51
|
Hubstenberger A, Noble SL, Cameron C, Evans TC. Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development. Dev Cell 2014; 27:161-173. [PMID: 24176641 DOI: 10.1016/j.devcel.2013.09.024] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/27/2013] [Accepted: 09/26/2013] [Indexed: 12/27/2022]
Abstract
Like membranous organelles, large-scale coassembly of macromolecules can organize functions in cells. Ribonucleoproteins (RNPs) can form liquid or solid aggregates, but control and consequences of these RNP states in living, developing tissue are poorly understood. Here, we show that regulated RNP factor interactions drive transitions among diffuse, semiliquid, or solid states to modulate RNP sorting and exchange in the Caenorhabditis elegans oocyte cytoplasm. Translation repressors induce an intrinsic capacity of RNP components to coassemble into either large semiliquids or solid lattices, whereas a conserved RNA helicase prevents polymerization into nondynamic solids. Developmental cues dramatically alter both fluidity and sorting within large RNP assemblies, inducing a transition from RNP segregation in quiescent oocytes to dynamic exchange in the early embryo. Therefore, large-scale organization of gene expression extends to the cytoplasm, where regulation of supramolecular states imparts specific patterns of RNP dynamics.
Collapse
Affiliation(s)
- Arnaud Hubstenberger
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Scott L Noble
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Graduate Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cristiana Cameron
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas C Evans
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
52
|
Kinkhabwala A, Khmelinskii A, Knop M. Analytical model for macromolecular partitioning during yeast cell division. BMC BIOPHYSICS 2014; 7:10. [PMID: 25737777 PMCID: PMC4347614 DOI: 10.1186/s13628-014-0010-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 08/29/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell - which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles - can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. RESULTS Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. CONCLUSIONS In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning.
Collapse
Affiliation(s)
- Ali Kinkhabwala
- Abteilung Systemische Zellbiologie, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, Dortmund 44227, Germany
| | - Anton Khmelinskii
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) and Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH-Allianz, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) and Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH-Allianz, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| |
Collapse
|
53
|
Puchkov EO. Intracellular viscosity: Methods of measurement and role in metabolism. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2013. [DOI: 10.1134/s1990747813050140] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
54
|
Li C, Zhang C, Gao L, Garcia-Uribe A, Wang LV. Photoacoustic recovery after photothermal bleaching in living cells. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:106004. [PMID: 24089253 PMCID: PMC3788654 DOI: 10.1117/1.jbo.18.10.106004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/28/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
We present an innovative method, photoacoustic recovery after photothermal bleaching (PRAP), for studying particle dynamics at micron scale via photoacoustic imaging. As an intuitive way to visualize and quantify dynamic processes, PRAP is demonstrated first in a simple phantom study and then in a more complex measurement involving live cells. Compared with the conventional fluorescence-based approach, PRAP provides high signal-to-noise ratio (SNR) imaging with minimal bleaching-induced artifacts during the recovery stage, ideal for monitoring the diffusive and kinetic processes inside a cell.
Collapse
Affiliation(s)
- Chiye Li
- Washington University in St. Louis, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130
| | - Chi Zhang
- Washington University in St. Louis, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130
| | - Liang Gao
- Washington University in St. Louis, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130
| | - Alejandro Garcia-Uribe
- Washington University in St. Louis, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130
| |
Collapse
|
55
|
Pollack GH. Comment on “A Theory of Macromolecular Chemotaxis” and “Phenomena Associated with Gel–Water Interfaces. Analyses and Alternatives to the Long-Range Ordered Water Hypothesis”. J Phys Chem B 2013; 117:7843-6. [DOI: 10.1021/jp312686x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
56
|
Sen Mojumdar S, Chowdhury R, Mandal AK, Bhattacharyya K. In what time scale proton transfer takes place in a live CHO cell? J Chem Phys 2013; 138:215102. [PMID: 23758398 DOI: 10.1063/1.4807862] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Supratik Sen Mojumdar
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | | | | |
Collapse
|
57
|
Lin YC, Phua SC, Lin B, Inoue T. Visualizing molecular diffusion through passive permeability barriers in cells: conventional and novel approaches. Curr Opin Chem Biol 2013; 17:663-71. [PMID: 23731778 DOI: 10.1016/j.cbpa.2013.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/23/2013] [Indexed: 12/19/2022]
Abstract
Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically inducible diffusion trap (CIDT) for probing permeable barriers.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, United States.
| | | | | | | |
Collapse
|
58
|
Höfling F, Franosch T. Anomalous transport in the crowded world of biological cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:046602. [PMID: 23481518 DOI: 10.1088/0034-4885/76/4/046602] [Citation(s) in RCA: 598] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A ubiquitous observation in cell biology is that the diffusive motion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarizing their densely packed and heterogeneous structures. The most familiar phenomenon is a sublinear, power-law increase of the mean-square displacement (MSD) as a function of the lag time, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations in time, non-Gaussian distributions of spatial displacements, heterogeneous diffusion and a fraction of immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarize some widely used theoretical models: Gaussian models like fractional Brownian motion and Langevin equations for visco-elastic media, the continuous-time random walk model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Particular emphasis is put on the spatio-temporal properties of the transport in terms of two-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even if the MSDs are identical. Then, we review the theory underlying commonly applied experimental techniques in the presence of anomalous transport like single-particle tracking, fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP). We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where a variety of model systems mimic physiological crowding conditions. Finally, computer simulations are discussed which play an important role in testing the theoretical models and corroborating the experimental findings. The review is completed by a synthesis of the theoretical and experimental progress identifying open questions for future investigation.
Collapse
Affiliation(s)
- Felix Höfling
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, and Institut für Theoretische Physik IV, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | | |
Collapse
|
59
|
Modeling intercellular transfer of biomolecules through tunneling nanotubes. Bull Math Biol 2013; 75:1400-16. [PMID: 23417627 DOI: 10.1007/s11538-013-9819-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
Abstract
Tunneling nanotubes (TNTs) have previosly been observed as long and thin transient structures forming between cells and intercellular protein transfer through them has been experimentally verified. It is hypothesized that this may be a physiologically important means of cell-cell communication. This paper attempts to give a simple model for the rates of transfer of molecules across these TNTs at different distances. We describe the transfer of both cytosolic and membrane bound molecules between neighboring populations of cells and argue how the lifetime of the TNT, the diffusion rate, distance between cells, and the size of the molecules may affect their transfer. The model described makes certain predictions and opens a number of questions to be explored experimentally.
Collapse
|
60
|
Phillies GDJ. Position-displacement correlations in QELSS spectra of non-dilute colloids. J Chem Phys 2012; 137:124901. [PMID: 23020346 DOI: 10.1063/1.4754159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper examines relationships between the quasielastic light scattering spectrum S(q, t) and the distribution functions for particle displacements over various times. For dilute probes in a complex, non-scattering fluid, S(q, t) is determined by the even moments <X(t)(2n)> of the one-particle displacement distribution function P(X, t). For concentrated scattering particles, S(q, t) is not determined by P(X, t). Instead, S(q, t) is determined in part by P(X, t) and in part by a spatial Fourier transform of the two particle displacement distribution function P(2)(X, t, R(12)). Here, X is the displacement of particle 1 during t, and R(12) is the component (at t = 0), parallel to the scattering vector q, of the vector from particle 1 to a second particle 2.
Collapse
Affiliation(s)
- George D J Phillies
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
| |
Collapse
|
61
|
Alqawlaq S, Huzil JT, Ivanova MV, Foldvari M. Challenges in neuroprotective nanomedicine development: progress towards noninvasive gene therapy of glaucoma. Nanomedicine (Lond) 2012; 7:1067-83. [PMID: 22846092 DOI: 10.2217/nnm.12.69] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Over the past decade the application of gene therapy of retinal diseases such as glaucoma has produced promising results. However, optic nerve regeneration and restoration of vision in patients with glaucoma is still far from reality. Neuroprotective approaches in the form of gene therapy may provide significant advantages, but are still limited by many factors both at the organ and cellular levels. In general, gene delivery systems for eye diseases range from simple eye drops and ointments to more advanced bio- and nanotechnology-based systems such as muco-adhesive systems, polymers, liposomes and ocular inserts. Most of these technologies were developed for front-of-the-eye ophthalmic therapies and are not applicable as back-of-the-eye delivery systems. Currently, only the invasive intravitreal injections are capable of successfully delivering genes to the retina. Here we review the challenges and possible strategies for the noninvasive gene therapy of glaucoma including the barriers in the eye and in neural cells, and present a cross-sectional view of gene delivery as it pertains to the prevention and treatment of glaucoma.
Collapse
Affiliation(s)
- Samih Alqawlaq
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - J Torin Huzil
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Marina V Ivanova
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Marianna Foldvari
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
62
|
Brenowitz SD, Regehr WG. Presynaptic imaging of projection fibers by in vivo injection of dextran-conjugated calcium indicators. Cold Spring Harb Protoc 2012; 2012:465-71. [PMID: 22474660 DOI: 10.1101/pdb.prot068551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dextran-conjugated calcium indicators are stably retained within neurons. As a result, they are well suited to measuring presynaptic calcium at physiological temperatures. In addition, dextran indicators can be used to label neurons and their presynaptic boutons in vivo. This has allowed measurements of calcium in the presynaptic boutons of projection fibers that cannot be stably loaded with other types of indicators. This protocol describes a technique for in vivo loading of the climbing fiber projection to the cerebellum with dextran-conjugated indicators for subsequent presynaptic calcium imaging in brain slices. This technique is applicable to studies of projection fibers in many species from which brain slices can be prepared. The dextran indicator is injected into the inferior olive using a stereotaxic device. After a period of 1-3 d, cerebellar slices are prepared and presynaptic calcium transients are measured at physiological temperature in labeled climbing fibers. The protocol also discusses important considerations for using dextran-conjugated indicators to measure presynaptic calcium.
Collapse
|
63
|
Guthardt Torres P, Bischofs IB, Schwarz US. Contractile network models for adherent cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:011913. [PMID: 22400597 DOI: 10.1103/physreve.85.011913] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/07/2011] [Indexed: 05/31/2023]
Abstract
Cells sense the geometry and stiffness of their adhesive environment by active contractility. For strong adhesion to flat substrates, two-dimensional contractile network models can be used to understand how force is distributed throughout the cell. Here we compare the shape and force distribution for different variants of such network models. In contrast to Hookean networks, cable networks reflect the asymmetric response of biopolymers to tension versus compression. For passive networks, contractility is modeled by a reduced resting length of the mechanical links. In actively contracting networks, a constant force couple is introduced into each link in order to model contraction by molecular motors. If combined with fixed adhesion sites, all network models lead to invaginated cell shapes, but only actively contracting cable networks lead to the circular arc morphology typical for strongly adhering cells. In this case, shape and force distribution are determined by local rather than global determinants and thus are suited to endow the cell with a robust sense of its environment. We also discuss nonlinear and adaptive linker mechanics as well as the relation to tissue shape.
Collapse
Affiliation(s)
- P Guthardt Torres
- Heidelberg University, Institute for Theoretical Physics, Philosophenweg 19, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
64
|
Feinstein WP, Zhu B, Leavesley SJ, Sayner SL, Rich TC. Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 2011; 302:C839-52. [PMID: 22116306 DOI: 10.1152/ajpcell.00361.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic AMP signals encode information required to differentially regulate a wide variety of cellular responses; yet it is not well understood how information is encrypted within these signals. An emerging concept is that compartmentalization underlies specificity within the cAMP signaling pathway. This concept is based on a series of observations indicating that cAMP levels are distinct in different regions of the cell. One such observation is that cAMP production at the plasma membrane increases pulmonary microvascular endothelial barrier integrity, whereas cAMP production in the cytosol disrupts barrier integrity. To better understand how cAMP signals might be compartmentalized, we have developed mathematical models in which cellular geometry as well as total adenylyl cyclase and phosphodiesterase activities were constrained to approximate values measured in pulmonary microvascular endothelial cells. These simulations suggest that the subcellular localizations of adenylyl cyclase and phosphodiesterase activities are by themselves insufficient to generate physiologically relevant cAMP gradients. Thus, the assembly of adenylyl cyclase, phosphodiesterase, and protein kinase A onto protein scaffolds is by itself unlikely to ensure signal specificity. Rather, our simulations suggest that reductions in the effective cAMP diffusion coefficient may facilitate the formation of substantial cAMP gradients. We conclude that reductions in the effective rate of cAMP diffusion due to buffers, structural impediments, and local changes in viscosity greatly facilitate the ability of signaling complexes to impart specificity within the cAMP signaling pathway.
Collapse
Affiliation(s)
- Wei P Feinstein
- Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
65
|
Kalwarczyk T, Ziebacz N, Bielejewska A, Zaboklicka E, Koynov K, Szymański J, Wilk A, Patkowski A, Gapiński J, Butt HJ, Hołyst R. Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. NANO LETTERS 2011; 11:2157-63. [PMID: 21513331 DOI: 10.1021/nl2008218] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present a scaling formula for size-dependent viscosity coefficients for proteins, polymers, and fluorescent dyes diffusing in complex liquids. The formula was used to analyze the mobilities of probes of different sizes in HeLa and Swiss 3T3 mammalian cells. This analysis unveils in the cytoplasm two length scales: (i) the correlation length ξ (approximately 5 nm in HeLa and 7 nm in Swiss 3T3 cells) and (ii) the limiting length scale that marks the crossover between nano- and macroscale viscosity (approximately 86 nm in HeLa and 30 nm in Swiss 3T3 cells). During motion, probes smaller than ξ experienced matrix viscosity: η(matrix) ≈ 2.0 mPa·s for HeLa and 0.88 mPa·s for Swiss 3T3 cells. Probes much larger than the limiting length scale experienced macroscopic viscosity, η(macro) ≈ 4.4 × 10(-2) and 2.4 × 10(-2) Pa·s for HeLa and Swiss 3T3 cells, respectively. Our results are persistent for the lengths scales from 0.14 nm to a few hundred nanometers.
Collapse
Affiliation(s)
- Tomasz Kalwarczyk
- Department of Soft Condensed Matter, Institute of Physical Chemistry PAS, Kasprzaka 44/52 01-224 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Rafelski SM, Keller LC, Alberts JB, Marshall WF. Apparent diffusive motion of centrin foci in living cells: implications for diffusion-based motion in centriole duplication. Phys Biol 2011; 8:026010. [PMID: 21378439 DOI: 10.1088/1478-3975/8/2/026010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713-22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed.
Collapse
Affiliation(s)
- Susanne M Rafelski
- UCSF Department of Biochemistry and Biophysics, GH-N372F Genentech Hall, 600 16th St, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
67
|
Lim R, Kindig AE, Donne SW, Callister RJ, Brichta AM. Potassium accumulation between type I hair cells and calyx terminals in mouse crista. Exp Brain Res 2011; 210:607-21. [PMID: 21350807 DOI: 10.1007/s00221-011-2592-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/31/2011] [Indexed: 11/25/2022]
Abstract
The mode of synaptic transmission in the vestibular periphery, between type I hair cells and their associated calyx terminal, has been the subject of much debate. The close and extensive apposition of pre- and post-synaptic elements has led some to suggest potassium (K(+)) accumulates in the intercellular space and even plays a role in synaptic transmission. During patch clamp recordings from isolated and embedded hair cells in a semi-intact preparation of the mouse cristae, we noted marked differences in whole-cell currents. Embedded type I hair cells show a prominent droop during steady-state activation as well as a dramatic collapse in tail currents. Responses to a depolarizing voltage step (-124 to +16 mV) in embedded, but not isolated, hair cells resulted in a >40 mV shift of the K(+) equilibrium potential and a rise in effective K(+) concentration (>50 mM) in the intercellular space. Together these data suggest K(+) accumulation in the intercellular space accounts for the different responses in isolated and embedded type I hair cells. To test this notion, we exposed the preparation to hyperosmotic solutions to enlarge the intercellular space. As predicted, the K(+) accumulation effects were reduced; however, a fit of our data with a classic diffusion model suggested K(+) permeability, rather than the intercellular space, had been altered by the hyperosmotic change. These results support the notion that under depolarizing conditions substantial K(+) accumulation occurs in the space between type I hair cells and calyx. The extent of K(+) accumulation during normal synaptic transmission, however, remains to be determined.
Collapse
Affiliation(s)
- Rebecca Lim
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| | | | | | | | | |
Collapse
|
68
|
Dong J, Malsam J, Bischof JC, Hubel A, Aksan A. Spatial distribution of the state of water in frozen mammalian cells. Biophys J 2011; 99:2453-9. [PMID: 20959085 DOI: 10.1016/j.bpj.2010.08.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/03/2010] [Accepted: 08/17/2010] [Indexed: 10/18/2022] Open
Abstract
We describe direct determination of the state of intracellular water, measurement of the intercellular concentration of a cryoprotectant agent (dimethylsulfoxide), and the distribution of organic material in frozen mammalian cells. Confocal Raman microspectroscopy was utilized at cryogenic temperatures with single live cells to conduct high spatial resolution measurements (350 × 350 × 700 nm), which yielded two, we believe, novel observations: 1), intracellular ice formation during fast cooling (50°C/min) causes more pronounced intracellular dehydration than slow cooling (1°C/min); and 2), intracellular dimethylsulfoxide concentration is lower (by as much as 50%) during fast cooling, decreasing the propensity for intracellular vitrification. These observations have a very significant impact for developing successful biopreservation protocols for cells used for therapeutic purposes and for cellular biofluids.
Collapse
|
69
|
Hallett MB, Dewitt S. A trick of the light: the optical properties of living cytoplasm which can mislead. Integr Biol (Camb) 2011; 3:180-4. [DOI: 10.1039/c0ib00039f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
70
|
Lajoie P, Snapp EL. Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS One 2010; 5:e15245. [PMID: 21209946 PMCID: PMC3011017 DOI: 10.1371/journal.pone.0015245] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/16/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Aggregation and cytotoxicity of mutant proteins containing an expanded number of polyglutamine (polyQ) repeats is a hallmark of several diseases, including Huntington's disease (HD). Within cells, mutant Huntingtin (mHtt) and other polyglutamine expansion mutant proteins exist as monomers, soluble oligomers, and insoluble inclusion bodies (IBs). Determining which of these forms constitute a toxic species has proven difficult. Recent studies support a role for IBs as a cellular coping mechanism to sequester levels of potentially toxic soluble monomeric and oligomeric species of mHtt. METHODOLOGY/PRINCIPAL FINDINGS When fused to a fluorescent reporter (GFP) and expressed in cells, the soluble monomeric and oligomeric polyglutamine species are visually indistinguishable. Here, we describe two complementary biophysical fluorescence microscopy techniques to directly detect soluble polyglutamine oligomers (using Htt exon 1 or Htt(ex1)) and monitor their fates in live cells. Photobleaching analyses revealed a significant reduction in the mobilities of mHtt(ex1) variants consistent with their incorporation into soluble microcomplexes. Similarly, when fused to split-GFP constructs, both wildtype and mHtt(ex1) formed oligomers, as evidenced by the formation of a fluorescent reporter. Only the mHtt(ex1) split-GFP oligomers assembled into IBs. Both FRAP and split-GFP approaches confirmed the ability of mHtt(ex1) to bind and incorporate wildtype Htt into soluble oligomers. We exploited the irreversible binding of split-GFP fragments to forcibly increase levels of soluble oligomeric mHtt(ex1). A corresponding increase in the rate of IBs formation and the number formed was observed. Importantly, higher levels of soluble mHtt(ex1) oligomers significantly correlated with increased mutant cytotoxicity, independent of the presence of IBs. CONCLUSIONS/SIGNIFICANCE Our study describes powerful and sensitive tools for investigating soluble oligomeric forms of expanded polyglutamine proteins, and their impact on cell viability. Moreover, these methods should be applicable for the detection of soluble oligomers of a wide variety of aggregation prone proteins.
Collapse
Affiliation(s)
- Patrick Lajoie
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erik Lee Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
71
|
Ragoonanan V, Hubel A, Aksan A. Response of the cell membrane-cytoskeleton complex to osmotic and freeze/thaw stresses. Cryobiology 2010; 61:335-44. [PMID: 21055399 DOI: 10.1016/j.cryobiol.2010.10.160] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 10/19/2010] [Accepted: 10/27/2010] [Indexed: 02/09/2023]
Abstract
In order to develop successful cryopreservation protocols a better understanding of the freeze- and dehydration-induced changes occurring in the cell membrane and its underlying support, the actin cytoskeleton, is required. In this study, we compared the biophysical response of model mammalian cells (human foreskin fibroblasts) to hyperosmotic stress and freeze/thaw. Transmitted light, infrared spectroscopy, fluorescence- and cryo-microscopy were used to investigate the changes in the cell membrane and the actin cytoskeleton. We observed that a purely hyperosmotic challenge at room temperature resulted in bleb formation. A decrease in temperature abrogated the blebbing behavior, but was accompanied by a decrease in viability. These results suggested that cell survival depended on the availability of the membrane material to accommodate the volumetric expansion back to the original cell volume at isotonic conditions. Our data also showed that freeze/thaw stresses altered the cell membrane morphology resulting in a loss of membrane material. There was also a significantly lower incidence of blebbing after freeze/thaw as compared to isothermal osmotic stress experiments at room temperature. Significant depolymerization of the actin cytoskeleton was seen in cells whose membranes had been compromised by freeze/thaw stresses. Actin depolymerization using cytochalasin D affected the stability of the membrane against mechanical stress at isothermal conditions. This study shows that both the membrane and cytoskeleton, as a system, are involved in the osmotic and freeze/thaw-induced responses of the mammalian cells.
Collapse
Affiliation(s)
- Vishard Ragoonanan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
72
|
Dewitt S, Hallett MB. Optical complexities of living cytoplasm--implications for live cell imaging and photo-micromanipulation techniques. J Microsc 2010; 241:221-4. [PMID: 21118242 DOI: 10.1111/j.1365-2818.2010.03451.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The ability to manipulate the intracellular environment within living cells and to monitor the cytosolic chemical changes which occur during cell stimulation has lead to major advances in our understanding of how cells read and respond to their environment. Perhaps the most powerful suite of techniques for achieving these dual objectives is based on the use of light (photons). Because cells are 'transparent', light has been used to both interrogate and manipulate the chemistry inside living cells, exploiting technical advances in both the physical and biochemical sciences. However, cells are neither transparent nor homogeneous with respect to their optical properties. The interface between light and the living cell cytoplasm thus represent an important, yet largely ignored, interface. There has been no review of the optical properties of cytoplasm and little discussion about how the optical properties of living cytoplasm influence the outcome of such measurements and manipulations. In this short review, we discuss the importance of understanding the optical properties of cytoplasm for such techniques and how imperfections in experimental interpretation can arise.
Collapse
Affiliation(s)
- S Dewitt
- Matrix Biology & Tissue Repair Research Unit, School of Dentistry, Cardiff University, Cardiff, UK
| | | |
Collapse
|
73
|
Carvajal-Rondanelli PA, Lanier TC. Diffusion of active proteins into fish meat to minimize proteolytic degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5300-5307. [PMID: 20380449 DOI: 10.1021/jf903580t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Proteases in fish muscle often cause undesired softening of intact meat pieces during refrigerated storage or slow cooking. Several food-grade proteinaceous inhibitors can overcome this softening if properly delivered to the intracellular sites where proteases are located. Fluorescence recovery after photobleaching (FRAP) and laser scanning confocal microscopy (LSCM) were used to measure the translational diffusion of fluorescein isothiocyanate (FITC)-labeled protease inhibitors into intact muscle fibers of halibut. Diffusion coefficients (D) of alpha-2-macroglobulin (720 kDa), soybean trypsin inhibitor (21 kDa), and cystatin (12 kDa) were measured in both muscle fibers and dilute aqueous solutions. On the time scale of the observation (35 min), cystatin and soybean trypsin inhibitor diffused through the cell membrane (sarcolemma) and sarcoplasm, but at a considerably slower rate (>10-fold difference) than in dilute aqueous solution. alpha-2-Macroglobulin did not diffuse into muscle cells within the time frame of the experiment, but did completely penetrate the cell during overnight exposure. The present study thus shows a clear dependence of D on protein inhibitor size when moving within intact skeletal muscle fibers. Low molecular weight protease inhibitors such as cystatin can be effectively diffused into intact fish muscle cells to minimize proteolytic activity and meat softening.
Collapse
|
74
|
Simulation of cell motility that reproduces the force-velocity relationship. Proc Natl Acad Sci U S A 2010; 107:9141-6. [PMID: 20439759 DOI: 10.1073/pnas.1002538107] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many cells crawl by extending an actin-rich pseudopod. We have devised a simulation that describes how the polymerization kinetics of a branched actin filament network, coupled with excluded volume effects, powers the motility of crawling cells such as amoebae and fish keratocytes. Our stochastic simulation is based on the key fundamental properties of actin polymerization, namely growth, shrinkage, capping, branching, and nucleation, and also includes contributions from the creation and breaking of adhesive contacts with the substrate together with excluded volume effects related to filament packing. When reasonable values for appropriate constants were employed, this simulation generated a force-velocity relationship that resembled closely that observed experimentally. Our simulations indicated that excluded volume effects associated with actin filament branching lead to a decreased packing efficiency and resultant swelling of the cytoskeleton gel that contributes substantially to lamellipod protrusion.
Collapse
|
75
|
Hancock R, Hadj-Sahraoui Y. Isolation of cell nuclei using inert macromolecules to mimic the crowded cytoplasm. PLoS One 2009; 4:e7560. [PMID: 19851505 PMCID: PMC2762040 DOI: 10.1371/journal.pone.0007560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/08/2009] [Indexed: 11/19/2022] Open
Abstract
Cell nuclei are commonly isolated and studied in media which include millimolar concentrations of cations, which conserve the nuclear volume by screening the negative charges on chromatin and maintaining its compaction. However, two factors question if these ionic conditions correctly reproduce the environment of nuclei in vivo: the small-scale motion and conformation of chromatin in vivo are not reproduced in isolated nuclei, and experiments and theory suggest that small ions in the cytoplasm are not free in the soluble phase but are predominantly bound to macromolecules. We studied the possible role in maintaining the structure and functions of nuclei in vivo of a further but frequently overlooked property of the cytoplasm, the crowding or osmotic effects caused by diffusible macromolecules whose concentration, measured in several studies, is in the range of 130 mg/ml. Nuclei which conserved their volume in the cell and their ultrastructure seen by electron microscopy were released from K562 cells in media containing the inert polymer 70 kDa Ficoll (50% w/v) or 70 kDa dextran (35% w/v) to replace the diffusible cytoplasmic molecules which were dispersed on cell lysis with digitonin, with 100 microM K-Hepes buffer as the only source of ions. Immunofluorescence labelling and experiments using cells expressing GFP-fusion proteins showed that internal compartments (nucleoli, PML and coiled bodies, foci of RNA polymerase II) were conserved in these nuclei, and nascent RNA transcripts could be elongated. Our observations are consistent with the hypothesis that crowding by diffusible cytoplasmic macromolecules is a crucial but overlooked factor which supports the nucleus in vivo by equilibrating the opposing osmotic pressure cause by the high concentration of macromolecules in the nucleus, and suggest that crowded media provide more physiological conditions to study nuclear structure and functions. They may also help to resolve the long-standing paradox that the small-scale motion and irregular conformation of chromatin seen in vivo are not reproduced in nuclei isolated in conventional ionic media.
Collapse
Affiliation(s)
- Ronald Hancock
- Laval University Cancer Research Centre, Hôtel-Dieu Hospital, Québec, Québec, Canada.
| | | |
Collapse
|
76
|
Hale CM, Sun SX, Wirtz D. Resolving the role of actoymyosin contractility in cell microrheology. PLoS One 2009; 4:e7054. [PMID: 19756147 PMCID: PMC2737638 DOI: 10.1371/journal.pone.0007054] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/17/2009] [Indexed: 12/04/2022] Open
Abstract
Einstein's original description of Brownian motion established a direct relationship between thermally-excited random forces and the transport properties of a submicron particle in a viscous liquid. Recent work based on reconstituted actin filament networks suggests that nonthermal forces driven by the motor protein myosin II can induce large non-equilibrium fluctuations that dominate the motion of particles in cytoskeletal networks. Here, using high-resolution particle tracking, we find that thermal forces, not myosin-induced fluctuating forces, drive the motion of submicron particles embedded in the cytoskeleton of living cells. These results resolve the roles of myosin II and contractile actomyosin structures in the motion of nanoparticles lodged in the cytoplasm, reveal the biphasic mechanical architecture of adherent cells—stiff contractile stress fibers interdigitating in a network at the cell cortex and a soft actin meshwork in the body of the cell, validate the method of particle tracking-microrheology, and reconcile seemingly disparate atomic force microscopy (AFM) and particle-tracking microrheology measurements of living cells.
Collapse
Affiliation(s)
- Christopher M. Hale
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sean X. Sun
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
77
|
Pulsed-laser creation and characterization of giant plasma membrane vesicles from cells. J Biol Phys 2009; 35:279-95. [PMID: 19669579 DOI: 10.1007/s10867-009-9167-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022] Open
Abstract
Femtosecond-pulsed laser irradiation was found to initiate giant plasma membrane vesicle (GPMV) formation on individual cells. Laser-induced GPMV formation resulted from intracellular cavitation and did not require the addition of chemical stressors to the cellular environment. The viscosity, structure, and contents of laser-induced GPMVs were measured with fluorescence microscopy and single-particle tracking. These GPMVs exhibit the following properties: (1) GPMVs grow fastest immediately after laser irradiation; (2) GPMVs contain barriers to free diffusion of incorporated fluorescent beads; (3) materials from both the cytoplasm and surrounding media flow into the growing GPMVs; (4) the GPMVs are surrounded by phospholipids, including phosphatidylserine; (5) F-actin is incorporated into the vesicles; and (6) caspase activity is not essential for GPMV formation. The effective viscosity of 65 nm polystyrene nanoparticles within GPMVs ranged from 32 to 434 cP. The nanoparticle diffusion was commonly affected by relatively large, macromolecular structures within the bleb.
Collapse
|
78
|
Abstract
A multitude of cellular and subcellular processes depend critically on the mechanical deformability of the cytoplasm. We have recently introduced the method of particle-tracking microrheology, which measures the viscoelastic properties of the cytoplasm locally and with high spatiotemporal resolution. Here we establish the basic principles of particle-tracking microrheology, describing the advantages of this approach over more conventional approaches to cell mechanics. We present basic concepts of molecular mechanics and polymer physics relevant to the microrheological response of cells. Particle-tracking microrheology can probe the mechanical properties of live cells in experimentally difficult, yet more physiological, environments, including cells embedded inside a 3D matrix, adherent cells subjected to shear flows, and cells inside a developing embryo. Particle-tracking microrheology can readily reveal the lost ability of diseased cells to resist shear forces.
Collapse
Affiliation(s)
- Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
79
|
Studies on the nutrient uptake by the beet cyst nematode Heterodera schachtii by in situ microinjection of fluorescent probes into the feeding structures in Arabidopsis thaliana. Parasitology 2009. [DOI: 10.1017/s003118200007637x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYA method was developed, which enables substances to be injected into the feeding structure (syncytium) established by Heterodera schachtii in roots of Arabidopsis thaliana. The technique was used to study the uptake of nutrients by the feeding nematode. The fluorescent dye lucifer yellow CH (LYCH) and fluorescence-labelled dextrans of different molecular weights were injected into the thin and translucent roots of A. thaliana. Such roots are a feature of this plant and they provide optimal conditions for microinjection. Injected LYCH was taken up by feeding juveniles and adults, indicated by the staining of the alimentary duct and the digestive system. Fluorescent dextrans of 3, 10 and 20 kDa but not of 40 and 70 kDa were ingested, suggesting that molecules of a maximum Stokes radius of 3·2 to 4·4 nm are taken up. It is likely that the feeding tube, forming the interface between the plant cytosol and the nematode's digestive system, is responsible for this size exclusion effect. The injected fluorescent substances were not detected in plant cells adjacent to the syncytium or in the root vascular elements. Injections into parts of roots which were infested by several nematodes revealed that feeding H. schachtii individuals may share one syncytium.
Collapse
|
80
|
A Selective Filter for Cytoplasmic Transport at the Axon Initial Segment. Cell 2009; 136:1148-60. [DOI: 10.1016/j.cell.2009.01.016] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/15/2008] [Accepted: 01/05/2009] [Indexed: 11/22/2022]
|
81
|
Abstract
The use of fluorescent probes is one of the most powerful techniques for gaining spatial and temporal knowledge of dynamic events within living cells. Localized increases in the signal from cytosolic fluorescent protein constructs, for example, are frequently used as evidence for translocation of proteins to specific sites within the cell. However, differences in optical and geometrical properties of cytoplasm can influence the recorded intensity of the probe signal. Pseudopodia are especially problematic because their cytoplasmic properties can cause abrupt increases in fluorescent signal of both GFP and fluorescein. Investigators should therefore be cautious when interpreting fluorescence changes within a cell, as these can result from either translocation of the probe or changes in the optical properties of the milieu surrounding the probe.
Collapse
Affiliation(s)
- Sharon Dewitt
- Neutrophil Signalling Group and Department of Haematology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK
| | - Richard L. Darley
- Neutrophil Signalling Group and Department of Haematology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK
| | - Maurice B. Hallett
- Neutrophil Signalling Group and Department of Haematology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK
| |
Collapse
|
82
|
Leddy HA, Christensen SE, Guilak F. Microscale diffusion properties of the cartilage pericellular matrix measured using 3D scanning microphotolysis. J Biomech Eng 2008; 130:061002. [PMID: 19045531 PMCID: PMC2748862 DOI: 10.1115/1.2979876] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chondrocytes, the cells in articular cartilage, are enclosed within a pericellular matrix (PCM) whose composition and structure differ from those of the extracellular matrix (ECM). Since the PCM surrounds each cell, molecules that interact with the chondrocyte must pass through the pericellular environment. A quantitative understanding of the diffusional properties of the PCM may help in elucidating the regulatory role of the PCM in controlling transport to and from the chondrocyte. The diffusivities of fluorescently labeled 70 kDa and 500 kDa dextrans were quantified within the PCM of porcine articular cartilage using a newly developed mathematical model of scanning microphotolysis (SCAMP). SCAMP is a rapid line photobleaching method that accounts for out-of-plane bleaching attributable to high magnification. Data were analyzed by a best-fit comparison to simulations generated using a discretization of the diffusion-reaction equation in conjunction with the microscope-specific three-dimensional excitation and detection profiles. The diffusivity of the larger molecule (500 kDa dextran) was significantly lower than that of the smaller molecule (70 kDa dextran), and values were consistent with those reported previously using standard techniques. Furthermore, for both dextran sizes, the diffusion coefficient was significantly lower in the PCM than in the ECM; however, this difference was not detected in early-stage arthritic tissue. We have successfully modified the SCAMP technique to measure diffusion coefficients within the small volume of the PCM using confocal laser scanning microscopy. Our results support the hypothesis that diffusivity within the PCM of healthy articular cartilage is lower than that within the ECM, presumably due to differences in proteoglycan content.
Collapse
Affiliation(s)
| | | | - Farshid Guilak
- Departments of Surgery and Biomedical Engineering, Duke University Medical Center, Durham, North Carolina USA
| |
Collapse
|
83
|
Abstract
Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix, and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is approximately 20% and the tortuosity is approximately 1.6 (i.e., free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge, and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases, and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties is valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain.
Collapse
Affiliation(s)
- Eva Syková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
84
|
Chang HC, Lin YC, Kuo CT. A two-dimensional diffusion model quantifying intracellular transport with independent factors accounting for cytosol viscosity, binding, and steric hindrance. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
85
|
Lustyik G. Photobleaching measurements of diffusion in cell membranes and aqueous cell compartments. CURRENT PROTOCOLS IN CYTOMETRY 2008; Chapter 2:Unit 2.12. [PMID: 18770695 DOI: 10.1002/0471142956.cy0212s16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This commentary unit discusses in great detail the theoretical nature of fluorescence recovery after photobleaching (FRAP). This information is crucial to an understanding of how and why FRAP works in a cell system. Further, understanding how to interpret the data sets requires a sound knowledge of the processes involved. Of primary importance are the nature of membrane diffusion and the nature of the multiple compartments into which fluorescent dyes can enter. The unit provides a complete discussion of all aspects of FRAP from the perspective of cellular measurements.
Collapse
Affiliation(s)
- G Lustyik
- University of Pécs, Faculty of Medicine, Pécs, Hungary
| |
Collapse
|
86
|
Sun W, Fang N, Trewyn BG, Tsunoda M, Slowing II, Lin VSY, Yeung ES. Endocytosis of a single mesoporous silica nanoparticle into a human lung cancer cell observed by differential interference contrast microscopy. Anal Bioanal Chem 2008; 391:2119-25. [PMID: 18488205 DOI: 10.1007/s00216-008-2162-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/24/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
The unique structural features of mesoporous silica nanoparticles (MSN) have made them very useful in biological applications, such as gene therapy and drug delivery. Flow cytometry, confocal microscopy, and electron microscopy have been used for observing the endocytosis of MSN. However, flow cytometry cannot directly observe the process of endocytosis. Confocal microscopy requires fluorescence labeling of the cells. Electron microscopy can only utilize fixed cells. In the present work, we demonstrate for the first time that differential interference contrast (DIC) microscopy can be used to observe the entire endocytosis process of MSN into living human lung cancer cells (A549) without fluorescence staining. There are three physical observables that characterize the locations of MSN and the stages of the endocytosis process: motion, shape, and vertical position. When it was outside the cell, the MSN underwent significant Brownian motion in the cell growth medium. When it was trapped on the cell membrane, the motion of the MSN was greatly limited. After the MSN had entered the cell, it resumed motion at a much slower speed because the cytoplasm is more viscous than the cell growth medium and the cellular cytoskeleton networks act as obstacles. Moreover, there were shape changes around the MSN due to the formation of a vesicle after the MSN had been trapped on the cell membrane and prior to entry into the cell. Finally, by coupling a motorized vertical stage to the DIC microscope, we recorded the location of the MSN in three dimensions. Such accurate 3D particle tracking ability in living cells is essential for studies of selectively targeted drug delivery based on endocytosis.
Collapse
Affiliation(s)
- Wei Sun
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
The function of a complex nervous system depends on an intricate interplay between neuronal and glial cell types. One of the many functions of glial cells is to provide an efficient insulation of the nervous system and thereby allowing a fine tuned homeostasis of ions and other small molecules. Here, we present a detailed cellular analysis of the glial cell complement constituting the blood-brain barrier in Drosophila. Using electron microscopic analysis and single cell-labeling experiments, we characterize different glial cell layers at the surface of the nervous system, the perineurial glial layer, the subperineurial glial layer, the wrapping glial cell layer, and a thick layer of extracellular matrix, the neural lamella. To test the functional roles of these sheaths we performed a series of dye penetration experiments in the nervous systems of wild-type and mutant embryos. Comparing the kinetics of uptake of different sized fluorescently labeled dyes in different mutants allowed to conclude that most of the barrier function is mediated by the septate junctions formed by the subperineurial cells, whereas the perineurial glial cell layer and the neural lamella contribute to barrier selectivity against much larger particles (i.e., the size of proteins). We further compare the requirements of different septate junction components for the integrity of the blood-brain barrier and provide evidence that two of the six Claudin-like proteins found in Drosophila are needed for normal blood-brain barrier function.
Collapse
|
88
|
|
89
|
Chapter 18 Sensing Cytoskeletal Mechanics by Ballistic Intracellular Nanorheology (BIN) Coupled with Cell Transfection. Methods Cell Biol 2008; 89:467-86. [DOI: 10.1016/s0091-679x(08)00618-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
|
90
|
Abstract
The means by which extracellular matrix density regulates three-dimensional capillary morphogenesis is unclear. To study this phenomenon, we utilized a fibrin-based in vitro assay in which a fibroblast monolayer is plated atop a fibrin gel approximately 2.5 mm away from endothelial cell-coated beads within the matrix. Increasing fibrin density from 2.5 to 10 mg/ml resulted in a threefold reduction in capillary network formation. However, distributing fibroblasts throughout the matrix completely eliminated this inhibitory effect, resulting in robustly vascularized matrices suitable for in vivo applications, as functional anastomoses formed between the implanted tissues and host vasculature when implanted into immune-compromised mice. Dense matrices did not stimulate fibroblast-mediated matrix remodeling: differentiation into myofibroblasts, matrix production, and protease secretion were not enhanced by the dense condition. Instead, quantifying diffusivity of FITC-dextran (molecular mass 10, 40, 70, and 150 kDa) through fibrin revealed a two- to threefold decrease within the 10 mg/ml matrices. Thus, distributing a proangiogenic source (fibroblasts) throughout the matrix stimulates capillary network formation by overcoming this diffusion restriction due to significantly reduced diffusion distances. Although roles for matrix stiffness and ligand binding density have previously been identified, our results emphasize the importance of diffusion restrictions in limiting capillary morphogenesis.
Collapse
|
91
|
|
92
|
Allard JF, Rutenberg AD. Steady-state helices of the actin homolog MreB inside bacteria: dynamics without motors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:031916. [PMID: 17930280 DOI: 10.1103/physreve.76.031916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Indexed: 05/25/2023]
Abstract
Within individual bacteria, we combine force-dependent polymerization dynamics of individual MreB protofilaments with an elastic model of protofilament bundles buckled into helical configurations. We use variational techniques and stochastic simulations to relate the pitch of the MreB helix, the total abundance of MreB, and the number of protofilaments. By comparing our simulations with mean-field calculations, we find that stochastic fluctuations are significant. We examine the quasistatic evolution of the helical pitch with cell growth, as well as time scales of helix turnover and de novo establishment. We find that while the body of a polarized MreB helix treadmills toward its slow-growing end, the fast-growing tips of laterally associated protofilaments move toward the opposite fast-growing end of the MreB helix. This offers a possible mechanism for targeted polar localization without cytoplasmic motor proteins.
Collapse
Affiliation(s)
- Jun F Allard
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5
| | | |
Collapse
|
93
|
Panorchan P, Lee JSH, Daniels BR, Kole TP, Tseng Y, Wirtz D. Probing cellular mechanical responses to stimuli using ballistic intracellular nanorheology. Methods Cell Biol 2007; 83:115-40. [PMID: 17613307 DOI: 10.1016/s0091-679x(07)83006-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a new method to measure the local and global micromechanical properties of the cytoplasm of single living cells in their physiological milieu and subjected to external stimuli. By tracking spontaneous, Brownian movements of individual nanoparticles of diameter>or=100 nm distributed within the cell with high spatial and temporal resolutions, the local viscoelastic properties of the intracellular milieu can be measured in different locations within the cell. The amplitude and the time-dependence of the mean-squared displacement of each nanoparticle directly reflect the elasticity and the viscosity of the cytoplasm in the vicinity of the nanoparticle. In our previous versions of particle tracking, we delivered nanoparticles via microinjection, which limited the number of cells amenable to measurement, rendering our technique incompatible with high-throughput experiments. Here we introduce ballistic injection to effectively deliver a large number of nanoparticles to a large number of cells simultaneously. When coupled with multiple particle tracking, this new method-ballistic intracellular nanorheology (BIN)-makes it now possible to probe the viscoelastic properties of cells in high-throughput experiments, which require large quantities of injected cells for seeding in various conditions. For instance, BIN allows us to probe an ensemble of cells embedded deeply inside a three-dimensional extracellular matrix or as a monolayer of cells subjected to shear flows.
Collapse
Affiliation(s)
- Porntula Panorchan
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
94
|
Guigas G, Kalla C, Weiss M. Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys J 2007; 93:316-23. [PMID: 17416631 PMCID: PMC1914431 DOI: 10.1529/biophysj.106.099267] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used fluorescence correlation spectroscopy to determine the anomalous diffusion properties of fluorescently tagged gold beads in the cytoplasm and the nucleus of living cells. From the extracted mean-square displacement v(tau) approximately tau(alpha), we have determined the complex shear modulus G(omega) approximately omega(alpha) for both compartments. Without treatment, all tested cell lines showed a strong viscoelastic behavior of the cytoplasm and the nucleoplasm, highlighting the crowdedness of these intracellular fluids. We also found a similar viscoelastic response in frog egg extract, which tended toward a solely viscous behavior upon dilution. When cells were osmotically stressed, the diffusion became less anomalous and the viscoelastic response changed. In particular, the anomality changed from alpha approximately 0.55 to alpha approximately 0.66, which indicates that the Zimm model for polymer solutions under varying solvent conditions is a good empirical description of the material properties of the cytoplasm and the nucleoplasm. Since osmotic stress may eventually trigger cell death, we propose, on the basis of our observations, that intracellular fluids are maintained in a state similar to crowded polymer solutions under good solvent conditions to keep the cell viable.
Collapse
Affiliation(s)
- Gernot Guigas
- Cellular Biophysics Group, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
95
|
Abstract
Functional neuroimaging has emerged as an important approach to study the brain and the mind. Surprisingly, although they are based on radically different physical approaches both positron emission tomography (PET) and magnetic resonance imaging (MRI) make brain activation imaging possible through measurements involving water molecules. So far, PET and MRI functional imaging have relied on the principle that neuronal activation and blood flow are coupled through metabolism. However, a new paradigm has emerged to look at brain activity through the observation with MRI of the molecular diffusion of water. In contrast with the former approaches diffusion MRI has the potential to reveal changes in the intrinsic water physical properties during brain activation, which could be more intimately linked to the neuronal activation mechanisms and lead to an improved spatial and temporal resolution. However, this link has yet to be fully confirmed and understood. To shed light on the possible relationship between water and brain activation, this introductory paper reviews the most recent data on the physical properties of water and on the status of water in biological tissues, and evaluates their relevance to brain diffusion MRI. The biophysical mechanisms of brain activation are then reassessed to reveal their intimacy with the physical properties of water, which may come to be regarded as the 'molecule of the mind'.
Collapse
Affiliation(s)
- Denis Le Bihan
- NeuroSpin, Bâtiment 145, CEA Saclay, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
96
|
Zorrilla S, Hink MA, Visser AJWG, Lillo MP. Translational and rotational motions of proteins in a protein crowded environment. Biophys Chem 2007; 125:298-305. [PMID: 17007994 DOI: 10.1016/j.bpc.2006.09.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/06/2006] [Accepted: 09/06/2006] [Indexed: 11/19/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) was used to measure the translational diffusion of labeled apomyoglobin (tracer) in concentrated solutions of ribonuclease A and human serum albumin (crowders), as a quantitative model system of protein diffusive motions in crowded physiological environments. The ratio of the diffusion coefficient of the tracer protein in the protein crowded solutions and its diffusion coefficient in aqueous solution has been interpreted in terms of local apparent viscosities, a molecular parameter characteristic for each tracer-crowder system. In all protein solutions studied in this work, local translational viscosity values were larger than the solution bulk viscosity, and larger than rotational viscosities estimated for apomyoglobin in the same crowding solutions. Here we propose a method to estimate local apparent viscosities for the tracer translational and rotational diffusion directly from the bulk viscosity of the concentrated protein solutions. As a result of this study, the identification of protein species and the study of hydrodynamic changes and interactions in model crowded protein solutions by means of FCS and time-resolved fluorescence depolarization techniques may be expected to be greatly simplified.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Instituto de Química Física Rocasolano, Consejo Superior Investigaciones Científicas (CSIC), Serrano 119, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
97
|
Dijksterhuis J, Nijsse J, Hoekstra FA, Golovina EA. High viscosity and anisotropy characterize the cytoplasm of fungal dormant stress-resistant spores. EUKARYOTIC CELL 2006; 6:157-70. [PMID: 17099083 PMCID: PMC1797940 DOI: 10.1128/ec.00247-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ascospores of the fungus Talaromyces macrosporus are dormant and extremely stress resistant, whereas fungal conidia--the main airborne vehicles of distribution--are not. Here, physical parameters of the cytoplasm of these types of spores were compared. Cytoplasmic viscosity and level of anisotropy as judged by spin probe studies (electron spin resonance) were extremely high in dormant ascospores and during early germination and decreased only partly after trehalose degradation and glucose efflux. Upon prosilition (ejection of the spore), these parameters fell sharply to values characteristic of vegetative cells. These changes occurred without major volume changes that suggest dramatic changes in cytoplasmic organization. Azide reversibly inhibited prosilition as well as the decline in cytoplasmic parameters. No organelle structures were observed in etched, cryoplaned specimens of ascospores by low-temperature scanning electron microscopy (LTSEM), confirming the high cytoplasmic viscosity. However, cell structures became visible upon prosilition, indicating reduced viscosity. The viscosity of fresh conidia of different Penicillium species was lower, namely, 3.5 to 4.8 cP, than that of ascospores, near 15 cP. In addition the level of anisotropic motion was markedly lower in these cells (h(0)/h(+1) = 1.16 versus 1.4). This was confirmed by LTSEM images showing cell structures. The decline of cytoplasmic viscosity in conidia during germination was linked with a gradual increase in cell volume. These data show that mechanisms of cytoplasm conservation during germination differ markedly between ascospores and conidia.
Collapse
Affiliation(s)
- J Dijksterhuis
- Department of Applied and Industrial Mycology, Centraalbureau voor Schimmelcultures, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
98
|
Wade MH, de Feijter AW, Frame MK. Quantitative fluorescence imaging techniques for the study of organization and signaling mechanisms in cells. METHODS OF BIOCHEMICAL ANALYSIS 2006; 37:117-41. [PMID: 8309365 DOI: 10.1002/9780470110584.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- M H Wade
- Meridian Instruments, Okemos, Michigan
| | | | | |
Collapse
|
99
|
Abstract
In this article, we define systems biology of virus entry in mammalian cells as the discipline that combines several approaches to comprehensively understand the collective physical behaviour of virus entry routes, and to understand the coordinated operation of the functional modules and molecular machineries that lead to this physical behaviour. Clearly, these are extremely ambitious aims, but recent developments in different life science disciplines slowly allow us to set them as realistic, although very distant, goals. Besides classical approaches to obtain high‐resolution information of the molecules, particles and machines involved, we require approaches that can monitor collective behaviour of many molecules, particles and machines simultaneously, in order to reveal design principles of the systems as a whole. Here we will discuss approaches that fall in the latter category, namely time‐lapse imaging and single‐particle tracking (SPT) combined with computational analysis and modelling, and genome‐wide RNA interference approaches to reveal the host components required for virus entry. These techniques should in the future allow us to assign host genes to the systems’ functions and characteristics, and allow emergence‐driven, in silico assembly of networks that include interactions with increasing hierarchy (molecules–multiprotein complexes–vesicles and organelles), and kinetics and subcellular spatiality, in order to allow realistic simulations of virus entry in real time.
Collapse
Affiliation(s)
- Eva-Maria Damm
- Institute for Molecular Systems Biology, ETH Zürich, Wolfgang Pauli-Strasse 16, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
100
|
Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A 2006; 103:5567-72. [PMID: 16567637 PMCID: PMC1459394 DOI: 10.1073/pnas.0509425103] [Citation(s) in RCA: 442] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Diffusion within the extracellular space (ECS) of the brain is necessary for chemical signaling and for neurons and glia to access nutrients and therapeutics; however, the width of the ECS in living tissue remains unknown. We used integrative optical imaging to show that dextrans and water-soluble quantum dots with Stokes-Einstein diameters as large as 35 nm diffuse within the ECS of adult rat neocortex in vivo. Modeling the ECS as fluid-filled "pores" predicts a normal width of 38-64 nm, at least 2-fold greater than estimates from EM of fixed tissue. ECS width falls below 10 nm after terminal ischemia, a likely explanation for the small ECS visualized in electron micrographs. Our results will improve modeling of neurotransmitter spread after spillover and ectopic release and establish size limits for diffusion of drug delivery vectors such as viruses, liposomes, and nanoparticles in brain ECS.
Collapse
Affiliation(s)
- Robert G. Thorne
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Charles Nicholson
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|