51
|
Linacero R, Sanchiz A, Ballesteros I, Cuadrado C. Application of real-time PCR for tree nut allergen detection in processed foods. Crit Rev Food Sci Nutr 2019; 60:1077-1093. [PMID: 30638046 DOI: 10.1080/10408398.2018.1557103] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Currently, food allergies are an important health concern worldwide. The presence of undeclared allergenic ingredients or the presence of traces of allergens due to accidental contamination during food processing poses a great health risk to sensitized individuals. Therefore, reliable analytical methods are required to detect and identify allergenic ingredients in food products. Real-time PCR allowed a specific and accurate amplification of allergen sequences. Some processing methods could induce the fragmentation and/or degradation of genomic DNA and some studies have been performed to analyze the effect of processing on the detection of different targets, as thermal treatment, with and without applying pressure. In this review, we give an updated overview of the applications of real-time PCR for the detection of allergens of tree nut in processed food products. The different variables that contribute to the performance of PCR methodology for allergen detection are also review and discussed.
Collapse
Affiliation(s)
- Rosario Linacero
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Africa Sanchiz
- Departamento de Tecnología de Alimentos, SGIT-INIA, Madrid, Spain
| | - Isabel Ballesteros
- Ingeniería en Biotecnología, Facultad de Ingenierías y Ciencias Aplicadas, Universidad de las Américas, Quito, Ecuador
| | - Carmen Cuadrado
- Departamento de Tecnología de Alimentos, SGIT-INIA, Madrid, Spain
| |
Collapse
|
52
|
Anfossi L, Di Nardo F, Russo A, Cavalera S, Giovannoli C, Spano G, Baumgartner S, Lauter K, Baggiani C. Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Anal Bioanal Chem 2018; 411:1905-1913. [DOI: 10.1007/s00216-018-1451-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
|
53
|
Fernandes TJ, Costa J, Oliveira MBP, Mafra I. A new real-time PCR quantitative approach for the detection of shrimp crustaceans as potential allergens. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
54
|
Ross GMS, Bremer MGEG, Nielen MWF. Consumer-friendly food allergen detection: moving towards smartphone-based immunoassays. Anal Bioanal Chem 2018; 410:5353-5371. [PMID: 29582120 PMCID: PMC6096701 DOI: 10.1007/s00216-018-0989-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 12/28/2022]
Abstract
In this critical review, we provide a comprehensive overview of immunochemical food allergen assays and detectors in the context of their user-friendliness, through their connection to smartphones. Smartphone-based analysis is centered around citizen science, putting analysis into the hands of the consumer. Food allergies represent a significant worldwide health concern and consumers should be able to analyze their foods, whenever and wherever they are, for allergen presence. Owing to the need for a scientific background, traditional laboratory-based detection methods are generally unsuitable for the consumer. Therefore, it is important to develop simple, safe, and rapid assays that can be linked with smartphones as detectors to improve user accessibility. Smartphones make excellent detection systems because of their cameras, embedded flash functions, portability, connectivity, and affordability. Therefore, this review has summarized traditional laboratory-based methods for food allergen detection such as enzyme-linked-immunosorbent assay, flow cytometry, and surface plasmon resonance, and the potential to modernize these methods by interfacing them with a smartphone readout system, based on the aforementioned smartphone characteristics. This is the first review focusing on smartphone-based food-allergen detection methods designed with the intention of being consumer-friendly. Graphical abstract A smartphone-based food allergen detection system in three easy steps (1) sample preparation, (2) allergen detection on a smartphone using antibodies, which then transmits the data wirelessly, (3) analytical results sent straight to smartphone.
Collapse
Affiliation(s)
- Georgina M S Ross
- RIKILT, Wageningen University and Research, P.O Box 230, 6700 AE, Wageningen, The Netherlands.
| | - Monique G E G Bremer
- RIKILT, Wageningen University and Research, P.O Box 230, 6700 AE, Wageningen, The Netherlands
| | - Michel W F Nielen
- RIKILT, Wageningen University and Research, P.O Box 230, 6700 AE, Wageningen, The Netherlands
- Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
55
|
Puente-Lelievre C, Eischeid AC. Development and Evaluation of a Real-Time PCR Multiplex Assay for the Detection of Allergenic Peanut Using Chloroplast DNA Markers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8623-8629. [PMID: 30074393 DOI: 10.1021/acs.jafc.8b02053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Peanut is one of the most commonly consumed allergy-causing foods in the United States. Prevention of accidental consumption by allergic individuals is assisted by methods that effectively identify the presence of peanut in food, even at trace levels. This study presents a multiplex real-time polymerase chain reaction (PCR) assay that uses chloroplast markers ( matK, rpl16, and trnH-psbA) to specifically detect peanut in three types of foods: baked goods, chocolate, and tomato sauces. Food matrices were spiked with raw peanut at concentrations ranging from 0.1 to 105 ppm. The assay was evaluated with respect to linear range and reaction efficiency. High reaction efficiencies were generally obtained across 6-7 orders of magnitude. Limits of detection were between 0.1 and 1 ppm, and reaction efficiencies were mostly within the preferred range of 100 ± 10%. Our results indicate that real-time PCR assays using chloroplast markers can be a valuable tool for peanut detection.
Collapse
Affiliation(s)
- Caroline Puente-Lelievre
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science , U.S. Food and Drug Administration , 5001 Campus Drive , College Park , Maryland 20740 , United States
| | - Anne C Eischeid
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science , U.S. Food and Drug Administration , 5001 Campus Drive , College Park , Maryland 20740 , United States
| |
Collapse
|
56
|
Carrera M, Cañas B, Gallardo JM. Advanced proteomics and systems biology applied to study food allergy. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2017.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
57
|
Sanchiz Á, Ballesteros I, Marqués E, Dieguez MC, Rueda J, Cuadrado C, Linacero R. Evaluation of locked nucleic acid and TaqMan probes for specific detection of cashew nut in processed food by real time PCR. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
58
|
Hits and misses in research trends to monitor contaminants in foods. Anal Bioanal Chem 2018; 410:5331-5351. [DOI: 10.1007/s00216-018-1195-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 01/26/2023]
|
59
|
Graziano S, Gullì M, Marmiroli N. Detection of allergen coding sequences of kiwi, peach, and apple in processed food by qPCR. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3129-3139. [PMID: 29210450 DOI: 10.1002/jsfa.8814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/13/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Food traceability becomes lifesaving for persons suffering severe allergy or intolerance, and therefore need a complete avoidance of the immune-trigger food. This paper describes how to fingerprint the presence of some allergenic species (kiwi, peach, and apple) in foods by quantitative real-time PCR (qPCR). RESULTS Five DNA extraction procedures were tested on fruits and foods. The results were statistically evaluated, and discussed. Analysis by qPCR with SYBR Green was developed to detect traces of these allergenic species in foods. Plasmids containing the target sequences of kiwi, peach and apple were employed as internal reference standard. Analysis of spiked food samples showed a limit of detection of 25 mg kg-1 for kiwi, 20 mg kg-1 for peach and 50 mg kg-1 for apple. CONCLUSION The qPCR method here developed, combined with the use of internal plasmid reference standard, represents a specific system for the quick detection of allergenic species in complex food matrices, with a limit of detection comparable with those reported using more time-consuming methods. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Graziano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy
| |
Collapse
|
60
|
WITHDRAWN: A new real-time PCR quantitative approach for the detection of shrimp crustaceans as potential allergens. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
61
|
Khan MU, Ahmed I, Lin H, Li Z, Costa J, Mafra I, Chen Y, Wu YN. Potential efficacy of processing technologies for mitigating crustacean allergenicity. Crit Rev Food Sci Nutr 2018; 59:2807-2830. [DOI: 10.1080/10408398.2018.1471658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Yan Chen
- China National Center for Food Safety Risk Assessment, Chaoyang, Beijing, P.R. China
| | - Yong-Ning Wu
- China National Center for Food Safety Risk Assessment, Chaoyang, Beijing, P.R. China
| |
Collapse
|
62
|
Hołda K, Natonek-Wiśniewska M, Krzyścin P, Głogowski R. Qualitative and quantitative detection of chicken deoxyribonucleic acid (DNA) in dry dog foods. J Anim Physiol Anim Nutr (Berl) 2018; 102 Suppl 1:37-42. [PMID: 29623687 DOI: 10.1111/jpn.12887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/15/2018] [Indexed: 11/28/2022]
Abstract
Chicken is a common protein source in pet foods and is concurrently listed among food allergens. Commercial over-the-counter (OTC) diets with an alternative animal protein source are considered suitable for dietary elimination trials by pet owners. The potential presence of undeclared chicken-derived ingredients in these diets can compromise the outcome of the trial during the diagnosis of adverse food reactions. The aim of this study was to selectively verify the absence or presence of chicken DNA in 10 OTC dry canine foods, using qualitative and quantitative approaches. The method of identification of chicken-derived protein was elaborated with the polymerase chain reaction (PCR) technology, whereas quantitative real-time PCR was used for the quantitative assessment. In most of the analysed samples, the chicken DNA was detectable; however, the quantified amounts were predominantly low, although differences between batches were observed.
Collapse
Affiliation(s)
- K Hołda
- Department of Animal Breeding and Production, Faculty of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - M Natonek-Wiśniewska
- Department of Genomics and Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - P Krzyścin
- Department of Genomics and Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - R Głogowski
- Department of Animal Breeding and Production, Faculty of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
63
|
Neethirajan S, Weng X, Tah A, Cordero J, Ragavan K. Nano-biosensor platforms for detecting food allergens – New trends. SENSING AND BIO-SENSING RESEARCH 2018. [DOI: 10.1016/j.sbsr.2018.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
64
|
Fernandes TJ, Costa J, Oliveira MBP, Mafra I. Exploiting 16S rRNA gene for the detection and quantification of fish as a potential allergenic food: A comparison of two real-time PCR approaches. Food Chem 2018; 245:1034-1041. [DOI: 10.1016/j.foodchem.2017.11.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 11/24/2022]
|
65
|
Highly sensitive detection of gluten-containing cereals in food samples by real-time Loop-mediated isothermal AMPlification (qLAMP) and real-time polymerase chain reaction (qPCR). Food Chem 2018; 246:156-163. [PMID: 29291834 DOI: 10.1016/j.foodchem.2017.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/08/2017] [Accepted: 11/02/2017] [Indexed: 11/18/2022]
|
66
|
García-García A, Madrid R, García T, Martín R, González I. Use of multiplex ligation-dependent probe amplification (MLPA) for screening of wheat, barley, rye and oats in foods. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
67
|
Christopoulou S, Karaiskou S, Kalogianni DP. Microbead-based simultaneous fluorometric detection of three nut allergens. Mikrochim Acta 2017; 185:13. [DOI: 10.1007/s00604-017-2559-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
68
|
Villa C, Costa J, Oliveira MBP, Mafra I. Bovine Milk Allergens: A Comprehensive Review. Compr Rev Food Sci Food Saf 2017; 17:137-164. [DOI: 10.1111/1541-4337.12318] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia; Univ. do Porto; Porto Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia; Univ. do Porto; Porto Portugal
| | | | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia; Univ. do Porto; Porto Portugal
| |
Collapse
|
69
|
Garrido-Maestu A, Azinheiro S, Carvalho J, Abalde-Cela S, Carbó-Argibay E, Diéguez L, Piotrowski M, Kolen’ko YV, Prado M. Combination of Microfluidic Loop-Mediated Isothermal Amplification with Gold Nanoparticles for Rapid Detection of Salmonella spp. in Food Samples. Front Microbiol 2017; 8:2159. [PMID: 29209283 PMCID: PMC5701617 DOI: 10.3389/fmicb.2017.02159] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022] Open
Abstract
Foodborne diseases are an important cause of morbidity and mortality. According to the World Health Organization, there are 31 main global hazards, which caused in 2010 600 million foodborne illnesses and 420000 deaths. Among them, Salmonella spp. is one of the most important human pathogens, accounting for more than 90000 cases in Europe and even more in the United States per year. In the current study we report the development, and thorough evaluation in food samples, of a microfluidic system combining loop-mediated isothermal amplification with gold nanoparticles (AuNPs). This system is intended for low-cost, in situ, detection of different pathogens, as the proposed methodology can be extrapolated to different microorganisms. A very low limit of detection (10 cfu/25 g) was obtained. Furthermore, the evaluation of spiked food samples (chicken, turkey, egg products), completely matched the expected results, as denoted by the index kappa of concordance (value of 1.00). The results obtained for the relative sensitivity, specificity and accuracy were of 100% as well as the positive and negative predictive values.
Collapse
|
70
|
Malekzad H, Jouyban A, Hasanzadeh M, Shadjou N, de la Guardia M. Ensuring food safety using aptamer based assays: Electroanalytical approach. Trends Analyt Chem 2017; 94:77-94. [PMID: 32287541 PMCID: PMC7112916 DOI: 10.1016/j.trac.2017.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aptamers, are being increasingly employed as favorable receptors for constructing highly sensitive biosensors, for their remarkable affinities towards certain targets including a wide scope of biological or chemical substances, and their superiority over other biologic receptors. The selectivity and affinity of the aptamers have been integrated with the wise design of the assay, applying suitable modifications, such as nanomaterials on the electrode surface, employing oligonucleotide-specific amplification strategies or, their combinations. After successful performance of the electrochemical aptasensors for biomedical applications, the food sector with its direct implication for human health, which demands rapid and sensitive and economic analytical solutions for determination of health threatening contaminants in all stages of production process, is the next field of research for developing efficient electrochemical aptasensors. The aim of this review is to categorize and introduce food hazards and summarize the recent electrochemical aptasensors that have been developed to address these contaminants.
Collapse
Affiliation(s)
- Hedieh Malekzad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nano Technology Research Center, Urmia University, Urmia, Iran
- Department of Nanochemistry, Faculty of Science, Urmia University, Urmia, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, Burjassot 46100, Valencia, Spain
| |
Collapse
|
71
|
Castillo DS, Cassola A. Novel sensitive monoclonal antibody based competitive enzyme-linked immunosorbent assay for the detection of raw and processed bovine beta-casein. PLoS One 2017; 12:e0182447. [PMID: 28759641 PMCID: PMC5536360 DOI: 10.1371/journal.pone.0182447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022] Open
Abstract
Cow milk protein allergy (CMPA) is the most common childhood food allergy, which can sometimes persist or can newly develop in adulthood with severe symptoms. CMPA's treatment is complete dietary avoidance of milk proteins. To achieve this task, patients have to be aware of milk proteins found as "hidden allergens" in food commodities. In regard to milk proteins, it has been reported that allergenicity of caseins remains unaffected upon heat treatment. For these reasons, we aimed to obtain monoclonal antibodies (mAbs) against native and denatured β-casein, one of the most abundant and antigenic caseins, in order to develop an indirect competitive ELISA (icELISA) to detect and quantify traces of this milk allergen in raw and processed foodstuffs. We developed two specific hybridoma clones, 1H3 and 6A12, which recognized β-casein in its denatured and native conformations by indirect ELISA (iELISA). Cross-reaction analysis by Western blot and iELISA indicated that these mAbs specifically recognized β-casein from bovine and goat milk extracts, while they did not cross-react with proteins present in other food matrixes. These highly specific mAbs enabled the development of sensitive, reliable and reproducible icELISAs to detect and quantify this milk protein allergen in food commodities. The extraction of β-casein from foodstuff was efficiently carried out at 60°C for 15 minutes, using an extraction buffer containing 1% SDS. The present study establishes a valid 1H3 based-icELISA, which allows the detection and quantification -0.29 ppm and 0.80 ppm, respectively- of small amounts of β-casein in raw and processed foods. Furthermore, we were able to detect milk contamination in incurred food samples with the same sensitivity as a commercial sandwich ELISA thus showing that this icELISA constitutes a reliable analytical method for control strategies in food industry and allergy prevention.
Collapse
Affiliation(s)
- Daniela S. Castillo
- Instituto de Investigaciones Biotecnológicas—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Alejandro Cassola
- Instituto de Investigaciones Biotecnológicas—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
72
|
|
73
|
Fernandes TJR, Costa J, Carrapatoso I, Oliveira MBPP, Mafra I. Advances on the molecular characterization, clinical relevance, and detection methods of Gadiform parvalbumin allergens. Crit Rev Food Sci Nutr 2017; 57:3281-3296. [DOI: 10.1080/10408398.2015.1113157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Isabel Carrapatoso
- Serviço de Imunoalergologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
74
|
Detection of pistachio allergen coding sequences in food products: A comparison of two real time PCR approaches. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
75
|
Vial S, Berrahal Y, Prado M, Wenger J. Single-Step DNA Detection Assay Monitoring Dual-Color Light Scattering from Individual Metal Nanoparticle Aggregates. ACS Sens 2017; 2:251-256. [PMID: 28261666 PMCID: PMC5329769 DOI: 10.1021/acssensors.6b00737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
![]()
Efficiently detecting
DNA sequences within a limited time is vital
for disease screening and public health monitoring. This calls for
a new method that combines high sensitivity, fast read-out time, and
easy manipulation of the sample, avoiding the extensive steps of DNA
amplification, purification, or grafting to a surface. Here, we introduce
photon cross-correlation spectroscopy as a new method for specific
DNA sensing with high sensitivity in a single-step homogeneous solution
phase. Our approach is based on confocal dual-color illumination and
detection of the scattering intensities from individual silver nanoparticles
and gold nanorods. In the absence of the target DNA, the nanoparticles
move independently and their respective scattering signals are uncorrelated.
In the presence of the target DNA, the probe-functionalized gold and
silver nanoparticles assemble via DNA hybridization with the target,
giving rise to temporal coincidence between the signals scattered
by each nanoparticle. The degree of coincidence accurately quantifies
the amount of target DNA. To demonstrate the efficiency of our technique,
we detect a specific DNA sequence of sesame, an allergenic food ingredient,
for a range of concentration from 5 pM to 1.5 nM with a limit of detection
of 1 pM. Our method is sensitive and specific enough to detect single
nucleotide deletion and mismatch. With the dual-color scattering signals
being much brighter than fluorescence-based analogs, the analysis
is fast, quantitative, and simple to operate, making it valuable for
biosensing applications.
Collapse
Affiliation(s)
- Stéphanie Vial
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Youri Berrahal
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Marta Prado
- International Iberian Nanotechnology Laboratory (INL) Avenida Mestre José Veiga, 4715-310, Braga, Portugal
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|
76
|
Costa J, Fernandes TJ, Villa C, P.P. Oliveira MB, Mafra I. Advances in Food Allergen Analysis. Food Saf (Tokyo) 2016. [DOI: 10.1002/9781119160588.ch9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
77
|
Development and validation of the modular Feed-code method for qualitative and quantitative determination of feed botanical composition. Anal Bioanal Chem 2016; 408:8299-8316. [DOI: 10.1007/s00216-016-9943-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022]
|
78
|
|
79
|
Garber EAE, Parker CH, Handy SM, Cho CY, Panda R, Samadpour M, Reynaud DH, Ziobro GC. Presence of Undeclared Food Allergens in Cumin: The Need for Multiplex Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1202-1211. [PMID: 26769163 DOI: 10.1021/acs.jafc.5b05497] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Beginning in the autumn of 2014, millions of dollars of food and over 675 products were recalled in the United States due to the presence of undeclared peanut, attributed to cumin used in the manufacture of the products. Initial analyses also indicated the presence of almond. Subsequent research showed that the presence of peanut and almond did not fully explain the analytical results for the cumin samples. Using a combination of mass spectrometry, DNA-based methods (i.e., PCR and Sanger DNA Sequencing), microscopy, and antibody-based technologies (i.e., ELISA, Western blot analysis, and a novel xMAP multiplex assay) the presence of peanut was confirmed. Screening for secondary sources of adulteration (e.g., tree nuts, mahleb, peach, and cherry) supported the assessment that the cumin contained multiple contaminants. These results demonstrate the limitations of single analyte-specific assays and the need for orthogonal multiplex methods to detect food allergens irrespective of varietal or other differences.
Collapse
Affiliation(s)
- Eric A E Garber
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration , College Park, Maryland 20740, United States
| | - Christine H Parker
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration , College Park, Maryland 20740, United States
| | - Sara M Handy
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration , College Park, Maryland 20740, United States
| | - Chung Y Cho
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration , College Park, Maryland 20740, United States
| | - Rakhi Panda
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration , College Park, Maryland 20740, United States
| | - Mansour Samadpour
- IEH Laboratories and Consulting Group, Inc. , Lake Forest Park, Washington 98155, United States
| | - Danica H Reynaud
- AuthenTechnologies LLC , Richmond, California 94806, United States
| | - George C Ziobro
- Office of Food Safety, Center for Food Safety and Applied Nutrition, Food and Drug Administration , College Park, Maryland 20740, United States
| |
Collapse
|