51
|
Ung J, Tan SF, Fox TE, Shaw JJP, Vass LR, Costa-Pinheiro P, Garrett-Bakelman FE, Keng MK, Sharma A, Claxton DF, Levine RL, Tallman MS, Cabot MC, Kester M, Feith DJ, Loughran TP. Harnessing the power of sphingolipids: Prospects for acute myeloid leukemia. Blood Rev 2022; 55:100950. [PMID: 35487785 PMCID: PMC9475810 DOI: 10.1016/j.blre.2022.100950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, heterogenous malignancy characterized by clonal expansion of bone marrow-derived myeloid progenitor cells. While our current understanding of the molecular and genomic landscape of AML has evolved dramatically and opened avenues for molecularly targeted therapeutics to improve upon standard intensive induction chemotherapy, curative treatments are elusive, particularly in older patients. Responses to current AML treatments are transient and incomplete, necessitating the development of novel treatment strategies to improve outcomes. To this end, harnessing the power of bioactive sphingolipids to treat cancer shows great promise. Sphingolipids are involved in many hallmarks of cancer of paramount importance in AML. Leukemic blast survival is influenced by cellular levels of ceramide, a bona fide pro-death molecule, and its conversion to signaling molecules such as sphingosine-1-phosphate and glycosphingolipids. Preclinical studies demonstrate the efficacy of therapeutics that target dysregulated sphingolipid metabolism as well as their combinatorial synergy with clinically-relevant therapeutics. Thus, increased understanding of sphingolipid dysregulation may be exploited to improve AML patient care and outcomes. This review summarizes the current knowledge of dysregulated sphingolipid metabolism in AML, evaluates how pro-survival sphingolipids promote AML pathogenesis, and discusses the therapeutic potential of targeting these dysregulated sphingolipid pathways.
Collapse
Affiliation(s)
- Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Su-Fern Tan
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Todd E Fox
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Jeremy J P Shaw
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Luke R Vass
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Pedro Costa-Pinheiro
- Cancer Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Francine E Garrett-Bakelman
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Michael K Keng
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - David F Claxton
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - Ross L Levine
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Mark Kester
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - David J Feith
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Thomas P Loughran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America.
| |
Collapse
|
52
|
Liu Q, Liu J, Huang X. Unraveling the mystery: How bad is BAG3 in hematological malignancies? Biochim Biophys Acta Rev Cancer 2022; 1877:188781. [PMID: 35985611 DOI: 10.1016/j.bbcan.2022.188781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
BAG3, also known as BIS and CAIR-1, interacts with Hsp70 via its BAG domain and with other molecules through its WW domain, PXXP repeats and IPV motifs. BAG3 can participate in major cellular pathways including apoptosis, autophagy, cytoskeleton structure, and motility by regulating the expression, location, and activity of its chaperone proteins. As a multifunctional protein, BAG3 is highly expressed in skeletal muscle, cardiomyocytes and multiple tumors, and its intracellular expression can be stimulated by stress. The functions and mechanisms of BAG3 in hematological malignancies have recently been a topic of interest. BAG3 has been confirmed to be involved in the development and chemoresistance of hematological malignancies and to act as a prognostic indicator. Modulation of BAG3 and its corresponding proteins has thus emerged as a promising therapeutic and experimental target. In this review, we consider the characteristics of BAG3 in hematological malignancies as a reference for further clinical and fundamental investigations.
Collapse
Affiliation(s)
- Qinghan Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jinde Liu
- Department of Respiratory, Dandong Central Hospital, Dandong, Liaoning, China
| | - Xinyue Huang
- The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
53
|
Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B, Rysz J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022; 10:biomedicines10081938. [PMID: 36009488 PMCID: PMC9405799 DOI: 10.3390/biomedicines10081938] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are disorders associated with the heart and circulatory system. Atherosclerosis is its major underlying cause. CVDs are chronic and can remain hidden for a long time. Moreover, CVDs are the leading cause of global morbidity and mortality, thus creating a major public health concern. This review summarizes the available information on the pathophysiological implications of CVDs, focusing on coronary artery disease along with atherosclerosis as its major cause and arterial hypertension. We discuss the endothelium dysfunction, inflammatory factors, and oxidation associated with atherosclerosis. Mechanisms such as dysfunction of the endothelium and inflammation, which have been identified as critical pathways for development of coronary artery disease, have become easier to diagnose in recent years. Relatively recently, evidence has been found indicating that interactions of the molecular and cellular elements such as matrix metalloproteinases, elements of the immune system, and oxidative stress are involved in the pathophysiology of arterial hypertension. Many studies have revealed several important inflammatory and genetic risk factors associated with CVDs. However, further investigation is crucial to improve our knowledge of CVDs progression and, more importantly, accelerate basic research to improve our understanding of the mechanism of pathophysiology.
Collapse
|
54
|
Xu D, Chen Y, Yang Y, Yin Z, Huang C, Wang Q, Jiang L, Jiang X, Yin C, Liu Q, Yu G. Autophagy activation mediates resistance to FLT3 inhibitors in acute myeloid leukemia with FLT3-ITD mutation. Lab Invest 2022; 20:300. [PMID: 35794565 PMCID: PMC9258138 DOI: 10.1186/s12967-022-03498-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 06/24/2022] [Indexed: 12/18/2022]
Abstract
Background Autophagy plays a critical role in drug resistance in acute myeloid leukemia (AML), including the subtype with FLT3-ITD mutation. Yet how autophagy is activated and mediates resistance to FLT3 inhibitors in FLT3-ITD-positive AML remains unsure. Methods We detected the expression of autophagy markers in FLT3-ITD-positive leukemic cells after vs. before acquired resistance to FLT3 inhibitors; tested the stimulative effect of acquired D835Y mutation and bone marrow micro-environment (BME) on autophagy; explored the mechanism of autophagy mediating FLT3 inhibitor resistance. Results Sorafenib-resistant cells markedly overpresented autophagy markers in comparison with sorafenib-sensitive cells or the cells before sorafenib treatment. Both acquired D835Y mutation and BME activated cytoprotective autophagy to mediate FLT3 inhibitor resistance. Autophagy activation decreased the suppression efficacy of FLT3 inhibitors on FLT3 downstream signaling and then weakened their anti-leukemia effect. Inhibition of autophagy with CQ significantly enhanced the suppressive effect of FLT3 inhibitor on FLT3 downstream signaling, in the end overcame resistance to FLT3 inhibitors. Conclusions Autophagy might be stimulated by acquired mutation or BME, and bypass activate FLT3 downstream signaling to mediate FLT3 inhibitor resistance in FLT3-ITD-positive AML. Targeting autophagy could be a promising strategy to overcome resistance.
Collapse
|
55
|
The combination of hydroxychloroquine and 2-deoxyglucose enhances apoptosis in breast cancer cells by blocking protective autophagy and sustaining endoplasmic reticulum stress. Cell Death Dis 2022; 8:286. [PMID: 35690609 PMCID: PMC9188615 DOI: 10.1038/s41420-022-01074-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
2-Deoxyglucose (2-DG) can be used in antitumour research by inhibiting glycolysis and promoting the endoplasmic reticulum stress (ERS) pathway, but its clinical application is restricted due to dose-limiting side effects and survival chance for cancer cells by protective autophagy. Therefore, our research explored whether the combination of hydroxychloroquine (HCQ), an FDA-approved autophagy inhibiting drug, and 2-DG is a promising therapeutic strategy. Here, we report that HCQ combined with 2-DG can further inhibit the viability and migration and induce apoptosis of breast tumour cells compared with other individual drugs. The combination of 2-DG and HCQ can significantly reduce transplanted tumour size and tumour cell metastasis of the lung and liver in vivo. At the cellular level, HCQ suppressed autolysosome formation and terminated the autophagy process induced by 2-DG-mediated ERS, resulting in the continuous accumulation of misfolded proteins in the endoplasmic reticulum, which generated sustained ERS through the PERK-eIF2α-ATF-4-CHOP axis and triggered the transformation from a survival process to cell death. Our research reinforced the research interest of metabolic disruptors in triple-negative breast cancer and emphasized the potential of the combination of 2-DG and HCQ as an anticancerous treatment.
Collapse
|
56
|
Zalpoor H, Rezaei M, Yahyazadeh S, Ganjalikhani-Hakemi M. Flt3-ITD mutated acute myeloid leukemia patients and COVID-19: potential roles of autophagy and HIF-1α in leukemia progression and mortality. Hum Cell 2022; 35:1304-1305. [PMID: 35639283 PMCID: PMC9152658 DOI: 10.1007/s13577-022-00718-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahnaz Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
57
|
Identification of an Autophagy-Related Signature Based on Whole Bone Marrow Sequencing for the Prognosis and Immune Microenvironment Characterization of Multiple Myeloma. J Immunol Res 2022; 2022:3922739. [PMID: 35677537 PMCID: PMC9169202 DOI: 10.1155/2022/3922739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Myeloma (MM) is a malignant plasma cell disorder, which is incurable owing to its drug resistance. Autophagy performs an integral function in homeostasis, survival, and drug resistance in multiple myeloma (MM). Therefore, the purpose of the present research was to identify potential autophagy-related genes (ARGs) in patients with MM. We downloaded the transcriptomic data (GSE136400) of patients with MM, as well as the corresponding clinical data from the Gene Expression Omnibus (GEO); the patients were classified at random into two groups in a ratio of 6: 4, with 212 samples in the training dataset and 142 samples in the test dataset. Both multivariate and univariate Cox regression analyses were performed to identify autophagy-related genes. The univariate Cox regression analysis demonstrated that 26 ARGs had a significant correlation with overall survival (OS). We constructed an autophagy-related risk prognostic model based on six ARGs: EIF2AK2 (ENSG00000055332), KIF5B (ENSG00000170759), MYC (ENSG00000136997), NRG2 (ENSG00000158458), PINK1 (ENSG00000158828), and VEGFA (ENSG00000112715) using LASSO-Cox regression analysis to predict risk outcomes, which revealed substantially shortened OS duration in the high-risk cohort in contrast with that in the low-risk cohort. Therefore, the ARG-based model significantly predicted the MM patients’ prognoses and was verified in an internal test set. Differentially expressed genes were found to be predominantly enriched in pathways associated with inflammation and immune regulation. Immune infiltration of tumor cells resulted in the formation of a strong immunosuppressive microenvironment in high-risk patients. The potential therapeutic targets of ARGs were subsequently analyzed via protein–drug network analysis. Therefore, a prognostic model for MM was established via a comprehensive analysis of ARGs, through using the clinical models; we have further revealed the molecular landscape features of multiple myeloma.
Collapse
|
58
|
Seo W, Silwal P, Song IC, Jo EK. The dual role of autophagy in acute myeloid leukemia. J Hematol Oncol 2022; 15:51. [PMID: 35526025 PMCID: PMC9077970 DOI: 10.1186/s13045-022-01262-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a severe hematologic malignancy prevalent in older patients, and the identification of potential therapeutic targets for AML is problematic. Autophagy is a lysosome-dependent catabolic pathway involved in the tumorigenesis and/or treatment of various cancers. Mounting evidence has suggested that autophagy plays a critical role in the initiation and progression of AML and anticancer responses. In this review, we describe recent updates on the multifaceted functions of autophagy linking to genetic alterations of AML. We also summarize the latest evidence for autophagy-related genes as potential prognostic predictors and drivers of AML tumorigenesis. We then discuss the crosstalk between autophagy and tumor cell metabolism into the impact on both AML progression and anti-leukemic treatment. Moreover, a series of autophagy regulators, i.e., the inhibitors and activators, are described as potential therapeutics for AML. Finally, we describe the translation of autophagy-modulating therapeutics into clinical practice. Autophagy in AML is a double-edged sword, necessitating a deeper understanding of how autophagy influences dual functions in AML tumorigenesis and anti-leukemic responses.
Collapse
Affiliation(s)
- Wonhyoung Seo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
59
|
Non-Mutated Nucleophosmin 1 Is Recognized by the CD8+ T Lymphocytes of an AML Patient after the Transplantation of Hematopoietic Stem Cells from an HLA-Haploidentical Donor. Curr Oncol 2022; 29:2928-2934. [PMID: 35621629 PMCID: PMC9140185 DOI: 10.3390/curroncol29050239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Our study describes an AML patient whose leukemia cells carried the NPM1c+ mutation, and who was the recipient of allogeneic HSCT from a haploidentical donor. The patient raised a robust allorestricted CD8+ T cell response directed against the NPM1wt protein. Favourably, the response against NPM1wt was not accompanied by side effects such as GvHD. Moreover, the induction of a high NPM1wt specific response coincided with the decrease in NPM1c+ transcripts detected, implying a beneficial graft versus leukemia effect. On the basis of these results, we suppose that TCRs from allorestricted NPM1wt-specific T cells are worth studying in other recipients of grafts from haploidentical donors as a possible tool for TCR gene therapy. Abstract Nucleophosmin (NPM1, B23) is a multifunctional phosphoprotein expressed in all tissues. The protein is mainly localized in nucleoli. In hematological malignancies, NPM1 belongs to commonly altered genes. Its mutation, always heterozygous, leads to the re-localization of the NPM1 protein from the nucleolus to the cytoplasm (NPM1c+). NPM1c+ is found in 30% of acute myeloid leukemia (AML). Our study showed that an AML patient, whose leukemia cells carried the NPM1c+ mutation and who was the recipient of allogeneic HSCT from a haploidentical donor, raised a robust allorestricted CD8+ T cell response directed against the NPM1wt protein. Favourably, the response against NPM1wt was not accompanied by side effects such as GvHD. Moreover, the induction of a high NPM1wt-specific response coincided with the decrease in NPM1c+ transcripts detected, implying a beneficial graft versus leukemia effect. On the basis of these results, we suppose that TCRs from allorestricted NPM1wt-specific T cells are worth studying in other recipients of grafts from haploidentical donors as a possible tool for TCR gene therapy.
Collapse
|
60
|
MAP kinase-dependent autophagy controls phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells. Life Sci 2022; 297:120481. [PMID: 35304128 DOI: 10.1016/j.lfs.2022.120481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
We investigated the mechanisms and the role of autophagy in the differentiation of HL-60 human acute myeloid leukemia cells induced by protein kinase C (PKC) activator phorbol myristate acetate (PMA). PMA-triggered differentiation of HL-60 cells into macrophage-like cells was confirmed by cell-cycle arrest accompanied by elevated expression of macrophage markers CD11b, CD13, CD14, CD45, EGR1, CSF1R, and IL-8. The induction of autophagy was demonstrated by the increase in intracellular acidification, accumulation/punctuation of autophagosome marker LC3-II, and the increase in autophagic flux. PMA also increased nuclear translocation of autophagy transcription factors TFEB, FOXO1, and FOXO3, as well as the expression of several autophagy-related (ATG) genes in HL-60 cells. PMA failed to activate autophagy inducer AMP-activated protein kinase (AMPK) and inhibit autophagy suppressor mechanistic target of rapamycin complex 1 (mTORC1). On the other hand, it readily stimulated the phosphorylation of mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) via a protein kinase C-dependent mechanism. Pharmacological or genetic inhibition of ERK or JNK suppressed PMA-triggered nuclear translocation of TFEB and FOXO1/3, ATG expression, dissociation of pro-autophagic beclin-1 from its inhibitor BCL2, autophagy induction, and differentiation of HL-60 cells into macrophage-like cells. Pharmacological or genetic inhibition of autophagy also blocked PMA-induced macrophage differentiation of HL-60 cells. Therefore, MAP kinases ERK and JNK control PMA-induced macrophage differentiation of HL-60 leukemia cells through AMPK/mTORC1-independent, TFEB/FOXO-mediated transcriptional and beclin-1-dependent post-translational activation of autophagy.
Collapse
|
61
|
Grønningsæter IS, Reikvam H, Aasebø E, Bartaula-Brevik S, Hernandez-Valladares M, Selheim F, Berven FS, Tvedt TH, Bruserud Ø, Hatfield KJ. Effects of the Autophagy-Inhibiting Agent Chloroquine on Acute Myeloid Leukemia Cells; Characterization of Patient Heterogeneity. J Pers Med 2021; 11:jpm11080779. [PMID: 34442423 PMCID: PMC8399694 DOI: 10.3390/jpm11080779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved cellular degradation process that prevents cell damage and promotes cell survival, and clinical efforts have exploited autophagy inhibition as a therapeutic strategy in cancer. Chloroquine is a well-known antimalarial agent that inhibits late-stage autophagy. We evaluated the effects of chloroquine on cell viability and proliferation of acute myeloid leukemia acute myeloid leukemia (AML) cells derived from 81 AML patients. Our results show that chloroquine decreased AML cell viability and proliferation for the majority of patients. Furthermore, a subgroup of AML patients showed a greater susceptibility to chloroquine, and using hierarchical cluster analysis, we identified 99 genes upregulated in this patient subgroup, including several genes related to leukemogenesis. The combination of chloroquine with low-dose cytarabine had an additive inhibitory effect on AML cell proliferation. Finally, a minority of patients showed increased extracellular constitutive mediator release in the presence of chloroquine, which was associated with strong antiproliferative effects of chloroquine as well as cytarabine. We conclude that chloroquine has antileukemic activity and should be further explored as a therapeutic drug against AML in combination with other cytotoxic or metabolic drugs; however, due to the patient heterogeneity, chloroquine therapy will probably be effective only for selected patients.
Collapse
Affiliation(s)
- Ida Sofie Grønningsæter
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Medicine, Akershus University Hospital, N-1478 Lørenskog, Norway
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Elise Aasebø
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
| | - Sushma Bartaula-Brevik
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
| | - Maria Hernandez-Valladares
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
- The Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
- The Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Frode S. Berven
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
- The Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Tor Henrik Tvedt
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway;
- Department of Hematology, Oslo University Hospital—The National Hospital, N-0372 Oslo, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway;
- Correspondence: (Ø.B.); (K.J.H.)
| | - Kimberley Joanne Hatfield
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, N-5009 Bergen, Norway
- Correspondence: (Ø.B.); (K.J.H.)
| |
Collapse
|
62
|
Autophagy a Close Relative of AML Biology. BIOLOGY 2021; 10:biology10060552. [PMID: 34207482 PMCID: PMC8235674 DOI: 10.3390/biology10060552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Despite a high rate of complete remission following conventional chemotherapy, the prognosis remains poor due to frequent relapses caused by relapse-initiating leukemic cells (RICs), which are resistant to chemotherapies. While the development of new targeted therapies holds great promise (e.g., molecules targeting IDH1/2, FLT3, BCL2), relapses still occur. Therefore, a paramount issue in the elimination of RICs is to decipher the AML resistance mechanisms. Thus, it has been recently shown that AML cells exhibit metabolic changes in response to chemotherapy or targeted therapies. Autophagy is a major regulator of cell metabolism, involved in maintaining cancer state, metastasis, and resistance to anticancer therapy. However, whether autophagy acts as a tumor suppressor or promoter in AML is still a matter of debate. Therefore, depending on molecular AML subtypes or treatments used, a better understanding of the role of autophagy is needed to determine whether its modulation could result in a clinical benefit. Abstract Autophagy, which literally means “eat yourself”, is more than just a lysosomal degradation pathway. It is a well-known regulator of cellular metabolism and a mechanism implicated in tumor initiation/progression and therapeutic resistance in many cancers. However, whether autophagy acts as a tumor suppressor or promoter is still a matter of debate. In acute myeloid leukemia (AML), it is now proven that autophagy supports cell proliferation in vitro and leukemic progression in vivo. Mitophagy, the specific degradation of mitochondria through autophagy, was recently shown to be required for leukemic stem cell functions and survival, highlighting the prominent role of this selective autophagy in leukemia initiation and progression. Moreover, autophagy in AML sustains fatty acid oxidation through lipophagy to support mitochondrial oxidative phosphorylation (OxPHOS), a hallmark of chemotherapy-resistant cells. Nevertheless, in the context of therapy, in AML, as well as in other cancers, autophagy could be either cytoprotective or cytotoxic, depending on the drugs used. This review summarizes the recent findings that mechanistically show how autophagy favors leukemic transformation of normal hematopoietic stem cells, as well as AML progression and also recapitulates its ambivalent role in resistance to chemotherapies and targeted therapies.
Collapse
|
63
|
Zhou WM, Liu B, Shavandi A, Li L, Song H, Zhang JY. Methylation Landscape: Targeting Writer or Eraser to Discover Anti-Cancer Drug. Front Pharmacol 2021; 12:690057. [PMID: 34149432 PMCID: PMC8209422 DOI: 10.3389/fphar.2021.690057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a major global health challenge for our health system, despite the important pharmacological and therapeutic discoveries we have seen since past 5 decades. The increasing prevalence and mortality of cancer may be closely related to smoking, exposure to environmental pollution, dietary and genetic factors. Despite significant promising discoveries and developments such as cell and biotechnological therapies a new breakthrough in the medical field is needed to develop specific and effective drugs for cancer treatment. On the development of cell therapies, anti-tumor vaccines, and new biotechnological drugs that have already shown promising effects in preclinical studies. With the continuous enrichment and development of chromatin immunoprecipitation sequencing (ChIP-seq) and its derivative technologies, epigenetic modification has gradually become a research hotspot. As key ingredients of epigenetic modification, Writers, Readers, Erasers have been gradually unveiled. Cancer has been associated with epigenetic modification especially methylation and therefore different epigenetic drugs have been developed and some of those are already undergoing clinical phase I or phase II trials, and it is believed that these drugs will certainly assist the treatment in the near future. With respect to this, an overview of anti-tumor drugs targeting modified enzymes and de-modified enzymes will be performed in order to contribute to future research.
Collapse
Affiliation(s)
- Wen-Min Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Amin Shavandi
- BioMatter Unit, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Lu Li
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
64
|
Fu D, Zhang B, Wu S, Zhang Y, Xie J, Ning W, Jiang H. Prognosis and Characterization of Immune Microenvironment in Acute Myeloid Leukemia Through Identification of an Autophagy-Related Signature. Front Immunol 2021; 12:695865. [PMID: 34135913 PMCID: PMC8200670 DOI: 10.3389/fimmu.2021.695865] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies that has an unfavorable outcome and a high rate of relapse. Autophagy plays a vital role in the development of and therapeutic responses to leukemia. This study identifies a potential autophagy-related signature to monitor the prognoses of patients of AML. Transcriptomic profiles of AML patients (GSE37642) with the relevant clinical information were downloaded from Gene Expression Omnibus (GEO) as the training set while TCGA-AML and GSE12417 were used as validation cohorts. Univariate regression analyses and multivariate stepwise Cox regression analysis were respectively applied to identify the autophagy-related signature. The univariate Cox regression analysis identified 32 autophagy-related genes (ARGs) that were significantly associated with the overall survival (OS) of the patients, and were mainly rich in signaling pathways for autophagy, p53, AMPK, and TNF. A prognostic signature that comprised eight ARGs (BAG3, CALCOCO2, CAMKK2, CANX, DAPK1, P4HB, TSC2, and ULK1) and had good predictive capacity was established by LASSO–Cox stepwise regression analysis. High-risk patients were found to have significantly shorter OS than patients in low-risk group. The signature can be used as an independent prognostic predictor after adjusting for clinicopathological parameters, and was validated on two external AML sets. Differentially expressed genes analyzed in two groups were involved in inflammatory and immune signaling pathways. An analysis of tumor-infiltrating immune cells confirmed that high-risk patients had a strong immunosuppressive microenvironment. Potential druggable OS-related ARGs were then investigated through protein–drug interactions. This study provides a systematic analysis of ARGs and develops an OS-related prognostic predictor for AML patients. Further work is needed to verify its clinical utility and identify the underlying molecular mechanisms in AML.
Collapse
Affiliation(s)
- Denggang Fu
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Biyu Zhang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Shiyong Wu
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yinghua Zhang
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jingwu Xie
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,The IU Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, United States
| | - Wangbin Ning
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Jiang
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
65
|
Functional Genetic Variants in ATG10 Are Associated with Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13061344. [PMID: 33809750 PMCID: PMC8002222 DOI: 10.3390/cancers13061344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a hematological neoplasm with a very poor survival rate. To date, diagnostic tools to monitor individuals at higher risk of developing AML are scarce. Single nucleotide polymorphisms (SNPs) have emerged as good candidates for disease prevention. AML is characterized by altered autophagy, a vital mechanism to remove and recycle unnecessary or dysfunctional cellular components. ATG10 is one of the autophagy core genes involved in the autophagosome formation. We hypothesize that SNPs located in regulatory regions of the ATG10 gene could predispose individuals to AML development. We therefore genotyped three SNPs within the ATG10 locus. We identified the ATG10rs3734114 as a potential risk factor for developing AML, whereas the ATG10rs1864182 was associated with decreased risk. These findings highlight ATG10 as a key regulator of susceptibility to AML. Furthermore, we believe that ATG10 SNPs could be exploited in the clinical setting as an AML prevention strategy. Abstract Acute myeloid leukemia (AML) is the most common acute leukemia, characterized by a heterogeneous genetic landscape contributing, among others, to the occurrence of metabolic reprogramming. Autophagy, a key player on metabolism, plays an essential role in AML. Here, we examined the association of three potentially functional genetic polymorphisms in the ATG10 gene, central for the autophagosome formation. We screened a multicenter cohort involving 309 AML patients and 356 healthy subjects for three ATG10 SNPs: rs1864182T>G, rs1864183C>T and rs3734114T>C. The functional consequences of the ATG10 SNPs in its canonical function were investigated in vitro using peripheral blood mononuclear cells from a cohort of 46 healthy individuals. Logistic regression analysis adjusted for age and gender revealed that patients carrying the ATG10rs1864182G allele showed a significantly decreased risk of developing AML (OR [odds ratio] = 0.58, p = 0.001), whereas patients carrying the homozygous ATG10rs3734114C allele had a significantly increased risk of developing AML (OR = 2.70, p = 0.004). Functional analysis showed that individuals carrying the ATG10rs1864182G allele had decreased autophagy when compared to homozygous major allele carriers. Our results uncover the potential of screening for ATG10 genetic variants in AML prevention strategies, in particular for subjects carrying other AML risk factors such as elderly individuals with clonal hematopoiesis of indeterminate potential.
Collapse
|