51
|
Kassubek J, Müller HP. Advanced neuroimaging approaches in amyotrophic lateral sclerosis: refining the clinical diagnosis. Expert Rev Neurother 2020; 20:237-249. [PMID: 31937156 DOI: 10.1080/14737175.2020.1715798] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: In the last decade, multiparametric magnetic resonance imaging (MRI) has achieved tremendous advances in applications to amyotrophic lateral sclerosis (ALS) to increase the understanding of the associated pathophysiology. The aim of this review is to summarize recent progress in the development of MRI-based techniques aiming to support the clinical diagnosis in ALS.Areas covered: The review of structural and functional MRI applications to ALS and its variants (restricted phenotypes) is focused on the potential of MRI techniques which contribute to the diagnostic work-up of patients with the clinical presentation of a motor neuron disease. The potential of specific MRI methods for patient diagnosis and monitoring is discussed, and the future design of clinical MRI applications to ALS is conceptualized.Expert opinion: Current multiparametric MRI allows for the use as a clinical biological marker and a technical instrument in the clinical diagnosis of patients with ALS and also of patients with ALS variants. Composite neuroimaging indices of specific anatomical areas derived from different MRI techniques might guide in the diagnostic applications to ALS. Such a development of ALS-specific MRI-based composite scores with sufficient discriminative power versus ALS mimics at an individual level requires standardized advanced protocols and comprehensive analysis approaches.
Collapse
Affiliation(s)
- Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
52
|
Bede P, Pradat PF. Editorial: Biomarkers and Clinical Indicators in Motor Neuron Disease. Front Neurol 2020; 10:1318. [PMID: 31920939 PMCID: PMC6920250 DOI: 10.3389/fneur.2019.01318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France.,Sorbonne University, CNRS, INSERM, Biomedical Imaging Laboratory, Paris, France
| | - Pierre-Francois Pradat
- Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France.,Sorbonne University, CNRS, INSERM, Biomedical Imaging Laboratory, Paris, France
| |
Collapse
|
53
|
Finegan E, Hi Shing SL, Chipika RH, McKenna MC, Doherty MA, Hengeveld JC, Vajda A, Donaghy C, McLaughlin RL, Hutchinson S, Hardiman O, Bede P. Thalamic, hippocampal and basal ganglia pathology in primary lateral sclerosis and amyotrophic lateral sclerosis: Evidence from quantitative imaging data. Data Brief 2020; 29:105115. [PMID: 32055654 PMCID: PMC7005372 DOI: 10.1016/j.dib.2020.105115] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 01/12/2023] Open
Abstract
Primary lateral sclerosis and amyotrophic lateral sclerosis are primarily associated with motor cortex and corticospinal tract pathology. A standardised, prospective, single-centre neuroimaging protocol was used to characterise thalamic, hippocampal and basal ganglia involvement in 33 patients with primary lateral sclerosis (PLS), 100 patients with amyotrophic lateral sclerosis (ALS), and 117 healthy controls. “Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling” [1] Imaging data were acquired on a 3 T MRI system using a 3D Inversion Recovery prepared Spoiled Gradient Recalled echo sequence. Model based segmentation was used to estimate the volumes of the thalamus, hippocampus, amygdala, caudate, pallidum, putamen and accumbens nucleus in each hemisphere. The hippocampus was further parcellated into cytologically-defined subfields. Total intracranial volume (TIV) was estimated for each participant to aid the interpretation of subcortical volume alterations. Group comparisons were corrected for age, gender, TIV, education and symptom duration. Considerable thalamic, hippocampal and accumbens nucleus atrophy was detected in PLS compared to healthy controls and selective dentate, molecular layer, CA1, CA3, and CA4 hippocampal pathology was also identified. In ALS, additional volume reductions were noted in the amygdala, left caudate and the hippocampal-amygdala transition area of the hippocampus. Our imaging data provide evidence of extensive and phenotype-specific patterns of subcortical degeneration in PLS.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mary C McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 1-5 College Green, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 1-5 College Green, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 1-5 College Green, Dublin 2, Ireland
| | | | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 1-5 College Green, Dublin 2, Ireland
| | - Siobhan Hutchinson
- Department of Neurology, St James's Hospital, James's St, Ushers, Dublin 8, D08 NHY1, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
54
|
Mitsumoto H, Chiuzan C, Gilmore M, Zhang Y, Simmons Z, Paganoni S, Kisanuki YY, Zinman L, Jawdat O, Sorenson E, Floeter MK, Pioro EP, Fernandes Filho JAM, Heitzman D, Fournier CN, Oskarsson B, Heiman‐Patterson T, Maragakis N, Joyce N, Hayat G, Nations S, Scelsa S, Walk D, Elman L, Hupf J, McHale B. Primary lateral sclerosis (PLS) functional rating scale: PLS‐specific clinimetric scale. Muscle Nerve 2019; 61:163-172. [DOI: 10.1002/mus.26765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/07/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Hiroshi Mitsumoto
- Department of Neurology, Eleanor and Lou Gehrig ALS CenterColumbia University Irvine Medical Center New York New York
| | - Codruta Chiuzan
- Department of BiostatisticsMailman School of Medicine, Columbia University New York New York
| | - Madison Gilmore
- Department of Neurology, Eleanor and Lou Gehrig ALS CenterColumbia University Irvine Medical Center New York New York
| | - Yuan Zhang
- Department of BiostatisticsMailman School of Medicine, Columbia University New York New York
| | - Zachary Simmons
- Department of NeurologyPennsylvania State University Hershey Pennsylvania
| | - Sabrina Paganoni
- Sean M. Healey & AMG Center for ALS, Department of NeurologyMassachusetts General Hospital Boston Massachusetts
- Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital, Harvard Medical School Boston Massachusetts
| | | | - Lorne Zinman
- Department of NeurologyUniversity of Toronto, Sunnybrook Hospital Toronto Ontario Canada
| | - Omar Jawdat
- Department of NeurologyUniversity of Kansas Kansas City Kansas
| | - Eric Sorenson
- Department of NeurologyMayo Clinic, Minnesota Rochester Minnesota
| | - Mary Kay Floeter
- Clinical Unit, National Institute of Neurological Diseases and Stroke Bethesda Maryland
| | - Erik P. Pioro
- Department of NeurologyCleveland Clinic Cleveland Ohio
| | | | | | | | - Bjorn Oskarsson
- Department of NeurologyMayo Clinic Jacksonville Jacksonville Florida
| | | | | | - Nanette Joyce
- Department of Neurology University of California Davis Davis California
| | - Ghazala Hayat
- Department of NeurologySt Louis University St Louis Missouri
| | - Sharon Nations
- Department of NeurologyUniversity of Texas Southwestern Dallas Texas
| | - Stephen Scelsa
- Department of NeurologyMount Sinai/Beth Israel Hospital New York New York
| | - David Walk
- Department of NeurologyUniversity of Minnesota Minneapolis Minnesota
| | - Lauren Elman
- Department of NeurologyUniversity of Pennsylvania Philadelphia Pennsylvania
| | - Jonathan Hupf
- Department of Neurology, Eleanor and Lou Gehrig ALS CenterColumbia University Irvine Medical Center New York New York
| | - Brittany McHale
- Department of Neurology, Eleanor and Lou Gehrig ALS CenterColumbia University Irvine Medical Center New York New York
| | | |
Collapse
|
55
|
Takeda T, Kitagawa K, Arai K. Phenotypic variability and its pathological basis in amyotrophic lateral sclerosis. Neuropathology 2019; 40:40-56. [PMID: 31802540 DOI: 10.1111/neup.12606] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by its inherent clinicopathological variability. The concurrence of upper and lower motor neuron signs is a common feature in the majority of patients with ALS. However, some patients manifest an atypical clinical course, with only upper or lower motor neuron signs, or various extra-motor symptoms including cognitive dysfunction, parkinsonism, autonomic dysfunction, or ophthalmoparesis. This variability indicates different manifestations of ALS and is reflected by ALS pathology spreading into the central nervous system. The presence of cytoplasmic inclusions positive for transactivation response DNA-binding protein 43 kDa (TDP-43) is a key feature in ALS. Loss of TDP-43 from the nucleus and its subsequent aggregation in the cytoplasm may occur in susceptible regions and may be associated with neuronal loss. However, in some regions, there is no apparent neuronal loss while TDP-43 accumulation is evident; in contrast, in other regions, neuronal loss is apparent without any evidence of TDP-43 accumulation. Therefore, in addition to TDP-43 dysfunction, underlying region-specific cellular vulnerability may exist in the upper and lower motor neurons and frontotemporal system in patients with ALS. The microscopic discrepancy and selective vulnerability may be linked to the macroscopic propensities of the sites of onset, and may also determine the direction and rate of progression of the lesions. Thus, there may be multicentric sites of onset, region-oriented disease development, and different speeds of disease progression across patients with ALS. ALS lesions occur in motor-related areas but may spread to neighboring areas. However, since lesions may spread in a discontinuous manner, and the dynamics of disease propagation have not been able to be identified, it remains controversial whether the stepwise appearance of TDP-43-positive inclusions is based on direct cell-to-cell protein propagation. Further understanding of the phenotypic variability of ALS and its pathological basis may serve as a guide for investigating the underlying pathogenesis of ALS.
Collapse
Affiliation(s)
- Takahiro Takeda
- Department of Neurology, National Hospital Organization Chibahigashi National Hospital, Chiba, Japan.,Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kimihito Arai
- Department of Neurology, National Hospital Organization Chibahigashi National Hospital, Chiba, Japan
| |
Collapse
|
56
|
Christidi F, Karavasilis E, Rentzos M, Velonakis G, Zouvelou V, Xirou S, Argyropoulos G, Papatriantafyllou I, Pantolewn V, Ferentinos P, Kelekis N, Seimenis I, Evdokimidis I, Bede P. Hippocampal pathology in amyotrophic lateral sclerosis: selective vulnerability of subfields and their associated projections. Neurobiol Aging 2019; 84:178-188. [DOI: 10.1016/j.neurobiolaging.2019.07.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022]
|
57
|
Finegan E, Li Hi Shing S, Chipika RH, Doherty MA, Hengeveld JC, Vajda A, Donaghy C, Pender N, McLaughlin RL, Hardiman O, Bede P. Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling. NEUROIMAGE-CLINICAL 2019; 24:102089. [PMID: 31795059 PMCID: PMC6978214 DOI: 10.1016/j.nicl.2019.102089] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/02/2019] [Accepted: 11/09/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Primary lateral sclerosis (PLS) is a low incidence motor neuron disease which carries a markedly better prognosis than amyotrophic lateral sclerosis (ALS). Despite sporadic reports of extra-motor symptoms, PLS is widely regarded as a pure upper motor neuron disorder. The post mortem literature of PLS is strikingly sparse and very little is known of subcortical grey matter pathology in this condition. METHODS A prospective imaging study was undertaken with 33 PLS patients, 117 healthy controls and 100 ALS patients to specifically assess the integrity of subcortical grey matter structures and determine whether PLS and ALS have divergent thalamic, hippocampal and basal ganglia signatures. Volumetric, morphometric, segmentation and vertex-wise analyses were carried out in the three study groups to evaluate the integrity of thalamus, hippocampus, caudate, amygdala, pallidum, putamen and accumbens nucleus in each hemisphere. The hippocampus was further parcellated to characterise the involvement of specific subfields. RESULTS Considerable thalamic, caudate, and hippocampal atrophy was detected in PLS based on both volumetric and vertex analyses. Significant volume reductions were also detected in the accumbens nuclei. Hippocampal atrophy in PLS was dominated by dentate gyrus, hippocampal tail and CA4 subfield volume reductions. The morphometric comparison of ALS and PLS cohorts revealed preferential medial bi-thalamic pathology in PLS compared to the predominant putaminal degeneration detected in ALS. Another distinguishing feature between ALS and PLS was the preferential atrophy of the amygdala in ALS. CONCLUSIONS PLS is associated with considerable subcortical grey matter degeneration and due to the extensive extra-motor involvement, it should no longer be regarded a pure upper motor neuron disorder. Given its unique pathological features and a clinical course which differs considerably from ALS, dedicated research studies and disease-specific therapeutic strategies are urgently required in PLS.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | | | - Niall Pender
- Department of Psychology, Beaumont Hospital Dublin, Ireland
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
58
|
Bede P, Chipika RH, Finegan E, Li Hi Shing S, Doherty MA, Hengeveld JC, Vajda A, Hutchinson S, Donaghy C, McLaughlin RL, Hardiman O. Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study. NEUROIMAGE-CLINICAL 2019; 24:102054. [PMID: 31711033 PMCID: PMC6849418 DOI: 10.1016/j.nicl.2019.102054] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 01/06/2023]
Abstract
Computational neuroimaging captures focal brainstem pathology in motor neuron diseases in contrast to both healthy- and disease controls. ALS patients exhibit progressive medulla oblongata, pontine and mesencephalic volume loss over time. Brainstem atrophy in ALS and PLS is dominated by medulla oblongata volume reductions. Vertex analyses of ALS patients reveal flattening of the medullary pyramids bilaterally. Morphometric analyses in ALS detect density reductions in the mesencephalic crura consistent with corticospinal tract degeneration.
Background Brainstem pathology is a hallmark feature of ALS, yet most imaging studies focus on cortical grey matter alterations and internal capsule white matter pathology. Brainstem imaging in ALS provides a unique opportunity to appraise descending motor tract degeneration and bulbar lower motor neuron involvement. Methods A prospective longitudinal imaging study has been undertaken with 100 patients with ALS, 33 patients with PLS, 30 patients with FTD and 100 healthy controls. Volumetric, vertex and morphometric analyses were conducted correcting for demographic factors to characterise disease-specific patterns of brainstem pathology. Using a Bayesian segmentation algorithm, the brainstem was segmented into the medulla, pons and mesencephalon to measure regional volume reductions, shape analyses were performed to ascertain the atrophy profile of each study group and region-of-interest morphometry was used to evaluate focal density alterations. Results ALS and PLS patients exhibit considerable brainstem atrophy compared to both disease- and healthy controls. Volume reductions in ALS and PLS are dominated by medulla oblongata pathology, but pontine atrophy can also be detected. In ALS, vertex analyses confirm the flattening of the medullary pyramids bilaterally in comparison to healthy controls and widespread pontine shape deformations in contrast to PLS. The ALS cohort exhibit bilateral density reductions in the mesencephalic crura in contrast to healthy controls, central pontine atrophy compared to disease controls, peri-aqueduct mesencephalic and posterior pontine changes in comparison to PLS patients. Conclus ions: Computational brainstem imaging captures the degeneration of both white and grey matter components in ALS. Our longitudinal data indicate progressive brainstem atrophy over time, underlining the biomarker potential of quantitative brainstem measures in ALS. At a time when a multitude of clinical trials are underway worldwide, there is an unprecedented need for accurate biomarkers to monitor disease progression and detect response to therapy. Brainstem imaging is a promising addition to candidate biomarkers of ALS and PLS.
Collapse
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Siobhan Hutchinson
- Department of Neurology, St James's Hospital, James's St, Ushers, Dublin 8 D08 NHY1, Ireland
| | - Colette Donaghy
- Department of Neurology, Western Health & Social Care Trust, Belfast, UK
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
59
|
Abidi M, de Marco G, Couillandre A, Feron M, Mseddi E, Termoz N, Querin G, Pradat PF, Bede P. Adaptive functional reorganization in amyotrophic lateral sclerosis: coexisting degenerative and compensatory changes. Eur J Neurol 2019; 27:121-128. [PMID: 31310452 DOI: 10.1111/ene.14042] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Considerable functional reorganization takes place in amyotrophic lateral sclerosis (ALS) in face of relentless structural degeneration. This study evaluates functional adaptation in ALS patients with lower motor neuron predominant (LMNp) and upper motor neuron predominant (UMNp) dysfunction. METHODS Seventeen LMNp ALS patients, 14 UMNp ALS patients and 14 controls participated in a functional magnetic resonance imaging study. Study-group-specific activation patterns were evaluated during preparation for a motor task. Connectivity analyses were carried out using the supplementary motor area (SMA), cerebellum and striatum as seed regions and correlations were explored with clinical measures. RESULTS Increased cerebellar, decreased dorsolateral prefrontal cortex and decreased SMA activation were detected in UMNp patients compared to controls. Increased cerebellar activation was also detected in UMNp patients compared to LMNp patients. UMNp patients exhibit increased effective connectivity between the cerebellum and caudate, and decreased connectivity between the SMA and caudate and between the SMA and cerebellum when performing self-initiated movement. In UMNp patients, a positive correlation was detected between clinical variables and striato-cerebellar connectivity. CONCLUSIONS Our findings indicate that, despite the dysfunction of SMA-striatal and SMA-cerebellar networks, cerebello-striatal connectivity increases in ALS indicative of compensatory processes. The coexistence of circuits with decreased and increased connectivity suggests concomitant neurodegenerative and adaptive changes in ALS.
Collapse
Affiliation(s)
- M Abidi
- CeRSM Laboratory, Nanterre University, UPL, Paris, France
| | - G de Marco
- CeRSM Laboratory, Nanterre University, UPL, Paris, France.,COMUE Paris Lumières University, Paris, France
| | - A Couillandre
- CeRSM Laboratory, Nanterre University, UPL, Paris, France.,COMUE Paris Lumières University, Paris, France
| | - M Feron
- CeRSM Laboratory, Nanterre University, UPL, Paris, France
| | - E Mseddi
- CeRSM Laboratory, Nanterre University, UPL, Paris, France
| | - N Termoz
- CeRSM Laboratory, Nanterre University, UPL, Paris, France.,COMUE Paris Lumières University, Paris, France
| | - G Querin
- Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France.,Biomedical Imaging Laboratory, Sorbonne University, Paris, France
| | - P-F Pradat
- Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France.,Biomedical Imaging Laboratory, Sorbonne University, Paris, France
| | - P Bede
- Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France.,Biomedical Imaging Laboratory, Sorbonne University, Paris, France.,Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
60
|
The same cortico-efferent tract involvement in progressive bulbar palsy and in 'classical' ALS: A tract of interest-based MRI study. NEUROIMAGE-CLINICAL 2019; 24:101979. [PMID: 31421506 PMCID: PMC6706345 DOI: 10.1016/j.nicl.2019.101979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 01/04/2023]
Abstract
Background There is an ongoing debate about the concept of restricted phenotypes of amyotrophic lateral sclerosis (ALS), including progressive bulbar palsy (PBP). Objective The study was designed to investigate specific white matter alterations in diffusion tensor imaging (DTI) data from PBP patients using a hypothesis-guided tract-of-interest-based approach (compared with ‘classical’ ALS patients and controls) to identify in vivo microstructural changes according to the neuropathologically defined ALS-related corticoefferent tract pathology. Methods DTI-based white matter mapping was performed both by an unbiased voxel-wise statistical comparison and by a hypothesis-guided tract-wise analysis of fractional anisotropy (FA) maps according to the ALS-staging pattern for 23 PBP and 23 ALS patients vs 23 matched controls. Results The analysis of white matter integrity demonstrated regional FA reductions along the CST and also in frontal and prefrontal brain areas both in PBP patients and ALS patients with additional regional FA reduction in the pons of the PBP group. In the tract-specific analysis according to the neuropathological ALS-staging pattern, PBP and ALS patients showed identical significant alterations of ALS-related tract systems when compared with controls. Conclusions The DTI study including the tract-of-interest-based analysis showed the same microstructural corticoefferent involvement patterns in PBP patients as in ALS, which supports the hypothesis that PBP is a phenotypical variant of ALS. Neuropathological ALS-stages can be mapped in vivo in PBP. PBP but not classical ALS patients show regional FA reduction in the pons. This study supports the hypothesis that PBP is a phenotypical variant of ALS.
Collapse
|
61
|
The clinical and radiological profile of primary lateral sclerosis: a population-based study. J Neurol 2019; 266:2718-2733. [PMID: 31325016 DOI: 10.1007/s00415-019-09473-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Primary lateral sclerosis is a progressive upper-motor-neuron disorder associated with markedly longer survival than ALS. In contrast to ALS, the genetic susceptibility, histopathological profile and imaging signature of PLS are poorly characterised. Suspected PLS patients often face considerable diagnostic delay and prognostic uncertainty. OBJECTIVE To characterise the distinguishing clinical, genetic and imaging features of PLS in contrast to ALS and healthy controls. METHODS A prospective population-based study was conducted with 49 PLS patients, 100 ALS patients and 100 healthy controls using genetic profiling, standardised clinical assessments and neuroimaging. Whole-brain and region-of-interest analyses were undertaken to evaluate patterns of grey and white matter degeneration. RESULTS In PLS, disease burden in the motor cortex is more medial than in ALS consistent with its lower limb symptom-predominance. PLS is associated with considerable cerebellar white and grey matter degeneration and the extra-motor profile of PLS includes marked insular, inferior frontal and left pars opercularis pathology. Contrary to ALS, PLS spares the postcentral gyrus. The body and splenium of the corpus callosum are preferentially affected in PLS, in contrast to the genu involvement observed in ALS. Clinical measures show anatomically meaningful correlations with imaging metrics in a somatotopic distribution. PLS patients tested negative for C9orf72 repeat expansions, known ALS and HSP-associated genes. CONCLUSIONS Multiparametric imaging in PLS highlights disease-specific motor and extra-motor involvement distinct from ALS. In a condition where limited post-mortem data are available, imaging offers invaluable pathological insights. Anatomical correlations with clinical metrics confirm the biomarker potential of quantitative neuroimaging in PLS.
Collapse
|
62
|
Bede P. The histological correlates of imaging metrics: postmortem validation of in vivo findings. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:457-460. [PMID: 31293187 DOI: 10.1080/21678421.2019.1639195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
63
|
Hirsch-Reinshagen V, Alfaify OA, Hsiung GYR, Pottier C, Baker M, Perkerson RB, Rademakers R, Briemberg H, Foti DJ, Mackenzie IR. Clinicopathologic correlations in a family with a TBK1 mutation presenting as primary progressive aphasia and primary lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:568-575. [PMID: 31244341 DOI: 10.1080/21678421.2019.1632347] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mutations in the TANK binding kinase 1 gene (TBK1) are associated with amyotrophic lateral sclerosis and/or frontotemporal dementia; however, the range of clinical phenotypes and neuropathological changes associated with these mutations have not yet been completely elucidated. We present the detailed clinical, neuroimaging, and neuropathological features of two brothers carrying the TBK1 p.Gly272_Thr331del mutation. Both presented with very similar and unusual clinical features including primary progressive aphasia and asymmetric-onset primary lateral sclerosis (PLS). Repeated electrophysiological studies failed to reveal any lower motor neuron involvement. Neuropathological evaluation of both cases revealed frontotemporal lobar degeneration with TDP-43 proteinopathy type B and selective involvement of upper motor neurons with TDP-43 inclusions. The stereotypical clinical presentation and neuropathological findings in these cases widen the phenotypic spectrum of TBK1 mutations and provide insights into the pathogenesis of PLS.
Collapse
Affiliation(s)
| | - Omar A Alfaify
- Division of Neurology, University of British Columbia , Vancouver , Canada , and
| | - Ging-Yuek R Hsiung
- Division of Neurology, University of British Columbia , Vancouver , Canada , and
| | - Cyril Pottier
- Department of Neuroscience, Mayo Clinic , Jacksonville , FL , USA
| | - Matt Baker
- Department of Neuroscience, Mayo Clinic , Jacksonville , FL , USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic , Jacksonville , FL , USA
| | - Hanna Briemberg
- Division of Neurology, University of British Columbia , Vancouver , Canada , and
| | - Dean J Foti
- Division of Neurology, University of British Columbia , Vancouver , Canada , and
| | - Ian R Mackenzie
- Division of Neuropathology, University of British Columbia , Vancouver , Canada
| |
Collapse
|
64
|
Chipika RH, Finegan E, Li Hi Shing S, Hardiman O, Bede P. Tracking a Fast-Moving Disease: Longitudinal Markers, Monitoring, and Clinical Trial Endpoints in ALS. Front Neurol 2019; 10:229. [PMID: 30941088 PMCID: PMC6433752 DOI: 10.3389/fneur.2019.00229] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) encompasses a heterogeneous group of phenotypes with different progression rates, varying degree of extra-motor involvement and divergent progression patterns. The natural history of ALS is increasingly evaluated by large, multi-time point longitudinal studies, many of which now incorporate presymptomatic and post-mortem assessments. These studies not only have the potential to characterize patterns of anatomical propagation, molecular mechanisms of disease spread, but also to identify pragmatic monitoring markers. Sensitive markers of progressive neurodegenerative change are indispensable for clinical trials and individualized patient care. Biofluid markers, neuroimaging indices, electrophysiological markers, rating scales, questionnaires, and other disease-specific instruments have divergent sensitivity profiles. The discussion of candidate monitoring markers in ALS has a dual academic and clinical relevance, and is particularly timely given the increasing number of pharmacological trials. The objective of this paper is to provide a comprehensive and critical review of longitudinal studies in ALS, focusing on the sensitivity profile of established and emerging monitoring markers.
Collapse
Affiliation(s)
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|