51
|
Fan Z, Zhao S, Liu T, Shen PX, Cui ZN, Zhuang Z, Shao Q, Chen JS, Ratnayake AS, Flanagan ME, Kölmel DK, Piotrowski DW, Richardson P, Yu JQ. Merging C(sp 3)-H activation with DNA-encoding. Chem Sci 2020; 11:12282-12288. [PMID: 34094436 PMCID: PMC8162953 DOI: 10.1039/d0sc03935g] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA-encoded library (DEL) technology has the potential to dramatically expedite hit identification in drug discovery owing to its ability to perform protein affinity selection with millions or billions of molecules in a few experiments. To expand the molecular diversity of DEL, it is critical to develop different types of DNA-encoded transformations that produce billions of molecules with distinct molecular scaffolds. Sequential functionalization of multiple C–H bonds provides a unique avenue for creating diversity and complexity from simple starting materials. However, the use of water as solvent, the presence of DNA, and the extremely low concentration of DNA-encoded coupling partners (0.001 M) have hampered the development of DNA-encoded C(sp3)–H activation reactions. Herein, we report the realization of palladium-catalyzed C(sp3)–H arylation of aliphatic carboxylic acids, amides and ketones with DNA-encoded aryl iodides in water. Notably, the present method enables the use of alternative sets of monofunctional building blocks, providing a linchpin to facilitate further setup for DELs. Furthermore, the C–H arylation chemistry enabled the on-DNA synthesis of structurally-diverse scaffolds containing enriched C(sp3) character, chiral centers, cyclopropane, cyclobutane, and heterocycles. DNA-compatible C(sp3)–H activation reactions of aliphatic carboxylic acids, amides, and ketones were developed for efficient access to DEL synthesis.![]()
Collapse
Affiliation(s)
- Zhoulong Fan
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Shuai Zhao
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Tao Liu
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Peng-Xiang Shen
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Zi-Ning Cui
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Qian Shao
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Jason S Chen
- Automated Synthesis Facility, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Anokha S Ratnayake
- Pfizer Medicinal Chemistry Eastern Point Road, Groton Connecticut 06340 USA
| | - Mark E Flanagan
- Pfizer Medicinal Chemistry Eastern Point Road, Groton Connecticut 06340 USA
| | - Dominik K Kölmel
- Pfizer Medicinal Chemistry Eastern Point Road, Groton Connecticut 06340 USA
| | - David W Piotrowski
- Pfizer Medicinal Chemistry Eastern Point Road, Groton Connecticut 06340 USA
| | - Paul Richardson
- Pfizer Medicinal Chemistry, 10578 Science Center Drive San Diego CA 09121 USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| |
Collapse
|
52
|
Blay V, Tolani B, Ho SP, Arkin MR. High-Throughput Screening: today's biochemical and cell-based approaches. Drug Discov Today 2020; 25:1807-1821. [PMID: 32801051 DOI: 10.1016/j.drudis.2020.07.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/01/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
High-throughput screening (HTS) provides starting chemical matter in the adventure of developing a new drug. In this review, we survey several HTS methods used today for hit identification, organized in two main flavors: biochemical and cell-based assays. Biochemical assays discussed include fluorescence polarization and anisotropy, FRET, TR-FRET, and fluorescence lifetime analysis. Binding-based methods are also surveyed, including NMR, SPR, mass spectrometry, and DSF. On the other hand, cell-based assays discussed include viability, reporter gene, second messenger, and high-throughput microscopy assays. We devote some emphasis to high-content screening, which is becoming very popular. An advisable stage after hit discovery using phenotypic screens is target deconvolution, and we provide an overview of current chemical proteomics, in silico, and chemical genetics tools. Emphasis is made on recent CRISPR/dCas-based screens. Lastly, we illustrate some of the considerations that inform the choice of HTS methods and point to some areas with potential interest for future research.
Collapse
Affiliation(s)
- Vincent Blay
- Division of Biomaterials and Bioengineering, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Sunita P Ho
- Division of Biomaterials and Bioengineering, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
53
|
Kunig VBK, Potowski M, Akbarzadeh M, Klika Škopić M, Santos Smith D, Arendt L, Dormuth I, Adihou H, Andlovic B, Karatas H, Shaabani S, Zarganes‐Tzitzikas T, Neochoritis CG, Zhang R, Groves M, Guéret SM, Ottmann C, Rahnenführer J, Fried R, Dömling A, Brunschweiger A. TEAD–YAP Interaction Inhibitors and MDM2 Binders from DNA‐Encoded Indole‐Focused Ugi Peptidomimetics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Verena B. K. Kunig
- TU Dortmund University Faculty of Chemistry and Chemical Biology Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Marco Potowski
- TU Dortmund University Faculty of Chemistry and Chemical Biology Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Mohammad Akbarzadeh
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Mateja Klika Škopić
- TU Dortmund University Faculty of Chemistry and Chemical Biology Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Denise Santos Smith
- TU Dortmund University Faculty of Chemistry and Chemical Biology Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Lukas Arendt
- TU Dortmund University Faculty of Statistics Vogelpothsweg 87 44227 Dortmund Germany
| | - Ina Dormuth
- TU Dortmund University Faculty of Statistics Vogelpothsweg 87 44227 Dortmund Germany
| | - Hélène Adihou
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D AstraZeneca 43150 Gothenburg Sweden
- AstraZeneca-Max Planck Institute Satellite Unit Max-Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Blaž Andlovic
- Lead Discovery Center GmbH (Germany) Otto-Hahn-Strasse 15 44227 Dortmund Germany
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Hacer Karatas
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Shabnam Shaabani
- University of Groningen Drug Design Deusinglaan 1 7313 AV Groningen The Netherlands
| | | | - Constantinos G. Neochoritis
- University of Groningen Drug Design Deusinglaan 1 7313 AV Groningen The Netherlands
- University of Crete Department of Chemistry 70013 Heraklion Greece
| | - Ran Zhang
- University of Groningen Drug Design Deusinglaan 1 7313 AV Groningen The Netherlands
| | - Matthew Groves
- University of Groningen Drug Design Deusinglaan 1 7313 AV Groningen The Netherlands
| | - Stéphanie M. Guéret
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D AstraZeneca 43150 Gothenburg Sweden
- AstraZeneca-Max Planck Institute Satellite Unit Max-Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Jörg Rahnenführer
- TU Dortmund University Faculty of Statistics Vogelpothsweg 87 44227 Dortmund Germany
| | - Roland Fried
- TU Dortmund University Faculty of Statistics Vogelpothsweg 87 44227 Dortmund Germany
| | - Alexander Dömling
- University of Groningen Drug Design Deusinglaan 1 7313 AV Groningen The Netherlands
| | - Andreas Brunschweiger
- TU Dortmund University Faculty of Chemistry and Chemical Biology Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
54
|
Quartararo AJ, Gates ZP, Somsen BA, Hartrampf N, Ye X, Shimada A, Kajihara Y, Ottmann C, Pentelute BL. Ultra-large chemical libraries for the discovery of high-affinity peptide binders. Nat Commun 2020; 11:3183. [PMID: 32576815 PMCID: PMC7311396 DOI: 10.1038/s41467-020-16920-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/27/2020] [Indexed: 11/22/2022] Open
Abstract
High-diversity genetically-encoded combinatorial libraries (108-1013 members) are a rich source of peptide-based binding molecules, identified by affinity selection. Synthetic libraries can access broader chemical space, but typically examine only ~ 106 compounds by screening. Here we show that in-solution affinity selection can be interfaced with nano-liquid chromatography-tandem mass spectrometry peptide sequencing to identify binders from fully randomized synthetic libraries of 108 members-a 100-fold gain in diversity over standard practice. To validate this approach, we show that binders to a monoclonal antibody are identified in proportion to library diversity, as diversity is increased from 106-108. These results are then applied to the discovery of p53-like binders to MDM2, and to a family of 3-19 nM-affinity, α/β-peptide-based binders to 14-3-3. An X-ray structure of one of these binders in complex with 14-3-3σ is determined, illustrating the role of β-amino acids in facilitating a key binding contact.
Collapse
Affiliation(s)
- Anthony J Quartararo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zachary P Gates
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bente A Somsen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, Netherlands
| | - Nina Hartrampf
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xiyun Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Arisa Shimada
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, Netherlands
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02142, USA.
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
55
|
Xie J, Wang S, Ma P, Ma F, Li J, Wang W, Lu F, Xiong H, Gu Y, Zhang S, Xu H, Yang G, Lerner RA. Selection of Small Molecules that Bind to and Activate the Insulin Receptor from a DNA-Encoded Library of Natural Products. iScience 2020; 23:101197. [PMID: 32544667 PMCID: PMC7298650 DOI: 10.1016/j.isci.2020.101197] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/21/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Although insulin is a life-saving medicine, administration by daily injection remains problematic. Our goal was to exploit the power of DNA-encoded libraries to identify molecules with insulin-like activity but with the potential to be developed as oral drugs. Our strategy involved using a 104-member DNA-encoded library containing 160 Traditional Chinese Medicines (nDEL) to identify molecules that bind to and activate the insulin receptor. Importantly, we used the natural ligand, insulin, to liberate bound molecules. Using this selection method on our relatively small, but highly diverse, nDEL yielded a molecule capable of both binding to and activating the insulin receptor. Chemical analysis showed this molecule to be a polycyclic analog of the guanidine metformin, a known drug used to treat diabetes. By using our protocol with other, even larger, DELs we can expect to identify additional organic molecules capable of binding to and activating the insulin receptor. Annotation of natural products via complementary bifunctional linkers Function-guided DEL selection using the natural ligand for competitive elution Identification of Rutaecarpine as a binder and activator of insulin receptor
Collapse
Affiliation(s)
- Jia Xie
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shuyue Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Fei Ma
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
56
|
Li J, Li Y, Lu F, Liu L, Ji Q, Song K, Yin Q, Lerner RA, Yang G, Xu H, Ma P. A DNA-encoded library for the identification of natural product binders that modulate poly (ADP-ribose) polymerase 1, a validated anti-cancer target. Biochem Biophys Res Commun 2020; 533:241-248. [PMID: 32381359 DOI: 10.1016/j.bbrc.2020.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023]
Abstract
Natural products have been an invaluable source of drug discovery, but their targets remain largely unknown. Natural products enriched DNA-encoded chemical libraries (nDELs) empower the researchers to rapidly and economically screen numerous natural products against various protein targets, and therefore promote the elucidation of the molecular mechanisms. In this work, we used poly (ADP-ribose) polymerase 1 (PARP1), as an example to explore the usage of nDEL for the functional natural products selection. We used late-stage modification approach to label three positive binders with unique DNA barcodes, whose dissociation constants range from sub-micromolar to micromolar. The selection criterion was set up according to the enrichment of these controls. Five natural products selected by this criterion directly bind to PARP1 in SPR, among which luteolin exhibits the highest inhibitory activity against PARP1. Moreover, luteolin selectively induces accumulation of DNA double-strand breaks and G2/M phase arrest in BRCA-deficient cells. All the findings from these investigations on luteolin support that PARP1 inhibition is one of the mechanisms for its anti-cancer activity.
Collapse
Affiliation(s)
- Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Ke Song
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Qianqian Yin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China.
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
57
|
Götte K, Chines S, Brunschweiger A. Reaction development for DNA-encoded library technology: From evolution to revolution? Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151889] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
58
|
Sannino A, Gironda-Martínez A, Gorre ÉMD, Prati L, Piazzi J, Scheuermann J, Neri D, Donckele EJ, Samain F. Critical Evaluation of Photo-cross-linking Parameters for the Implementation of Efficient DNA-Encoded Chemical Library Selections. ACS COMBINATORIAL SCIENCE 2020; 22:204-212. [PMID: 32109359 DOI: 10.1021/acscombsci.0c00023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The growing importance of DNA-encoded chemical libraries (DECLs) as tools for the discovery of protein binders has sparked an interest for the development of efficient screening methodologies, capable of discriminating between high- and medium-affinity ligands. Here, we present a systematic investigation of selection methodologies, featuring a library displayed on single-stranded DNA, which could be hybridized to a complementary oligonucleotide carrying a diazirine photoreactive group. Model experiments, performed using ligands of different affinity to carbonic anhydrase IX, revealed a recovery of preferential binders up to 10%, which was mainly limited by the highly reactive nature of carbene intermediates generated during the photo-cross-linking process. Ligands featuring acetazolamide or p-phenylsulfonamide exhibited a higher recovery compared to their counterparts based on 3-sulfamoyl benzoic acid, which had a lower affinity toward the target. A systematic evaluation of experimental parameters revealed conditions that were ideally suited for library screening, which were used for the screening of a combinatorial DECL library, featuring 669 240 combinations of two sets of building blocks. Compared to conventional affinity capture procedures on protein immobilized on solid supports, photo-cross-linking provided a better discrimination of low-affinity CAIX ligands over the background signal and therefore can be used as a tandem methodology with the affinity capture procedures.
Collapse
Affiliation(s)
| | | | | | - Luca Prati
- Philochem AG, 8112 Otelfingen, Switzerland
| | | | - Jörg Scheuermann
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
59
|
Flood DT, Zhang X, Fu X, Zhao Z, Asai S, Sanchez BB, Sturgell EJ, Vantourout JC, Richardson P, Flanagan ME, Piotrowski DW, Kölmel DK, Wan J, Tsai MH, Chen JS, Baran PS, Dawson PE. RASS-Enabled S/P-C and S-N Bond Formation for DEL Synthesis. Angew Chem Int Ed Engl 2020; 59:7377-7383. [PMID: 32050046 DOI: 10.1002/anie.201915493] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/05/2020] [Indexed: 01/28/2023]
Abstract
DNA encoded libraries (DEL) have shown promise as a valuable technology for democratizing the hit discovery process. Although DEL provides relatively inexpensive access to libraries of unprecedented size, their production has been hampered by the idiosyncratic needs of the encoding DNA tag relegating DEL compatible chemistry to dilute aqueous environments. Recently reversible adsorption to solid support (RASS) has been demonstrated as a promising method to expand DEL reactivity using standard organic synthesis protocols. Here we demonstrate a suite of on-DNA chemistries to incorporate medicinally relevant and C-S, C-P and N-S linkages into DELs, which are underrepresented in the canonical methods.
Collapse
Affiliation(s)
- Dillon T Flood
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Xuejing Zhang
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.,School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiang Fu
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.,School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhenxiang Zhao
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Shota Asai
- Department of Chemistry and Biological Sciences, Faculty of and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| | - Brittany B Sanchez
- Automated Synthesis Facility, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Emily J Sturgell
- Automated Synthesis Facility, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Julien C Vantourout
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Paul Richardson
- Pfizer Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA, 92121, USA
| | - Mark E Flanagan
- Pfizer Medicinal Chemistry, Eastern Point Road, Groton, CT, 06340, USA
| | | | - Dominik K Kölmel
- Pfizer Medicinal Chemistry, Eastern Point Road, Groton, CT, 06340, USA
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Mei-Hsuan Tsai
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Jason S Chen
- Automated Synthesis Facility, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Philip E Dawson
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
60
|
Flood DT, Zhang X, Fu X, Zhao Z, Asai S, Sanchez BB, Sturgell EJ, Vantourout JC, Richardson P, Flanagan ME, Piotrowski DW, Kölmel DK, Wan J, Tsai M, Chen JS, Baran PS, Dawson PE. RASS‐Enabled S/P−C and S−N Bond Formation for DEL Synthesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915493] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dillon T. Flood
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Xuejing Zhang
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Xiang Fu
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Zhenxiang Zhao
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Shota Asai
- Department of Chemistry and Biological SciencesFaculty of and EngineeringIwate University 4-3-5 Ueda Morioka 020-8551 Japan
| | - Brittany B. Sanchez
- Automated Synthesis FacilityThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Emily J. Sturgell
- Automated Synthesis FacilityThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Julien C. Vantourout
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Paul Richardson
- Pfizer Medicinal Chemistry 10770 Science Center Drive San Diego CA 92121 USA
| | - Mark E. Flanagan
- Pfizer Medicinal Chemistry Eastern Point Road Groton CT 06340 USA
| | | | | | - Jinqiao Wan
- HitGen Inc. Building 6, No. 8 Huigu 1st East Road Tianfu International Bio-Town, Shuangliu District, Chengdu 610200 Sichuan China
| | - Mei‐Hsuan Tsai
- HitGen Inc. Building 6, No. 8 Huigu 1st East Road Tianfu International Bio-Town, Shuangliu District, Chengdu 610200 Sichuan China
| | - Jason S. Chen
- Automated Synthesis FacilityThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Phil S. Baran
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Philip E. Dawson
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
61
|
McCarthy KA, Franklin GJ, Lancia DR, Olbrot M, Pardo E, O’Connell JC, Kollmann CS. The Impact of Variable Selection Coverage on Detection of Ligands from a DNA-Encoded Library Screen. SLAS DISCOVERY 2020; 25:515-522. [DOI: 10.1177/2472555220908240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA-encoded library (DEL) technology has become a prominent screening platform in drug discovery owing to the capacity to screen billions or trillions of compounds in a single experiment. Although numerous successes with DEL technology have been reported, we are unaware of a rigorous examination of the many different variables that can influence a screen’s success. Herein, we explore the impact of variable sample sequencing depth on the detection of tool compounds with known affinities toward a given target while simultaneously probing the effect of initial compound input. Our sequencing data confirm reports that high-affinity compounds can be discovered directly from a DEL screen, but we demonstrate that a mismatch between selection output and sequencing quantity can obscure useful ligands. Our results highlight the importance of selection coverage in grasping the entire picture of a DEL screen where the signal of a weak or underrepresented ligand may be suppressed by the inherent noise of a selection. These potential missed ligands may be critical to the success or failure of a drug discovery program.
Collapse
Affiliation(s)
| | | | | | | | - Eneida Pardo
- FORMA Therapeutics, Watertown, MA, USA
- Relay Therapeutics, Cambridge, MA, USA
| | | | | |
Collapse
|
62
|
Badir SO, Sim J, Billings K, Csakai A, Zhang X, Dong W, Molander GA. Multifunctional Building Blocks Compatible with Photoredox-Mediated Alkylation for DNA-Encoded Library Synthesis. Org Lett 2020; 22:1046-1051. [PMID: 31940210 PMCID: PMC7060506 DOI: 10.1021/acs.orglett.9b04568] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA-encoded library (DEL) technology has emerged as a novel interrogation modality for ligand discovery in the pharmaceutical industry. Given the increasing demand for a higher proportion of C(sp3)-hybridized centers in DEL platforms, a photoredox-mediated cross-coupling and defluorinative alkylation process is introduced using commercially available alkyl bromides and structurally diverse α-silylamines. Notably, no protecting group strategies for amines are necessary for the incorporation of a variety of amino-acid-based organosilanes, providing crucial branching points for further derivatization.
Collapse
Affiliation(s)
- Shorouk O. Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jaehoon Sim
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Katelyn Billings
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, USA
| | - Adam Csakai
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, USA
| | - Xuange Zhang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Weizhe Dong
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
63
|
Hunter JH, Prendergast L, Valente LF, Madin A, Pairaudeau G, Waring MJ. High Fidelity Suzuki-Miyaura Coupling for the Synthesis of DNA Encoded Libraries Enabled by Micelle Forming Surfactants. Bioconjug Chem 2020; 31:149-155. [PMID: 31873005 DOI: 10.1021/acs.bioconjchem.9b00838] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA encoded chemical libraries provide a highly efficient means of screening vast numbers of small molecules against an immobilized protein target. Their potential is currently restricted by the constraints of carrying out library synthesis in the presence of attached DNA tags, for which a limited number of reactions and substrates can be used. Even established reactions, such as Suzuki-Miyaura couplings, do not give efficient coupling reactions across a wide range of substrates and can lead to significant DNA degradation. We developed an efficient protocol for carrying out Suzuki-Miyaura couplings on DNA tagged substrates that proceeds with unprecedented efficiency to the desired biaryl products (>98% on average with no detectable DNA degradation) across a wide range of drug-like substrates using a micellar promoted process with commercial TPGS-750-M surfactant. We have demonstrated the applicability of this method in DEL synthesis by preparing a prototypical two-dimensional 36-member library employing the Suzuki-Miyaura coupling methodology as the final library synthesis step. This work shows, for the first time, that standard micellar surfactants can promote reactions for encoded library synthesis, leading to libraries of exceptional fidelity, and demonstrates the potential to expand the range of accessible DNA compatible chemistry.
Collapse
Affiliation(s)
- James H Hunter
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural and Environmental Sciences , Newcastle University , Bedson Building , Newcastle upon Tyne NE1 7RU , U.K
| | - Lisa Prendergast
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer , Newcastle University , Paul O'Gorman Building, Framlington Place , Newcastle upon Tyne NE2 4AD , U.K
| | - Louis F Valente
- JMP Division , SAS Institute Inc. , 100 SAS Campus Drive , Cary , North Carolina 27513 , United States
| | - Andrew Madin
- Discovery Sciences IMED Biotech Unit , AstraZeneca , 310 Cambridge Science Park, Milton Road , Cambridge CB4 0WG , U.K
| | - Garry Pairaudeau
- Discovery Sciences IMED Biotech Unit , AstraZeneca , 310 Cambridge Science Park, Milton Road , Cambridge CB4 0WG , U.K
| | - Michael J Waring
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural and Environmental Sciences , Newcastle University , Bedson Building , Newcastle upon Tyne NE1 7RU , U.K
| |
Collapse
|
64
|
Gironda-Martínez A, Neri D, Samain F, Donckele EJ. DNA-Compatible Diazo-Transfer Reaction in Aqueous Media Suitable for DNA-Encoded Chemical Library Synthesis. Org Lett 2019; 21:9555-9558. [DOI: 10.1021/acs.orglett.9b03726] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Florent Samain
- Philochem AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland
| | | |
Collapse
|