51
|
Kertes DA, Kalsi G, Prescott CA, Kuo PH, Patterson DG, Walsh D, Kendler KS, Riley BP. Neurotransmitter and neuromodulator genes associated with a history of depressive symptoms in individuals with alcohol dependence. Alcohol Clin Exp Res 2010; 35:496-505. [PMID: 21143246 DOI: 10.1111/j.1530-0277.2010.01366.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Depressive symptoms are common among individuals with alcohol use disorders and impact treatment outcome. Substantial overlap exists among the neurobiological systems proposed in the pathophysiology of depressive and alcohol use disorders; however, specific genetic effects contributing to risk for depressive comorbidity remain poorly understood. METHODS This study examines the association of depressive symptom scores for lifetime depression (the sum of DSM-IV major depression co-endorsed criteria for lifetime depression) with markers in 120 candidate genes in 554 alcohol-dependent individuals. The candidate genes code for molecules involved in dopamine, serotonin, glutamate, gamma-aminobutyric acid (GABA), and opioid neurotransmission, cell signaling, pharmacokinetics, stress biology, and behavioral control. Analyses were conducted at the single marker level with experimentwise permutation to control for multiple testing. RESULTS Results revealed nominal associations for markers in 20 genes. Following experimentwise permutation, markers in the corticotropin-releasing hormone-binding protein (CRHBP) the μ-opioid receptor (OPRM1) and the β1 subunit of GABA A (GABA(A)) receptors (GABRB1) met or exceeded the significance threshold. None of the markers associated with depressive symptom scores were significantly associated with alcohol dependence symptom scores. CONCLUSION These findings suggest potential risk genes for depressive symptoms in alcohol-dependent individuals.
Collapse
Affiliation(s)
- Darlene A Kertes
- Department of Psychology, University of Florida, Gainesville, 32611-2250, USA.
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to maintain the cells in a responsive state with cytosolic calcium near, but below, the threshold level. Some pituitary cells also express gap junction channels, which could be used for intercellular Ca(2+) signaling in these cells. Endocrine cells also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hormones leads to amplification of the pacemaking activity and facilitation of calcium influx and hormone release. These cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action potential-dependent calcium influx and hormone release. Other members of this receptor family can activate calcium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This review summarizes recent findings in this field and our current understanding of the complex relationship between voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in pituitary cells.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA.
| | | | | |
Collapse
|
53
|
Munroe ME, Businga TR, Kline JN, Bishop GA. Anti-inflammatory effects of the neurotransmitter agonist Honokiol in a mouse model of allergic asthma. THE JOURNAL OF IMMUNOLOGY 2010; 185:5586-97. [PMID: 20889543 DOI: 10.4049/jimmunol.1000630] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic airway inflammation is a hallmark of asthma, an immune-based disease with great societal impact. Honokiol (HNK), a phenolic neurotransmitter receptor (γ-aminobutyric acid type A) agonist purified from magnolia, has anti-inflammatory properties, including stabilization of inflammation in experimentally induced arthritis. The present study tested the prediction that HNK could inhibit the chronic inflammatory component of allergic asthma. C57BL/6 mice sensitized to and challenged with OVA had increased airway hyperresponsiveness to methacholine challenge and eosinophilia compared with naive controls. HNK-treated mice showed a reduction in airway hyperresponsiveness as well as a significant decrease in lung eosinophilia. Histopathology studies revealed a marked drop in lung inflammation, goblet cell hyperplasia, and collagen deposition with HNK treatment. Ag recall responses from HNK-treated mice showed decreased proinflammatory cytokines in response to OVA, including TNF-α-, IL-6-, Th1-, and Th17-type cytokines, despite an increase in Th2-type cytokines. Regulatory cytokines IL-10 and TGF-β were also increased. Assessment of lung homogenates revealed a similar pattern of cytokines, with a noted increase in the number of FoxP3(+) cells in the lung. HNK was able to alter B and T lymphocyte cytokine secretion in a γ-aminobutyric acid type A-dependent manner. These results indicate that symptoms and pathology of asthma can be alleviated even in the presence of increased Th2 cytokines and that neurotransmitter agonists such as HNK have promise as a novel class of anti-inflammatory agents in the treatment of chronic asthma.
Collapse
Affiliation(s)
- Melissa E Munroe
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
54
|
|
55
|
Kopp S, Baur R, Sigel E, Möhler H, Altmann KH. Highly potent modulation of GABA(A) receptors by valerenic acid derivatives. ChemMedChem 2010; 5:678-81. [PMID: 20235267 DOI: 10.1002/cmdc.201000062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sascha Kopp
- Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
56
|
Fu XW, Wood K, Spindel ER. Prenatal nicotine exposure increases GABA signaling and mucin expression in airway epithelium. Am J Respir Cell Mol Biol 2010; 44:222-9. [PMID: 20448051 DOI: 10.1165/rcmb.2010-0109oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Maternal smoking during pregnancy increases the risk of respiratory disease in offspring, but surprisingly little is known about the underlying mechanisms. Nicotinic acetylcholine receptors (nAChRs) expressed in bronchial epithelial cells (BECs) mediate the effects of nicotine on lung development and function. Recently, BECs were also shown to express a GABAergic paracrine loop that was implicated in mucus overproduction in asthma. We therefore investigated the interactions between cholinergic and GABAergic signaling in rhesus macaque BECs, and found that nicotine upregulated GABA signaling in BECs through the sequential activation of BEC nAChR and GABA receptors. The incubation of primary cultures of rhesus BECs increased concentrations of GAD, GABA(A) receptors, and mucin mRNA. The nicotine-induced increase in glutamatic acid decarboxylase (GAD) and GABA(A) receptor mRNA resulted in increased GABA-induced currents and increased expression of mucin. The ability of nicotine to increase mucin expression was blocked by nicotinic and GABA(A) antagonists. These results implicate GABA signaling as a middleman in nicotine's effects on mucus overproduction. Similar effects of nicotine on GABA signaling and the expression of mucin were seen in vivo after chronic exposure of rhesus monkeys to nicotine. These data provide a new mechanism linking smoking with the increased mucin seen in asthma and chronic obstructive pulmonary disorder, and suggest a new paradigm of communication between non-neuronal transmitter systems in BECs. The existence of neural-like transmitter interactions in BECs suggests that some drugs active in the central nervous system may possess previously unexpected utility in respiratory diseases.
Collapse
Affiliation(s)
- Xiao Wen Fu
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, 97006, USA
| | | | | |
Collapse
|
57
|
Liu B, Li L, Zhang Q, Chang N, Wang D, Shan Y, Li L, Wang H, Feng H, Zhang L, Brann DW, Wan Q. Preservation of GABAA receptor function by PTEN inhibition protects against neuronal death in ischemic stroke. Stroke 2010; 41:1018-26. [PMID: 20360540 DOI: 10.1161/strokeaha.110.579011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Downregulation of the tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), is thought to be a novel neuroprotective strategy in ischemic stroke, but the underlying mechanisms remain unclear. In this study, we aimed to validate the use of PTEN regulation of gamma-aminobutyric acid subtype A receptors (GABA(A)Rs) as a molecular target for the treatment of ischemic stroke. Because suppression of GABA(A)Rs contributes to ischemic neuron death, describing the intracellular signaling that interacts with GABA(A)Rs in ischemic neurons would provide a molecular basis for novel stroke therapies. METHODS We measured surface GABA(A)R expression by immunocytochemical labeling and surface protein biotinylation assay. Knockdown and overexpression approaches were used to test the effects of PTEN on the expression and function of GABA(A)Rs. Neuronal death was detected in both in vitro and in vivo stroke models. RESULTS The knockdown and overexpression approaches provided the first evidence that PTEN negatively regulated membrane expression and function of GABA(A)Rs in rat hippocampal neurons. Importantly, we demonstrated that a PTEN inhibitor prevented the reduction of surface GABA(A)Rs in injured hippocampal neurons subjected to oxygen-glucose deprivation, an in vitro insult that mimics ischemic injury, whereas a GABA(A)R antagonist significantly reduced this PTEN inhibitor-induced neuroprotection in both the in vitro and in vivo ischemic stroke models. CONCLUSIONS Our study provides direct evidence that downregulation of PTEN protects against ischemic neuron death by preserving GABA(A)R function. Targeting this pathway may be an effective strategy for development of selective, potent stroke treatments.
Collapse
Affiliation(s)
- Baosong Liu
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Sasabe T, Ishiura S. Alcoholism and alternative splicing of candidate genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1448-66. [PMID: 20617039 PMCID: PMC2872348 DOI: 10.3390/ijerph7041448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/21/2010] [Accepted: 03/23/2010] [Indexed: 11/24/2022]
Abstract
Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.
Collapse
Affiliation(s)
- Toshikazu Sasabe
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | | |
Collapse
|
59
|
Brill J, Huguenard JR. Enhanced infragranular and supragranular synaptic input onto layer 5 pyramidal neurons in a rat model of cortical dysplasia. ACTA ACUST UNITED AC 2010; 20:2926-38. [PMID: 20338974 DOI: 10.1093/cercor/bhq040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cortical dysplasias frequently underlie neurodevelopmental disorders and epilepsy. Rats with a neonatally induced cortical microgyrus [freeze-lesion (FL)], a model of human polymicrogyria, display epileptiform discharges in vitro. We probed excitatory and inhibitory connectivity onto neocortical pyramidal neurons in layers 2/3 and 5 of postnatal day 16-22 rats, approximately 1-2 mm lateral of the lesion, using laser scanning photostimulation (LSPS)/glutamate uncaging. Excitatory input from deep and supragranular layers to layer 5 pyramidal cells was greater in FL cortex, while no significant differences were seen in layer 2/3 cells. The increased input was due to a greater number of LSPS-evoked excitatory postsynaptic currents (EPSCs), without differences in amplitude or kinetics. Inhibitory input was increased in a region-specific manner in pyramidal cells in FL cortex, due to an increased inhibitory postsynaptic current (IPSC) amplitude. Connectivity within layer 5, parts of which are destroyed during lesioning, was more severely affected than connectivity in layer 2/3. Thus, we observed 2 distinct mechanisms of altered synaptic input: 1) increased EPSC frequency suggesting an increased number of excitatory synapses and 2) higher IPSC amplitude, suggesting an increased strength of inhibitory synapses. These increases in both excitatory and inhibitory connectivity may limit the extent of circuit hyperexcitability.
Collapse
Affiliation(s)
- Julia Brill
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | | |
Collapse
|
60
|
Cherlyn SYT, Woon PS, Liu JJ, Ong WY, Tsai GC, Sim K. Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev 2010; 34:958-77. [PMID: 20060416 DOI: 10.1016/j.neubiorev.2010.01.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 01/01/2010] [Accepted: 01/04/2010] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are debilitating neurobehavioural disorders likely influenced by genetic and non-genetic factors and which can be seen as complex disorders of synaptic neurotransmission. The glutamatergic and GABAergic neurotransmission systems have been implicated in both diseases and we have reviewed extensive literature over a decade for evidence to support the association of glutamate and GABA genes in SZ and BD. Candidate-gene based population and family association studies have implicated some ionotrophic glutamate receptor genes (GRIN1, GRIN2A, GRIN2B and GRIK3), metabotropic glutamate receptor genes (such as GRM3), the G72/G30 locus and GABAergic genes (e.g. GAD1 and GABRB2) in both illnesses to varying degrees, but further replication studies are needed to validate these results. There is at present no consensus on specific single nucleotide polymorphisms or haplotypes associated with the particular candidate gene loci in these illnesses. The genetic architecture of glutamate systems in bipolar disorder need to be better studied in view of recent data suggesting an overlap in the genetic aetiology of SZ and BD. There is a pressing need to integrate research platforms in genomics, epistatic models, proteomics, metabolomics, neuroimaging technology and translational studies in order to allow a more integrated understanding of glutamate and GABAergic signalling processes and aberrations in SZ and BD as well as their relationships with clinical presentations and treatment progress over time.
Collapse
Affiliation(s)
- Suat Ying Tan Cherlyn
- Institute of Mental Health/Woodbridge Hospital, 10 Buangkok View, Singapore 539747, Singapore
| | | | | | | | | | | |
Collapse
|
61
|
Fujii M, Kanematsu T, Ishibashi H, Fukami K, Takenawa T, Nakayama KI, Moss SJ, Nabekura J, Hirata M. Phospholipase C-related but catalytically inactive protein is required for insulin-induced cell surface expression of gamma-aminobutyric acid type A receptors. J Biol Chem 2009; 285:4837-46. [PMID: 19996098 DOI: 10.1074/jbc.m109.070045] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-aminobutyric acid type A (GABA(A)) receptors play a pivotal role in fast synaptic inhibition in the central nervous system. One of the key factors for determining synaptic strength is the number of receptors on the postsynaptic membrane, which is maintained by the balance between cell surface insertion and endocytosis of the receptors. In this study, we investigated whether phospholipase C-related but catalytically inactive protein (PRIP) is involved in insulin-induced GABA(A) receptor insertion. Insulin potentiated the GABA-induced Cl(-) current (I(GABA)) by about 30% in wild-type neurons, but not in PRIP1 and PRIP2 double-knock-out (DKO) neurons, suggesting that PRIP is involved in insulin-induced potentiation. The phosphorylation level of the GABA(A) receptor beta-subunit was increased by about 30% in the wild-type neurons but not in the mutant neurons, which were similar to the changes observed in I(GABA). We also revealed that PRIP recruited active Akt to the GABA(A) receptors by forming a ternary complex under insulin stimulation. The disruption of the binding between PRIP and the GABA(A) receptor beta-subunit by PRIP interference peptide attenuated the insulin potentiation of I(GABA). Taken together, these results suggest that PRIP is involved in insulin-induced GABA(A) receptor insertion by recruiting active Akt to the receptor complex.
Collapse
Affiliation(s)
- Makoto Fujii
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Genome-wide association studies have identified multiple genetic polymorphisms associated with schizophrenia. These polymorphisms conform to a polygenic disease model in which multiple alleles cumulatively increase the risk of developing disease. Two genes linked to schizophrenia, DTNBP1 and MUTED, encode proteins that belong to the endosome-localized Biogenesis of Lysosome-related Organelles Complex-1 (BLOC-1). BLOC-1 plays a key role in endosomal trafficking and as such has been found to regulate cell-surface abundance of the D2 dopamine receptor, the biogenesis and fusion of synaptic vesicles, and neurite outgrowth. These functions are pertinent to both neurodevelopment and synaptic transmission, processes tightly regulated by selective cell-surface delivery of membrane proteins to and from endosomes. We propose that cellular processes, such as endosomal trafficking, act as convergence points in which multiple small effects from polygenic genetic polymorphisms accumulate to promote the development of schizophrenia.
Collapse
Affiliation(s)
- Pearl V. Ryder
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322
| |
Collapse
|
63
|
Goodkin HP, Kapur J. The impact of diazepam's discovery on the treatment and understanding of status epilepticus. Epilepsia 2009; 50:2011-8. [PMID: 19674049 DOI: 10.1111/j.1528-1167.2009.02257.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fortuitous discovery of the benzodiazepines and the subsequent application of these agents to the treatment of status epilepticus (SE) heralds in the modern age of treating this neurologic emergency. More than 50 years after their discovery, the benzodiazepines remain the drugs of first choice in the treatment of SE. However, the benzodiazepines can be ineffective, especially in those patients whose seizures are the most prolonged. The benzodiazepines act by increasing the affinity of gamma-aminobutyric acid (GABA) for GABAA receptors. A receptor's subunit composition affects its functional and pharmacologic properties, trafficking, and cellular localization. The GABAA receptors that mediate synaptic inhibition typically contain a gamma2 subunit and are diazepam-sensitive. Among the GABAA receptors that mediate tonic inhibition are the benzodiazepine-insensitive delta subunit-containing receptors. The initial studies investigating the pathogenesis of SE demonstrated that a reduction in GABA-mediated inhibition within the hippocampus was important in maintenance of SE, and this reduction correlated with a rapid modification in the postsynaptic GABAA receptor population expressed on the surface of the hippocampal principal neurons. Subsequent studies found that this rapid modification is, in part, mediated by an activity-dependent, subunit-specific trafficking of the receptors that resulted in the reduction in the surface expression of the benzodiazepine-sensitive gamma2 subunit-containing receptors and the preserved surface expression of the benzodiazepine-insensitive delta subunit-containing receptors. This improved understanding of the changes in the trafficking of GABAA receptors during SE partially accounts for the development of benzodiazepine-pharmacoresistance and has implications for the current and future treatment of benzodiazepine-refractory SE.
Collapse
Affiliation(s)
- Howard P Goodkin
- Department of Neurology, University of Virginia Health systems, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
64
|
Joshi S, Kapur J. Slow intracellular accumulation of GABA(A) receptor delta subunit is modulated by brain-derived neurotrophic factor. Neuroscience 2009; 164:507-19. [PMID: 19665523 DOI: 10.1016/j.neuroscience.2009.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 11/26/2022]
Abstract
GABA(A) receptors composed of the gamma2 and delta subunits have distinct properties, functions and subcellular localization, and pathological conditions differentially modulate their surface expression. Recent studies demonstrate that acute seizure activity accelerated trafficking of the gamma2 and beta2/3 subunits but not that of the delta subunit. The trafficking of the gamma2 and beta2/3 subunits is relatively well understood but that of the delta subunit has not been studied. We compared intracellular accumulation of the delta and gamma2 subunits in cultured hippocampal neurons using an antibody feeding technique. Intracellular accumulation of the delta subunit peaked between 3 and 6 h, whereas, maximum internalization of the gamma2 subunit took 30 min. In the organotypic hippocampal slice cultures internalization of the delta subunit studied using a biotinylation assay revealed highest accumulation between 3 and 5 h and that of the gamma2 subunit between 15 and 45 min. The surface half-life of the delta subunit was 171 min in cultured hippocampal neurons and 102 min in the organotypic hippocampal slice cultures. In the subsequent studies, internalization of the delta subunit was found to be dependent on network activity but independent of ligand-binding. Brain-derived neurotrophic factor (BDNF) reduced buildup of the delta subunit in the cytoplasmic compartments and increased its surface expression, and this BDNF effect was independent of network activity. BDNF effect was mediated by activation of TrkB receptors, PLCgamma and PKC. Increase in the basal PKC activity augmented cell surface stability of the delta subunit. These results suggest that rate of intracellular accumulation of the delta subunit was distinct and modulated by BDNF.
Collapse
Affiliation(s)
- S Joshi
- Department of Neurology, Box 800394, University of Virginia, Health Sciences Center, Charlottesville, VA 22908, USA
| | | |
Collapse
|
65
|
|
66
|
Huang ZJ. Activity-dependent development of inhibitory synapses and innervation pattern: role of GABA signalling and beyond. J Physiol 2009; 587:1881-8. [PMID: 19188247 DOI: 10.1113/jphysiol.2008.168211] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
GABA-mediated synaptic inhibition is crucial in neural circuit operations. The development of GABAergic inhibitory synapses and innervation pattern in mammalian neocortex is a prolonged process, extending well into the postnatal period, and is regulated by neural activity and experience. Accumulating evidence supports the hypothesis that GABA signalling acts beyond synaptic transmission and regulates inhibitory synapse development; in other words, similar to glutamate signalling at developing excitatory synapses, GABA may coordinate pre- and post-synaptic maturation at inhibitory synapses. These findings raise numerous questions regarding the underlying mechanisms, including the role of GABA receptors and their link to synaptic adhesion molecules. Since synapse formation is a crucial component of axon growth, GABA signalling may also shape the axon arbor and innervation pattern of inhibitory neurons. A mechanism unique to GABAergic neurons is activity-dependent GABA synthesis, largely mediated through activity-regulated transcription of the rate-limiting enzyme GAD67. Such cell-wide as well as synaptic regulation of GABA signalling may constitute a mechanism by which input levels and patterns onto GABAergic neurons shape their innervation pattern during circuit development.
Collapse
Affiliation(s)
- Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
67
|
Graziane NM, Yuen EY, Yan Z. Dopamine D4 Receptors Regulate GABAA Receptor Trafficking via an Actin/Cofilin/Myosin-dependent Mechanism. J Biol Chem 2009; 284:8329-36. [PMID: 19179335 DOI: 10.1074/jbc.m807387200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GABA(A) receptor-mediated inhibitory transmission in prefrontal cortex (PFC) is implicated in cognitive processes such as working memory. Our previous study has found that GABA(A)R current is subject to the regulation of dopamine D(4) receptors, a PFC-enriched neuromodulator critically involved in various mental disorders associated with PFC dysfunction. In this study, we have investigated the cellular mechanism underlying D(4) modulation of GABA(A)Rs. We found that the density of surface clusters of GABA(A)R beta2/3 subunits was reduced by D(4), suggesting that the D(4) reduction of GABA(A)R current is associated with a decrease in functional GABA(A)Rs at the plasma membrane. Moreover, the D(4) reduction of GABA(A)R current was blocked by the actin stabilizer phalloidin and was occluded by the actin destabilizer latrunculin, suggesting that D(4) regulates GABA(A)R trafficking via an actin-dependent mechanism. Cofilin, a major actin depolymerizing factor whose activity is strongly increased by dephosphorylation at Ser(3), provides the possible link between D(4) signaling and the actin dynamics. Because myosin motor proteins are important for the transport of vesicles along actin filaments, we also tested the potential involvement of myosin in D(4) regulation of GABA(A)R trafficking. We found that dialysis with a myosin peptide, which competes with endogenous myosin proteins for actin-binding sites, prevented the D(4) reduction of GABA(A)R current. These results suggest that D(4) receptor activation increases cofilin activity presumably via its dephosphorylation, resulting in actin depolymerization, thus causing a decrease in the myosin-based transport of GABA(A)R clusters to the surface.
Collapse
Affiliation(s)
- Nicholas M Graziane
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214
| | | | | |
Collapse
|
68
|
Neuropharmacology of performance monitoring. Neurosci Biobehav Rev 2009; 33:48-60. [DOI: 10.1016/j.neubiorev.2008.08.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 08/12/2008] [Accepted: 08/12/2008] [Indexed: 11/23/2022]
|
69
|
Variations in excitatory and inhibitory postsynaptic protein content in rat cerebral cortex with respect to aging and cognitive status. Neuroscience 2008; 159:896-907. [PMID: 19105974 DOI: 10.1016/j.neuroscience.2008.11.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 11/20/2008] [Indexed: 11/21/2022]
Abstract
Age-related cognitive impairments are associated with structural and functional changes in the cerebral cortex. We have previously demonstrated in the rat that excitatory and inhibitory pre- and postsynaptic changes occur with respect to age and cognitive status; however, in aged cognitively impaired animals, we have shown a significant imbalance in postsynaptic markers of excitatory versus inhibitory synapses, using markers of excitatory versus inhibitory neurotransmitter-related scaffolding proteins [postsynaptic density-95 (PSD95)/synapse associated protein-90 (SAP90) and gephyrin, respectively]. The present study focuses on whether the expression of various excitatory and inhibitory postsynaptic proteins is affected by ageing and cognitive status. Thus, aged animals were segregated into aged cognitively impaired (AI) and aged cognitively unimpaired (AU) groups using the Morris water maze. We applied Western immunoblotting to reveal the expression patterns of a number of relevant excitatory and inhibitory receptors in the prefrontal and parietal cortices of young (Y), AU and AI animals, and performed semi-quantitative analyses to statistically tabulate changes among the three animal groups. A significant increase in the inhibitory postsynaptic scaffold protein, gephyrin, was observed in the parietal cortex of AI animals. Similarly, an increase in GABA(A) receptor subunit alpha1 was observed in the parietal cortex of AI animals. An increase in the excitatory N-methyl-d-aspartate receptor subunit N-methyl-d-aspartate receptor 1 expression was observed in the parietal cortex of AI animals, whereas a significant decrease in AMPA receptor subunit glutamate receptor 2 expression was found in the prefrontal cortex of AI animals. Finally, the excitatory, postsynaptic neuronal cell-adhesion receptor, neuroligin-1, was found to be significantly increased in both the prefrontal and parietal cortical areas of AI animals.
Collapse
|
70
|
Zhang M, Clarke K, Zhong H, Vollmer C, Nurse CA. Postsynaptic action of GABA in modulating sensory transmission in co-cultures of rat carotid body via GABA(A) receptors. J Physiol 2008; 587:329-44. [PMID: 19029183 DOI: 10.1113/jphysiol.2008.165035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABA is expressed in carotid body (CB) chemoreceptor type I cells and has previously been reported to modulate sensory transmission via presynaptic GABA(B) receptors. Because low doses of clinically important GABA(A) receptor (GABA(A)R) agonists, e.g. benzodiazepines, have been reported to depress afferent CB responses to hypoxia, we investigated the potential contribution of GABA(A)R in co-cultures of rat type I cells and sensory petrosal neurones (PNs). During gramicidin perforated-patch recordings (to preserve intracellular Cl-), GABA and/or the GABA(A) agonist muscimol (50 microm) induced a bicuculline-sensitive membrane depolarization in isolated PNs. GABA-induced whole-cell currents reversed at approximately -38 mV and had an EC50 of approximately 10 microm (Hill coefficient = approximately 1) at -60 mV. During simultaneous PN and type I cell recordings at functional chemosensory units in co-culture, bicuculline reversibly potentiated the PN, but not type I cell, depolarizing response to hypoxia. Application of the CB excitatory neurotransmitter ATP (1 microm) over the soma of functional PN induced a spike discharge that was markedly suppressed during co-application with GABA (2 microm), even though GABA alone was excitatory. RT-PCR analysis detected expression of GABAergic markers including mRNA for alpha1, alpha2, beta2, gamma2S, gamma2L and gamma3 GABA(A)R subunits in petrosal ganglia extracts. Also, CB extracts contained mRNAs for GABA biosynthetic markers, i.e. glutamate decarboxylase (GAD) isoforms GAD 67A,E, and GABA transporter isoforms GAT 2,3 and BGT-1. In CB sections, sensory nerve endings apposed to type I cells were immunopositive for the GABA(A)R beta subunit. These data suggest that GABA, released from the CB during hypoxia, inhibits sensory discharge postsynaptically via a shunting mechanism involving GABA(A) receptors.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
71
|
Chen EI, McClatchy D, Park SK, Yates JR. Comparisons of mass spectrometry compatible surfactants for global analysis of the mammalian brain proteome. Anal Chem 2008; 80:8694-701. [PMID: 18937422 DOI: 10.1021/ac800606w] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methods for the global analysis of protein expression offer an approach to study the molecular basis of disease. Studies of protein expression in tissue, such as brain, are complicated by the need for efficient and unbiased digestion of proteins that permit identification of peptides by shotgun proteomic methods. In particular, identification and characterization of less abundant membrane proteins has been of great interest for studies of brain physiology, but often proteins of interest are of low abundance or exist in multiple isoforms. Parsing protein isoforms as a function of disease will be essential. In this study, we develop a digestion scheme using detergents compatible with mass spectrometry that improves membrane protein identification from brain tissue. We show the modified procedure yields close to 5,000 protein identifications from 1.8 mg of rat brain homogenate with an average of 25% protein sequence coverage. This procedure achieves a remarkable reduction in the amount of starting material required to observe a broad spectrum of membrane proteins. Among the proteins identified from a mammalian brain homogenate, 1897 (35%) proteins are annotated by Gene Ontology as membrane proteins, and 1225 (22.6%) proteins are predicted to contain at least one transmembrane domain. Membrane proteins identified included neurotransmitter receptors and ion channels implicated in important physiological functions and disease.
Collapse
Affiliation(s)
- Emily I Chen
- Department of Chemical Physiology, The Scripps Research Institute, California 92037, USA
| | | | | | | |
Collapse
|
72
|
Barrera NP, Edwardson JM. The subunit arrangement and assembly of ionotropic receptors. Trends Neurosci 2008; 31:569-76. [PMID: 18774187 DOI: 10.1016/j.tins.2008.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 11/17/2022]
Abstract
Ionotropic receptors mediate rapid communication between neurons. These receptors are oligomers and are usually assembled from multiple subunit types. Receptors built from different subunit combinations have distinct functional properties, such as single-channel conductances, rates of desensitization and sensitivities to activators and inactivators; they can also have different intracellular locations. Methods are now available for determining not only the subunit stoichiometry but also the subunit arrangement within ionotropic receptors. This information will inform experiments designed to understand the molecular basis of receptor assembly and function. It will also permit the modelling of potential ligand-binding sites at the interfaces between the subunits and should lead to a more rational approach to drug development.
Collapse
Affiliation(s)
- Nelson P Barrera
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
73
|
Zemkova HW, Bjelobaba I, Tomic M, Zemkova H, Stojilkovic SS. Molecular, pharmacological and functional properties of GABA(A) receptors in anterior pituitary cells. J Physiol 2008; 586:3097-111. [PMID: 18450776 PMCID: PMC2538769 DOI: 10.1113/jphysiol.2008.153148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 04/28/2008] [Indexed: 11/08/2022] Open
Abstract
Anterior pituitary cells express gamma-aminobutyric acid (GABA)-A receptor-channels, but their structure, distribution within the secretory cell types, and nature of action have not been clarified. Here we addressed these questions using cultured anterior pituitary cells from postpubertal female rats and immortalized alphaT3-1 and GH(3) cells. Our results show that mRNAs for all GABA(A) receptor subunits are expressed in pituitary cells and that alpha1/beta1 subunit proteins are present in all secretory cells. In voltage-clamped gramicidin-perforated cells, GABA induced dose-dependent increases in current amplitude that were inhibited by bicuculline and picrotoxin and facilitated by diazepam and zolpidem in a concentration-dependent manner. In intact cells, GABA and the GABA(A) receptor agonist muscimol caused a rapid and transient increase in intracellular calcium, whereas the GABA(B) receptor agonist baclofen was ineffective, suggesting that chloride-mediated depolarization activates voltage-gated calcium channels. Consistent with this finding, RT-PCR analysis indicated high expression of NKCC1, but not KCC2 cation/chloride transporter mRNAs in pituitary cells. Furthermore, the GABA(A) channel reversal potential for chloride ions was positive to the baseline membrane potential in most cells and the activation of ion channels by GABA resulted in depolarization of cells and modulation of spontaneous electrical activity. These results indicate that secretory pituitary cells express functional GABA(A) receptor-channels that are depolarizing.
Collapse
Affiliation(s)
- Hana W Zemkova
- Section on Cellular Signalling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
74
|
Carratù B, Boniglia C, Giammarioli S, Mosca M, Sanzini E. Free amino acids in botanicals and botanical preparations. J Food Sci 2008; 73:C323-8. [PMID: 18576976 DOI: 10.1111/j.1750-3841.2008.00767.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous studies were carried out about aminoacidic composition of vegetable proteins, but information about the free amino acid pool and the role of these substances is very incomplete. The aim of this paper was to contribute to the scarce knowledge concerning the composition of free amino acids in botanicals and botanical preparations widely used as food, in dietary supplements, and in pharmaceutical products. This work studied the composition of free amino acids, identified the major components of 19 species of plants, and evaluated the influence of different types of extraction on the amino acid profile. Amino acids were determined using an automatic precolumn derivatization with fluorenylmethyl-chloroformate and reversed-phase liquid chromatography with fluorescence and ultraviolet detection. The amounts of total free amino acids varied widely between plants, from approximately 12 g in 100 g of Echinacea pallida extract to less than 60 mg in the same amount of Coleus forskohlii, Garcinia cambogia, and Glycine max. In 13 plants arginine, asparagine, glutamine, proline, and gamma-aminobutyric acid were the free amino acids found in preponderant quantities. The levels of free amino acids above the quantification limit in 36 assayed samples of botanicals, extracts, and supplements are shown.
Collapse
Affiliation(s)
- B Carratù
- National Center for Food Quality and Risk Assessment--Inst. Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | |
Collapse
|
75
|
Huang ZJ, Scheiffele P. GABA and neuroligin signaling: linking synaptic activity and adhesion in inhibitory synapse development. Curr Opin Neurobiol 2008; 18:77-83. [PMID: 18513949 DOI: 10.1016/j.conb.2008.05.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 05/05/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
GABA-mediated synaptic inhibition is crucial in neural circuit operations. In mammalian brains, the development of inhibitory synapses and innervation patterns is often a prolonged postnatal process, regulated by neural activity. Emerging evidence indicates that gamma-aminobutyric acid (GABA) acts beyond inhibitory transmission and regulates inhibitory synapse development. Indeed, GABA(A) receptors not only function as chloride channels that regulate membrane voltage and conductance but also play structural roles in synapse maturation and stabilization. The link from GABA(A) receptors to postsynaptic and presynaptic adhesion is probably mediated, partly by neuroligin-reurexin interactions, which are potent in promoting GABAergic synapse formation. Therefore, similar to glutamate signaling at excitatory synapse, GABA signaling may coordinate maturation of presynaptic and postsynaptic sites at inhibitory synapses. Defining the many steps from GABA signaling to receptor trafficking/stability and neuroligin function will provide further mechanistic insights into activity-dependent development and possibly plasticity of inhibitory synapses.
Collapse
Affiliation(s)
- Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | | |
Collapse
|
76
|
Newpher TM, Ehlers MD. Glutamate receptor dynamics in dendritic microdomains. Neuron 2008; 58:472-97. [PMID: 18498731 PMCID: PMC2572138 DOI: 10.1016/j.neuron.2008.04.030] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 01/08/2023]
Abstract
Among diverse factors regulating excitatory synaptic transmission, the abundance of postsynaptic glutamate receptors figures prominently in molecular memory and learning-related synaptic plasticity. To allow for both long-term maintenance of synaptic transmission and acute changes in synaptic strength, the relative rates of glutamate receptor insertion and removal must be tightly regulated. Interactions with scaffolding proteins control the targeting and signaling properties of glutamate receptors within the postsynaptic membrane. In addition, extrasynaptic receptor populations control the equilibrium of receptor exchange at synapses and activate distinct signaling pathways involved in plasticity. Here, we review recent findings that have shaped our current understanding of receptor mobility between synaptic and extrasynaptic compartments at glutamatergic synapses, focusing on AMPA and NMDA receptors. We also examine the cooperative relationship between intracellular trafficking and surface diffusion of glutamate receptors that underlies the expression of learning-related synaptic plasticity.
Collapse
Affiliation(s)
- Thomas M. Newpher
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
77
|
Abstract
The biological activity of androgens is thought to occur predominantly through binding to intracellular androgen-receptors, a member of the nuclear receptor family, that interact with specific nucleotide sequences to alter gene expression. This genomic-androgen effect typically takes at least more than half an hour. In contrast, the rapid or non-genomic actions of androgens are manifested within in seconds to few minutes. This rapid effect of androgens are manifold, ranging from activation of G-protein coupled membrane androgen-receptors or sex hormone-binding globulin receptors, stimulation of different protein kinases, to direct modulation of voltage- and ligand gated ion-channels and transporters. The physiological relevance of these non-genomic androgen actions has not yet been determined in detail. However, it may contribute to modulate several second messenger systems or transcription factors, which suggests a cross-talk between the fast non-genomic and the slow genomic pathway of androgens. This review will focus on the rapid effects of androgens on cell surface and cytoplasmic level.
Collapse
Affiliation(s)
- Guido Michels
- Department of Internal Medicine III and Center for Molecular Medicine (CMMC), University of Cologne, Kerpener Street 62, D-50937 Cologne, Germany
| | | |
Collapse
|
78
|
Pessah IN, Seegal RF, Lein PJ, LaSalle J, Yee BK, Van De Water J, Berman RF. Immunologic and neurodevelopmental susceptibilities of autism. Neurotoxicology 2008; 29:532-45. [PMID: 18394707 PMCID: PMC2475601 DOI: 10.1016/j.neuro.2008.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 02/14/2008] [Accepted: 02/14/2008] [Indexed: 02/02/2023]
Abstract
Symposium 5 focused on research approaches that are aimed at understanding common patterns of immunological and neurological dysfunction contributing to neurodevelopmental disorders such as autism and ADHD. The session focused on genetic, epigenetic, and environmental factors that might act in concert to influence autism risk, severity and co-morbidities, and immunological and neurobiological targets as etiologic contributors. The immune system of children at risk of autism may be therefore especially susceptible to psychological stressors, exposure to chemical triggers, and infectious agents. Identifying early biomarkers of risk provides tangible approaches toward designing studies in animals and humans that yield a better understanding of environmental risk factors, and can help identify rational intervention strategies to mitigate these risks.
Collapse
Affiliation(s)
- Isaac N Pessah
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
It is proposed that a reduced surface expression of GABA(A) receptors (GABARs) contributes to the pathogenesis of status epilepticus (SE), a condition characterized by prolonged seizures. This hypothesis was based on the finding that prolonged epileptiform bursting (repetitive bursts of prolonged depolarizations with superimposed action potentials) in cultures of dissociated hippocampal pyramidal neurons (dissociated cultures) results in the increased intracellular accumulation of GABARs. However, it is not known whether this rapid modification in the surface-expressed GABAR pool results from selective, subunit-dependent or nonselective, subunit-independent internalization of GABARs. In hippocampal slices obtained from animals undergoing prolonged SE (SE-treated slices), we found that the surface expression of the GABAR beta2/3 and gamma2 subunits was reduced, whereas that of the delta subunit was not. Complementary electrophysiological recordings from dentate granule cells in SE-treated slices demonstrated a reduction in GABAR-mediated synaptic inhibition, but not tonic inhibition. A reduction in the surface expression of the gamma2 subunit, but not the delta subunit was also observed in dissociated cultures and organotypic hippocampal slice cultures when incubated in an elevated KCl external medium or an elevated KCl external medium supplemented with NMDA, respectively. Additional studies demonstrated that the reduction in the surface expression of the gamma2 subunit was independent of direct ligand binding of the GABAR. These findings demonstrate that the regulation of surface-expressed GABAR pool during SE is subunit-specific and occurs independent of ligand binding. The differential modulation of the surface expression of GABARs during SE has potential implications for the treatment of this neurological emergency.
Collapse
|
80
|
Enoch MA. The role of GABA(A) receptors in the development of alcoholism. Pharmacol Biochem Behav 2008; 90:95-104. [PMID: 18440057 DOI: 10.1016/j.pbb.2008.03.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/29/2008] [Accepted: 03/05/2008] [Indexed: 11/18/2022]
Abstract
Alcoholism is a common, heritable, chronic relapsing disorder. GABA(A) receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABA(A) receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABA(A) receptors: tolerance is associated with generally decreased GABA(A) receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABA(A) receptors may be implicated in the switch from heavy drinking to dependence. GABA(A) receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABA(A) receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABA(A) receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review.
Collapse
MESH Headings
- Alcohol Drinking/genetics
- Alcohol Drinking/psychology
- Alcoholism/drug therapy
- Alcoholism/genetics
- Alcoholism/physiopathology
- Animals
- Chromosomes, Human, Pair 4/genetics
- Chromosomes, Human, Pair 4/physiology
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 5/physiology
- Dopamine/physiology
- Gene Expression Regulation/physiology
- Humans
- Neuronal Plasticity/physiology
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/genetics
- Receptors, GABA-A/physiology
- Receptors, Presynaptic/drug effects
- Reward
- Steroids/physiology
Collapse
Affiliation(s)
- Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
81
|
Codlin S, Haines RL, Mole SE. btn1 affects endocytosis, polarization of sterol-rich membrane domains and polarized growth in Schizosaccharomyces pombe. Traffic 2008; 9:936-50. [PMID: 18346214 PMCID: PMC2440566 DOI: 10.1111/j.1600-0854.2008.00735.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
btn1, the Schizosaccharomyces pombe orthologue of the human Batten disease gene CLN3, exerts multiple cellular effects. As well as a role in vacuole pH homoeostasis, we now show that Btn1p is essential for growth at high temperatures. Its absence results in progressive defects at 37°C that culminate in total depolarized growth and cell lysis. These defects are preceded by a progressive failure to correctly polarize sterol-rich domains after cytokinesis and are accompanied by loss of Myo1p localization. Furthermore, we found that in Sz. pombe, sterol spreading is linked to defective formation/polarization of F-actin patches and disruption of endocytosis and that these processes are aberrant in btn1Δ cells. Consistent with a role for Btn1p in polarized growth, Btn1p has an altered location at 37°C and is retained in actin-dependent endomembrane structures near the cell poles or septum.
Collapse
Affiliation(s)
- Sandra Codlin
- MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK
| | | | | |
Collapse
|
82
|
Cerebral O(2) consumption in young Eker rats, effects of GABA blockade: implications for autism. Int J Dev Neurosci 2008; 26:517-21. [PMID: 18282678 DOI: 10.1016/j.ijdevneu.2008.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/07/2008] [Indexed: 11/22/2022] Open
Abstract
Since there is a strong correlation between tuberous sclerosis and autism, we used a tuberous sclerosis model (Eker rat) to test the hypothesis that the increased regional cerebral O(2) consumption in the Eker rat might be associated with autism. We also examined whether this increased cerebral O(2) consumption was related to changes in the activity of the gamma-aminobutyric acid (GABA) inhibitory system. Young (4 weeks) male control Long Evans (n=14) and Eker (n=14) rats (70-100g) were divided into control and bicuculline (1mg/kg/min for 2 min then 0.1mg/kg/min for 13 min, GABA(A) receptor antagonist) treated animals. Cerebral regional blood flow ((14)C-iodoantipyrine) and O(2) consumption (cryomicrospectrophotometry) were determined in isoflurane anesthetized rats. We found significantly increased basal O(2) consumption in the cortex (6.3+/-0.7 ml O(2)/min/100g Eker vs. 5.1+/-0.2 ml O(2)/min/100g control), hippocampus and cerebellum, but not the pons. Regional cerebral blood flow was also elevated in the cortex and hippocampus in Eker rats at baseline, but cerebral O(2) extractions were similar. Bicuculline significantly increased O(2) consumption in the cortex (6.5+/-0.3) and all other regions of the control rats, but had no effect on cortex (5.9+/-1.5) or other regions of the Eker rats. Cerebral blood flow followed a similar pattern. In conclusion, Eker rats had significantly elevated cerebral O(2) consumption and blood flow, but this was not affected by GABA receptor blockade. This suggested a reduced activity of the GABA(A) receptor in the brains of Eker rats. This may have important implications in the treatment of autism.
Collapse
|
83
|
Marsden KC, Beattie JB, Friedenthal J, Carroll RC. NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABA(A) receptors. J Neurosci 2007; 27:14326-37. [PMID: 18160640 PMCID: PMC6673443 DOI: 10.1523/jneurosci.4433-07.2007] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 11/02/2007] [Accepted: 11/10/2007] [Indexed: 11/21/2022] Open
Abstract
The trafficking of postsynaptic AMPA receptors (AMPARs) is a powerful mechanism for regulating the strength of excitatory synapses. It has become clear that the surface levels of inhibitory GABA(A) receptors (GABA(A)Rs) are also subject to regulation and that GABA(A)R trafficking may contribute to inhibitory plasticity, although the underlying mechanisms are not fully understood. Here, we report that NMDA receptor activation, which has been shown to drive excitatory long-term depression through AMPAR endocytosis, simultaneously increases expression of GABA(A)Rs at the dendritic surface of hippocampal neurons. This NMDA stimulus increases miniature IPSC amplitudes and requires the activity of Ca2+ calmodulin-dependent kinase II and the trafficking proteins N-ethylmaleimide-sensitive factor, GABA receptor-associated protein (GABARAP), and glutamate receptor interacting protein (GRIP). These data demonstrate for the first time that endogenous GABARAP and GRIP contribute to the regulated trafficking of GABA(A)Rs. In addition, they reveal that the bidirectional trafficking of AMPA and GABA(A) receptors can be driven by a single glutamatergic stimulus, providing a potent postsynaptic mechanism for modulating neuronal excitability.
Collapse
Affiliation(s)
- Kurt C. Marsden
- Dominick P. Purpura Department of Neuroscience, Rose Kennedy Center for Mental Retardation, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, and
| | - Jennifer B. Beattie
- Dominick P. Purpura Department of Neuroscience, Rose Kennedy Center for Mental Retardation, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, and
| | - Jenna Friedenthal
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Reed C. Carroll
- Dominick P. Purpura Department of Neuroscience, Rose Kennedy Center for Mental Retardation, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, and
| |
Collapse
|
84
|
Herd MB, Haythornthwaite AR, Rosahl TW, Wafford KA, Homanics GE, Lambert JJ, Belelli D. The expression of GABAA beta subunit isoforms in synaptic and extrasynaptic receptor populations of mouse dentate gyrus granule cells. J Physiol 2007; 586:989-1004. [PMID: 18079158 DOI: 10.1113/jphysiol.2007.146746] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The subunit composition of GABA(A) receptors influences their biophysical and pharmacological properties, dictates neuronal location and the interaction with associated proteins, and markedly influences the impact of intracellular biochemistry. The focus has been on alpha and gamma subunits, with little attention given to beta subunits. Dentate gyrus granule cells (DGGCs) express all three beta subunit isoforms and exhibit both synaptic and extrasynaptic receptors that mediate 'phasic' and 'tonic' transmission, respectively. To investigate the subcellular distribution of the beta subunits we have utilized the patch-clamp technique to compare the properties of 'tonic' and miniature inhibitory postsynaptic currents (mIPSCs) recorded from DGGCs of hippocampal slices of P20-26 wild-type (WT), beta(2)(-/-), beta(2N265S) (etomidate-insensitive), alpha(1)(-/-) and delta(-/-) mice. Deletion of either the beta(2) or the delta subunit produced a significant reduction of the tonic current and attenuated the increase of this current induced by the delta subunit-preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP). By contrast, mIPSCs were not influenced by deletion of these genes. Enhancement of the tonic current by the beta(2/3) subunit-selective agent etomidate was significantly reduced for DGGCs derived from beta(2N265S) mice, whereas this manipulation had no effect on the prolongation of mIPSCs produced by this anaesthetic. Collectively, these observations, together with previous studies on alpha(4)(-/-) mice, identify a population of extrasynaptic alpha(4)beta(2)delta receptors, whereas synaptic GABA(A) receptors appear to primarily incorporate the beta(3) subunit. A component of the tonic current is diazepam sensitive and is mediated by extrasynaptic receptors incorporating alpha(5) and gamma(2) subunits. Deletion of the beta(2) subunit had no effect on the diazepam-induced current and therefore these extrasynaptic receptors do not contain this subunit. The unambiguous identification of these distinct pools of synaptic and extrasynaptic GABA(A) receptors should aid our understanding of how they act in harmony, to regulate hippocampal signalling in health and disease.
Collapse
Affiliation(s)
- Murray B Herd
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | | | | | | | | | | |
Collapse
|