on radiation-induced signaling of other autocrine and paracrine ligands such as TGFbeta and interleukin 6 is likely to be as complicated as described above for the ERBB receptors.
Collapse
Affiliation(s)
- Paul Dent
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298-0058, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Lu C, Fu W, Zhao D, Mattson MP. The DNA damaging agent etoposide activates a cell survival pathway involving alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors and mitogen-activated protein kinases in hippocampal neurons. J Neurosci Res 2002; 70:671-9. [PMID: 12424735 DOI: 10.1002/jnr.10413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Etoposide, an inhibitor of topoisomerase II that induces DNA damage and can trigger cell death, is used as a chemotherapeutic agent. Because chemotherapies can result in neurological complications and because DNA damage in neurons is implicated in the pathogenesis of several neurodegenerative disorders, we studied the effects of etoposide on cultured hippocampal neurons. We found that etoposide induces neuronal apoptosis and that, prior to the cell death commitment point, there is an increase in whole-cell alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-induced current but no change in N-methyl-D-aspartate (NMDA)-induced current. Associated with the increase in AMPA-induced current was an increase in the amounts of AMPA receptor subunits GluR1 and GluR4, whereas levels of the NMDA receptor subunit NR1 were unaffected by etoposide. AMPA receptor activation can result in excitotoxic cell death but can also activate signaling pathways that promote synaptic plasticity and cell survival. We found that etoposide increases the activation of p42 and p44 mitogen-activated protein (MAP) kinases, and that activation of the MAP kinases by etoposide requires AMPA receptor activation. Pharmacological blockade of AMPA receptors and p42/p44 MAP kinases, but not of NMDA receptors, exacerbated etoposide-induced cell death. These findings suggest that, although etoposide is neurotoxic, it also activates a cell survival pathway involving AMPA receptor-mediated activation of p42/p44 MAP kinases. Agents that selectively inhibit the cell life or death pathways triggered by DNA damage may prove useful in the settings of cancer and neurodegenerative disorders, respectively.
Collapse
Affiliation(s)
- Chengbiao Lu
- Laboratory of Neurosciences, National Institute on Aging/NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|