51
|
Abstract
Myosins constitute a large superfamily of actin-dependent molecular motors. Phylogenetic analysis currently places myosins into 15 classes. The conventional myosins which form filaments in muscle and non-muscle cells form class II. There has been extensive characterization of these myosins and much is known about their function. With the exception of class I and class V myosins, little is known about the structure, enzymatic properties, intracellular localization and physiology of most unconventional myosin classes. This review will focus on myosins from class IV, VI, VII, VIII, X, XI, XII, XIII, XIV and XV. In addition, the function of myosin II in non-muscle cells will also be discussed.
Collapse
Affiliation(s)
- J R Sellers
- National Heart, Lung and Blood Institute, National Institutes of Health, Building 10, Room 8N202, Bethesda, MD 20892, USA.
| |
Collapse
|
52
|
Noegel AA, Schleicher M. The actin cytoskeleton of Dictyostelium: a story told by mutants. J Cell Sci 2000; 113 ( Pt 5):759-66. [PMID: 10671366 DOI: 10.1242/jcs.113.5.759] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin-binding proteins are effectors of cell signalling and coordinators of cellular behaviour. Research on the Dictyostelium actin cytoskeleton has focused both on the elucidation of the function of bona fide actin-binding proteins as well as on proteins involved in signalling to the cytoskeleton. A major part of this work is concerned with the analysis of Dictyostelium mutants. The results derived from these investigations have added to our understanding of the role of the actin cytoskeleton in growth and development. Furthermore, the studies have identified several cellular and developmental stages that are particularly sensitive to an unbalanced cytoskeleton. In addition, use of GFP fusion proteins is revealing the spatial and temporal dynamics of interactions between actin-associated proteins and the cytoskeleton.
Collapse
Affiliation(s)
- A A Noegel
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Str. 52, Germany.
| | | |
Collapse
|
53
|
Kwak E, Gerald N, Larochelle DA, Vithalani KK, Niswonger ML, Maready M, De Lozanne A. LvsA, a protein related to the mouse beige protein, is required for cytokinesis in Dictyostelium. Mol Biol Cell 1999; 10:4429-39. [PMID: 10588668 PMCID: PMC25768 DOI: 10.1091/mbc.10.12.4429] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We isolated a Dictyostelium cytokinesis mutant with a defect in a novel locus called large volume sphere A (lvsA). lvsA mutants exhibit an unusual phenotype when attempting to undergo cytokinesis in suspension culture. Early in cytokinesis, they initiate furrow formation with concomitant myosin II localization at the cleavage furrow. However, the furrow is later disrupted by a bulge that forms in the middle of the cell. This bulge is bounded by furrows on both sides, which are often enriched in myosin II. The bulge can increase and decrease in size multiple times as the cell attempts to divide. Interestingly, this phenotype is similar to the cytokinesis failure of Dictyostelium clathrin heavy-chain mutants. Furthermore, both cell lines cap ConA receptors but form only a C-shaped loose cap. Unlike clathrin mutants, lvsA mutants are not defective in endocytosis or development. The LvsA protein shares several domains in common with the molecules beige and Chediak-Higashi syndrome proteins that are important for lysosomal membrane traffic. Thus, on the basis of the sequence analysis of the LvsA protein and the phenotype of the lvsA mutants, we postulate that LvsA plays an important role in a membrane-processing pathway that is essential for cytokinesis.
Collapse
Affiliation(s)
- E Kwak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
McCollum D, Feoktistova A, Gould KL. Phosphorylation of the myosin-II light chain does not regulate the timing of cytokinesis in fission yeast. J Biol Chem 1999; 274:17691-5. [PMID: 10364209 DOI: 10.1074/jbc.274.25.17691] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proper coordination of cytokinesis with chromosome separation during mitosis is crucial to ensure that each daughter cell inherits an equivalent set of chromosomes. It has been proposed that one mechanism by which this is achieved is through temporally regulated myosin regulatory light chain (RLC) phosphorylation (Satterwhite, L. L., and Pollard, T. D. (1992) Curr. Opin. Cell Biol. 4, 43-52). A variety of evidence is consistent with this model. A direct test of the importance of RLC phosphorylation in vivo has been done only in Dictyostelium and Drosophila; phosphorylation of the RLC is essential in Drosophila (Jordan, P., and Karess, R. (1997) J. Cell Biol. 139, 1805-1819) but not essential in Dictyostelium (Ostrow, B. D., Chen, P., and Chisholm, R. L. (1994) J. Cell Biol. 127, 1945-1955). The Schizosaccharomyces pombe myosin light chain Cdc4p is essential for cytokinesis, but it was unknown whether phosphorylation played a role in its regulation. Here we show that the S. pombe myosin light chain Cdc4p is phosphorylated in vivo on either serine 2 or 6 but not both. Mutation of either or both of these sites to alanine did not effect the ability of Cdc4p to bind the type II myosin Myo2p, and cells expressing only these mutated versions of Cdc4p grew and divided normally. Similarly, mutation of Ser-2, Ser-6, or both residues to aspartic acid did not affect growth or division of cells. Thus we conclude that phosphorylation of Cdc4p is not essential in vivo for the function of the protein.
Collapse
Affiliation(s)
- D McCollum
- Howard Hughes Medical Institute and Department of Cell Biology, Vanderbilt University School of Medicine, Nashville Tennessee 37232, USA
| | | | | |
Collapse
|
55
|
Chaudoir BM, Kowalczyk PA, Chisholm RL. Regulatory light chain mutations affect myosin motor function and kinetics. J Cell Sci 1999; 112 ( Pt 10):1611-20. [PMID: 10212154 DOI: 10.1242/jcs.112.10.1611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The actin-based motor protein myosin II plays a critical role in many cellular processes in both muscle and non-muscle cells. Targeted disruption of the Dictyostelium regulatory light chain (RLC) caused defects in cytokinesis and multicellular morphogenesis. In contrast, a myosin heavy chain mutant lacking the RLC binding site, and therefore bound RLC, showed normal cytokinesis and development. One interpretation of these apparently contradictory results is that the phenotypic defects in the RLC null mutant results from mislocalization of myosin caused by aggregation of RLC null myosin. To distinguish this from the alternative explanation that the RLC can directly influence myosin activity, we expressed three RLC point mutations (E12T, G18K and N94A) in a Dictyostelium RLC null mutant. The position of these mutations corresponds to the position of mutations that have been shown to result in familial hypertrophic cardiomyopathy in humans. Analysis of purified Dictyostelium myosin showed that while these mutations did not affect binding of the RLC to the MHC, its phosphorylation by myosin light chain kinase or regulation of its activity by phosphorylation, they resulted in decreased myosin function. All three mutants showed impaired cytokinesis in suspension, and one produced defective fruiting bodies with short stalks and decreased spore formation. The abnormal myosin localization seen in the RLC null mutant was restored to wild-type localization by expression of all three RLC mutants. Although two of the mutant myosins had wild-type actin-activated ATPase, they produced in vitro motility rates half that of wild type. N94A myosin showed a fivefold decrease in actin-ATPase and a similar decrease in the rate at which it moved actin in vitro. These results indicate that the RLC can play a direct role in determining the force transmission and kinetic properties of myosin.
Collapse
Affiliation(s)
- B M Chaudoir
- Dept of Cell and Molecular Biology, Northwestern University Medical School, Ward 11-100, Chicago, IL 60611-3008, USA
| | | | | |
Collapse
|
56
|
Clow PA, McNally JG. In vivo observations of myosin II dynamics support a role in rear retraction. Mol Biol Cell 1999; 10:1309-23. [PMID: 10233146 PMCID: PMC25267 DOI: 10.1091/mbc.10.5.1309] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1998] [Accepted: 02/08/1999] [Indexed: 11/11/2022] Open
Abstract
To investigate myosin II function in cell movement within a cell mass, we imaged green fluorescent protein-myosin heavy chain (GFP-MHC) cells moving within the tight mound of Dictyostelium discoideum. In the posterior cortex of cells undergoing rotational motion around the center of the mound, GFP-MHC cyclically formed a "C," which converted to a spot as the cell retracted its rear. Consistent with an important role for myosin in rotation, cells failed to rotate when they lacked the myosin II heavy chain (MHC-) or when they contained predominantly monomeric myosin II (3xAsp). In cells lacking the myosin II regulatory light chain (RLC-), rotation was impaired and eventually ceased. These rotational defects reflect a mechanical problem in the 3xAsp and RLC- cells, because these mutants exhibited proper rotational guidance cues. MHC- cells exhibited disorganized and erratic rotational guidance cues, suggesting a requirement for the MHC in organizing these signals. However, the MHC- cells also exhibited mechanical defects in rotation, because they still moved aberrantly when seeded into wild-type mounds with proper rotational guidance cues. The mechanical defects in rotation may be mediated by the C-to-spot, because RLC- cells exhibited a defective C-to-spot, including a slower C-to-spot transition, consistent with this mutant's slower rotational velocity.
Collapse
Affiliation(s)
- P A Clow
- Department of Biology and Institute for Biomedical Computing, Washington University, Box 1229, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
57
|
Tsujioka M, Machesky LM, Cole SL, Yahata K, Inouye K. A unique talin homologue with a villin headpiece-like domain is required for multicellular morphogenesis in Dictyostelium. Curr Biol 1999; 9:389-92. [PMID: 10209124 DOI: 10.1016/s0960-9822(99)80169-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecules involved in the interaction between the extracellular matrix, cell membrane and cytoskeleton are of central importance in morphogenesis. Talin is a large cytoskeletal protein with a modular structure consisting of an amino-terminal membrane-interacting domain, with sequence similarities to members of the band 4.1 family, and a carboxy-terminal region containing F-actin-binding and vinculin-binding domains [1] [2]. It also interacts with the cytoplasmic tail of beta integrins which, on the external face of the membrane, bind to extracellular matrix proteins [3]. The possible roles of talin in multicellular morphogenesis in development remain largely unexplored. In Dictyostelium, a eukaryotic microorganism capable of multicellular morphogenesis, a talin homologue (TALA) has previously been identified and shown to play an important role in cell-to-substrate adhesion and maintenance of normal elastic properties of the cell [4] [5] [6]. Here, we describe a second talin homologue (TALB) that is required for multicellular morphogenesis in the development of Dictyostelium. Unlike any other talin characterised to date, it contains an additional carboxy-terminal domain homologous to the villin headpiece.
Collapse
Affiliation(s)
- M Tsujioka
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
58
|
Chen P, Chaudoir BM, Trybus KM, Chisholm RL. Expression of chicken gizzard RLC complements the cytokinesis and developmental defects of Dictyostelium RLC null cells. J Muscle Res Cell Motil 1999; 20:177-86. [PMID: 10412089 DOI: 10.1023/a:1005405023020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dictyostelium RLC null cells have defects in cytokinesis and development that can be rescued by expression of either the wild type Dictyostelium RLC or an RLC mutant that cannot be phosphorylated by MLCK (S13A) (Ostrow et al., 1994). The wild type and S13A mutant LCs rescued the cells equally well, despite the fact that RLC phosphorylation increases purified Dictyostelium myosin's activity 5-fold. In this report, we assess the ability of foreign RLCs to rescue the RLC null phenotype. The RLC from smooth muscle myosin, whose activity is tightly controlled by phosphorylation, rescued the null cell phenotype. The purified hybrid myosin had an activity and motility comparable to phosphorylated Dictyostelium myosin. In contrast, cells expressing skeletal muscle RLC were deficient in cytokinesis and development, despite having an activity and motility similar to that of myosin with the unposphorylatable S13A mutant RLC. Neither foreign LC was phosphorylated when expressed in Dictyostelium. These results suggest that the level of actin-activated ATPase activity and motility is not the sole determinant of proper myosin function in vivo. Other heavy chain/light chain interactions, which occur only with the native RLC and smooth muscle RLC, appear to be necessary for optimal function.
Collapse
Affiliation(s)
- P Chen
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
59
|
Rushforth AM, White CC, Anderson P. Functions of the Caenorhabditis elegans regulatory myosin light chain genes mlc-1 and mlc-2. Genetics 1998; 150:1067-77. [PMID: 9799259 PMCID: PMC1460388 DOI: 10.1093/genetics/150.3.1067] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Caenorhabditis elegans contains two muscle regulatory myosin light chain genes, mlc-1 and mlc-2. To determine their in vivo roles, we identified deletions that eliminate each gene individually and both genes in combination. Functions of mlc-1 are redundant to those of mlc-2 in both body-wall and pharyngeal muscle. mlc-1(0) mutants are wild type, but mlc-1(0) mlc-2(0) double mutants arrest as incompletely elongated L1 larvae, having both pharyngeal and body-wall muscle defects. Transgenic copies of either mlc-1(+) or mlc-2(+) rescue all defects of mlc-1(0) mlc-2(0) double mutants. mlc-2 is redundant to mlc-1 in body-wall muscle, but mlc-2 performs a nearly essential role in the pharynx. Approximately 90% of mlc-2(0) hermaphrodites arrest as L1 larvae due to pharyngeal muscle defects. Lethality of mlc-2(0) mutants is sex specific, with mlc-2(0) males being essentially wild type. Four observations suggest that hermaphrodite-specific lethality of mlc-2(0) mutants results from insufficient expression of the X-linked mlc-1(+) gene in the pharynx. First, mlc-1(0) mlc-2(0) double mutants are fully penetrant L1 lethals in both hermaphrodites and males. Second, in situ localization of mlc mRNAs demonstrates that both mlc-1 and mlc-2 are expressed in the pharynx. Third, transgenic copies of either mlc-1(+) or mlc-2(+) rescue the pharyngeal defects of mlc-1(0) mlc-2(0) hermaphrodites. Fourth, a mutation of the dosage compensation gene sdc-3 suppresses hermaphrodite-specific lethality of mlc-2(0) mutants.
Collapse
Affiliation(s)
- A M Rushforth
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
60
|
Weissbach L, Bernards A, Herion DW. Binding of myosin essential light chain to the cytoskeleton-associated protein IQGAP1. Biochem Biophys Res Commun 1998; 251:269-76. [PMID: 9790945 DOI: 10.1006/bbrc.1998.9371] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 190 kD human IQGAP1 protein, by virtue of its N-terminal calponin-homology domain, is found associated with the actin cytoskeleton, and is capable of cross-linking actin filaments. IQGAP1 complexes with several proteins, including the Rho family GTPases Cdc42 and Rac, as well as calmodulin. It was previously noted that one of the IQ motifs of IQGAP1 displays significant similarity to a myosin heavy chain IQ motif responsible for binding the calmodulin-related myosin essential light chain (ELC). Employing the yeast two-hybrid methodology as well as in vitro binding experiments, we present evidence that a truncated version of IQGAP1 can interact with the myosin ELC. This interaction may have significant consequences for various cellular processes that involve actomyosin contractility, and suggests that the biological targets of the ELC may not be restricted to the myosin heavy chain.
Collapse
Affiliation(s)
- L Weissbach
- Orthopaedic Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA.
| | | | | |
Collapse
|
61
|
Chen TL, Wolf WA, Chisholm RL. Cell-type-specific rescue of myosin function during Dictyostelium development defines two distinct cell movements required for culmination. Development 1998; 125:3895-903. [PMID: 9729497 DOI: 10.1242/dev.125.19.3895] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutant Dictyostelium cells lacking any of the component polypeptides of myosin II exhibit developmental defects. To define myosin's role in establishing Dictyostelium's developmental pattern, we have rescued myosin function in a myosin regulatory light chain null mutant (mlcR-) using cell-type-specific promoters. While mlcR- cells fail to progress beyond the mound stage, expression of RLC from the prestalk promoter, ecmA, produces culminants with normal stalks but with defects in spore cell localization. When GFP-marked prestalk and prespore cells expressing ecmA-RLC are mixed with wild-type cells, the mislocalization of prestalk cells, but not prespore cells, is rescued. Time-lapse video recording of ecmA-RLC cells showed that the posterior prespore zone failed to undergo a contraction important for the upward movement of prespore cells. Prespore cells marked with green fluorescent protein (GFP) failed to move toward the tip with the spiral motion typical of wild type. In contrast, expression of RLC in prespore cells using the psA promoter produced balloon-like structures reminiscent of sorocarps but lacking stalks. GFP-labeled prespore cells showed a spiral movement toward the top of the structures. Expression of RLC from the psA promoter restores the normal localization of psA-GFP cells, but not ecmA-GFP cells. These results define two distinct, myosin-dependent movements that are required for establishing a Dictyostelium fruiting body: stalk extension and active movement of the prespore zone that ensures proper placement of the spores atop the stalk. The approach used in these studies provides a direct means of testing the role of cell motility in distinct cell types during a morphogenetic program.
Collapse
Affiliation(s)
- T L Chen
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
62
|
Bear JE, Rawls JF, Saxe CL. SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J Cell Biol 1998; 142:1325-35. [PMID: 9732292 PMCID: PMC2149354 DOI: 10.1083/jcb.142.5.1325] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/1998] [Revised: 07/23/1998] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors trigger the reorganization of the actin cytoskeleton in many cell types, but the steps in this signal transduction cascade are poorly understood. During Dictyostelium development, extracellular cAMP functions as a chemoattractant and morphogenetic signal that is transduced via a family of G protein-coupled receptors, the cARs. In a strain where the cAR2 receptor gene is disrupted by homologous recombination, the developmental program arrests before tip formation. In a genetic screen for suppressors of this phenotype, a gene encoding a protein related to the Wiskott-Aldrich Syndrome protein was discovered. Loss of this protein, which we call SCAR (suppressor of cAR), restores tip formation and most later development to cAR2(-) strains, and causes a multiple-tip phenotype in a cAR2(+) strain as well as leading to the production of extremely small cells in suspension culture. SCAR-cells have reduced levels of F-actin staining during vegetative growth, and abnormal cell morphology and actin distribution during chemotaxis. Uncharacterized homologues of SCAR have also been identified in humans, mouse, Caenorhabditis elegans, and Drosophila. These data suggest that SCAR may be a conserved negative regulator of G protein-coupled signaling, and that it plays an important role in regulating the actin cytoskeleton.
Collapse
Affiliation(s)
- J E Bear
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322-3030, USA
| | | | | |
Collapse
|
63
|
Adachi H, Takahashi Y, Hasebe T, Shirouzu M, Yokoyama S, Sutoh K. Dictyostelium IQGAP-related protein specifically involved in the completion of cytokinesis. J Cell Biol 1997; 137:891-8. [PMID: 9151691 PMCID: PMC2139833 DOI: 10.1083/jcb.137.4.891] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gapA gene encoding a novel RasGTPase-activating protein (RasGAP)-related protein was found to be disrupted in a cytokinesis mutant of Dictyostelium that grows as giant and multinucleate cells in a dish culture. The predicted sequence of the GAPA protein showed considerable homology to those of Gap1/Sar1 from fission yeast and the COOH-terminal half of mammalian IQGAPs, the similarity extending beyond the RasGAP-related domain. In suspension culture, gapA- cells showed normal growth in terms of the increase in cell mass, but cytokinesis inefficiently occurred to produce spherical giant cells. Time-lapse recording of the dynamics of cell division in a dish culture revealed that, in the case of gapA- cells, cytokinesis was very frequently reversed at the step in which the midbody connecting the daughter cells should be severed. Earlier steps of cytokinesis in the gapA- cells seemed to be normal, since myosin II was accumulated at the cleavage furrow. Upon starvation, gapA- cells developed and formed fruiting bodies with viable spores, like the wild-type cells. These results indicate that the GAPA protein is specifically involved in the completion of cytokinesis. Recently, it was reported that IQGAPs are putative effectors for Rac and CDC42, members of the Rho family of GTPases, and participate in reorganization of the actin cytoskeleton. Thus, it is possible that Dictyostelium GAPA participates in the severing of the midbody by regulating the actin cytoskeleton through an interaction with a member of small GTPases.
Collapse
Affiliation(s)
- H Adachi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153.
| | | | | | | | | | | |
Collapse
|
64
|
Ho G, Chisholm RL. Substitution mutations in the myosin essential light chain lead to reduced actin-activated ATPase activity despite stoichiometric binding to the heavy chain. J Biol Chem 1997; 272:4522-7. [PMID: 9020178 DOI: 10.1074/jbc.272.7.4522] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Myosin essential light chain (ELC) wraps around an alpha-helix that extends from the myosin head, where it is believed to play a structural support role. To identify other role(s) of the ELC in myosin function, we have used an alanine scanning mutagenesis approach to convert charged residues in loops I, II, III, and helix G of the Dictyostelium ELC into uncharged alanines. Dictyostelium was used as a host system to study the phenotypic and biochemical consequences associated with the mutations. The ELC carrying loop mutations bound with normal stoichiometry to the myosin heavy chain when expressed in ELC-minus cells. When expressed in wild type cells these mutants competed efficiently with the endogenous ELC for binding, suggesting that the affinity of their interaction with the heavy chain is comparable to that of wild type. However, despite apparently normal association of ELC the cells still exhibited a reduced efficiency to undergo cytokinesis in suspension. Myosin purified from these cells exhibited 4-5-fold reduction in actin-activated ATPase activity and a decrease in motor function as assessed by an in vitro motility assay. These results suggest that the ELC contributes to myosin's enzymatic activity in addition to providing structural support for the alpha-helical neck region of myosin heavy chain.
Collapse
Affiliation(s)
- G Ho
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
65
|
Smith JL, Silveira LA, Spudich JA. Activation of Dictyostelium myosin light chain kinase A by phosphorylation of Thr166. EMBO J 1996; 15:6075-83. [PMID: 8947030 PMCID: PMC452429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phosphorylation of the regulatory light chain is an important mechanism for the activation of myosin in non-muscle cells. Unlike most myosin light chain kinases (MLCKs), MLCK-A from Dictyostelium is not activated by Ca2+/calmodulin. Autophosphorylation increases activity, but only to a low level, suggesting that there is an additional activation mechanism. Here, we show that MLCK-A is autophosphorylated on Thr289, which is C-terminal to the catalytic domain. Phosphorylation of MLCK-A increases in response to concanavalin A (conA) treatment of cells, which was previously shown to activate MLCK-A. However, a mutant kinase with an alanine at position 289 (T289A) is also phosphorylated in vivo, indicating that there is an additional phosphorylated residue. Based on comparisons with other protein kinases, we tested whether phosphorylation of Thr166 drives activation of MLCK-A. Our data indicate that phosphorylation of Thr289 occurs in vivo, but is not associated with conA-induced activation, whereas phosphorylation of Thr166 by some as yet unidentified kinase is associated with activation. Replacement of Thrl66 with glutamate results in a 12-fold increase in activity as compared with the wild-type enzyme, supporting the idea that phosphorylation of Thr166 increases MLCK-A activity.
Collapse
Affiliation(s)
- J L Smith
- Department of Biochemistry, Beckman Center, Stanford University Medical Center, CA 94305-5307, USA
| | | | | |
Collapse
|
66
|
Smith JL, Silveira LA, Spudich JA. Myosin light chain kinase (MLCK) gene disruption in Dictyostelium: a role for MLCK-A in cytokinesis and evidence for multiple MLCKs. Proc Natl Acad Sci U S A 1996; 93:12321-6. [PMID: 8901579 PMCID: PMC37989 DOI: 10.1073/pnas.93.22.12321] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have created a strain of Dictyostelium that is deficient for the Ca2+/calmodulin-independent MLCK-A. This strain undergoes cytokinesis less efficiently than wild type, which results in an increased frequency of multinucleate cells when grown in suspension. The MLCK-A-cells are able, however, to undergo development and to cap crosslinked surface receptors, processes that require myosin heavy chain. Phosphorylated regulatory light chain (RLC) is still present in MLCK-A-cells, indicating that Dictyostelium has one or more additional protein kinases capable of phosphorylating RLC. Concanavalin A treatment was found to induce phosphorylation of essentially all of the RLC in wild-type cells, but RLC phosphorylation levels in MLCK-A-cells are unaffected by concanavalin A. Thus MLCK-A is regulated separately from the other MLCK(s) in the cell.
Collapse
Affiliation(s)
- J L Smith
- Department of Biochemistry, Beckman Center, Stanford University Medical Center, CA 94305-5307, USA
| | | | | |
Collapse
|
67
|
Vithalani KK, Shoffner JD, De Lozanne A. Isolation and characterization of a novel cytokinesis-deficient mutant in Dictyostelium discoideum. J Cell Biochem 1996; 62:290-301. [PMID: 8844408 DOI: 10.1002/(sici)1097-4644(199608)62:2<290::aid-jcb16>3.0.co;2-p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytokinesis is a dramatic event in the life of any cell during which numerous mechanisms must coordinate the legitimate and complete mechanical separation into two daughter cells. We have used Dictyostelium discoideum as a model system to study this highly orchestrated event through genetic analysis. Transformants were generated using a method of insertional mutagenesis known as restriction enzyme-mediated integration (REMI) and subsequently screened for defects in cytokinesis. Mutants isolated in a similar screen suffered a disruption in the myosin II heavy chain gene, a protein known to be essential for cytokinesis and in a novel gene encoding a rho-like protein termed racE [Larochelle et al., 1996]. In the screen reported here we isolated a third type of mutant, called 10BH2, which also had a complete defect in cytokinesis. 10BH2 mutant cells are able to propagate on tissue culture plates by fragmenting into smaller cells by a process known as traction-mediated cytofission. However, when grown in suspension culture, 10BH2 cells fail to divide and become large and multinucleate. Phenotypic characterization of the mutant cells showed that other cytoskeletal functions are preserved. The distribution of myosin and actin is identical to wild type cells. The cells can chemotax, phagocytose, cap crosslinked receptors, and contract normally. However, the 10BH2 mutants are unable to complete the Dictyostelium developmental program beyond the finger stage. The mutant cells contain functional genes for myosin II heavy and light chains and the racE gene. Thus, based on these findings, we conclude that 10BH2 represents a novel cytokinesis-deficient mutant.
Collapse
Affiliation(s)
- K K Vithalani
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
68
|
Larochelle DA, Vithalani KK, De Lozanne A. A novel member of the rho family of small GTP-binding proteins is specifically required for cytokinesis. J Biophys Biochem Cytol 1996; 133:1321-9. [PMID: 8682867 PMCID: PMC2120902 DOI: 10.1083/jcb.133.6.1321] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Several members of the rho/rac family of small GTP-binding proteins are known to regulate the distribution of the actin cytoskeleton in various subcellular processes. We describe here a novel rac protein, racE, which is specifically required for cytokinesis, an actomyosin-mediated process. The racE gene was isolated in a molecular genetic screen devised to isolate genes required for cytokinesis in Dictyostelium. Phenotypic characterization of racE mutants revealed that racE is not essential for any other cell motility event, including phagocytosis, chemotaxis, capping, or development. Our data provide the first genetic evidence for the essential requirement of a rho-like protein, specifically in cytokinesis, and suggest a role for these proteins in coordinating cytokinesis with the mitotic events of the cell cycle.
Collapse
Affiliation(s)
- D A Larochelle
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
69
|
Edwards KA, Kiehart DP. Drosophila nonmuscle myosin II has multiple essential roles in imaginal disc and egg chamber morphogenesis. Development 1996; 122:1499-511. [PMID: 8625837 DOI: 10.1242/dev.122.5.1499] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Morphogenesis is characterized by orchestrated changes in the shape and position of individual cells. Many of these movements are thought to be powered by motor proteins. However, in metazoans, it is often difficult to match specific motors with the movements they drive. The nonmuscle myosin II heavy chain (MHC encoded by zipper is required for cell sheet movements in Drosophila embryos. To determine if myosin II is required for other processes, we examined the phenotypes of strong and weak larval lethal mutations in spaghetti squash (sqh), which encodes the nonmuscle myosin II regulatory light chain (RLC). sqh mutants can be rescued to adulthood by daily induction of a sqh cDNA transgene driven by the hsp70 promoter. By transiently ceasing induction of the cDNA, we depleted RLC at specific times during development. When RLC is transiently depleted in larvae, the resulting adult phenotypes demonstrate that RLC is required in a stage-specific fashion for proper development of eye and leg imaginal discs. When RLC is depleted in adult females, oogenesis is reversibly disrupted. Without RLC induction, developing egg chambers display a succession of phenotypes that demonstrate roles for myosin II in morphogenesis of the interfollicular stalks, three morphologically and mechanistically distinct types of follicle cell migration, and completion of nurse cell cytoplasm transport (dumping). Finally, we show that in sqh mutant tissues, MHC is abnormally localized in punctate structures that do not contain appreciable amounts of filamentous actin or the myosin tail-binding protein p127. This suggests that sqh mutant phenotypes are chiefly caused by sequestration of myosin into inactive aggregates. These results show that myosin II is responsible for a surprisingly diverse array of cell shape changes throughout development.
Collapse
Affiliation(s)
- K A Edwards
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
70
|
Abstract
New avenues of cytoskeleton research in Dictyostelium discoideum have opened up with the cloning of the alpha- and beta-tubulin genes and the characterization of kinesins and cytoplasmic dynein. Much research, however, continues to focus on the actin cytoskeleton and its dynamics during chemotaxis, morphogenesis, and other motile processes. New actin-associated proteins are being identified and characterized by biochemical means and through isolation of mutants lacking individual components. This work is shedding light on the roles of specific actin assemblies in various biological processes.
Collapse
Affiliation(s)
- A A Noegel
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
71
|
Ho G, Chen TL, Chisholm RL. Both the amino and carboxyl termini of Dictyostelium myosin essential light chain are required for binding to myosin heavy chain. J Biol Chem 1995; 270:27977-81. [PMID: 7499275 DOI: 10.1074/jbc.270.46.27977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Dictyostelium myosin deficient in the essential light chain (ELC) does not function normally either in vivo or in vitro (Pollenz, R. S., Chen, T. L., Trivinos-Lagos, L., and Chisholm, R. L. (1992) Cell 69, 951-962). Since normal myosin function requires association of ELC, we investigated the domains of ELC that are necessary for binding to the myosin heavy chain (MHC). Deleting the NH2-terminal 11 or 28 amino acid residues (delta N11 or delta N28) or the COOH-terminal 15 amino acid residues (delta C15) abolished binding of the ELC to the MHC when the mutants were expressed in wild-type (WT) cells. In contrast, the ELC carrying deletion or insertion of four amino acid residues (D4 or I4) in the central linker segment bound the MHC in WT cells, although less efficient competition with WT ELC suggested that the affinity for the MHC is reduced. When these mutants were expressed in ELC-minus (mlcE-) cells, where the binding to the heavy chain is not dependent on efficient competition with the endogenous ELC, delta N28 and delta N11 bound to the MHC at 15% of WT levels and delta C15 did not bind to a significant degree. I4 and D4, however, bound with normal stoichiometry. These data indicate that residues at both termini of the ELC are required for association with the MHC, while the central linker domain appears to be less critical for binding. When the mutants were analyzed for their ability to complement the cytokinesis defect displayed by mlcE- cells, a correlation to the level of ELC carried by the MHC was observed, indicating that a stoichiometric ELC-MHC association is necessary for normal myosin function in vivo.
Collapse
Affiliation(s)
- G Ho
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
72
|
Chen TL, Kowalczyk PA, Ho G, Chisholm RL. Targeted disruption of the Dictyostelium myosin essential light chain gene produces cells defective in cytokinesis and morphogenesis. J Cell Sci 1995; 108 ( Pt 10):3207-18. [PMID: 7593282 DOI: 10.1242/jcs.108.10.3207] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously demonstrated that the myosin essential light chain (ELC) is required for myosin function in a Dictyostelium cell line, 7–11, in which the expression of ELC was inhibited by antisense RNA overexpression. We have now disrupted the gene encoding the ELC (mlcE) in Dictyostelium by gene targeting. The mlcE- mutants provide a clean genetic background for phenotypic analysis and biochemical characterization by removing complications arising from the residual ELC present in 7–11 cells, as well as the possibility of mutations due to insertion of the antisense construct at multiple sites in the genome. The mlcE- mutants, when grown in suspension, exhibited the typical multinucleate phenotype observed in both myosin heavy chain mutants and 7–11 cells. This phenotype was rescued by introducing a construct that expressed the wild-type Dictyostelium ELC cDNA. Myosin purified from the mlcE- cells exhibited significant calcium ATPase activity, but the actin-activated ATPase activity was greatly reduced. The results obtained from the mlcE- mutants strengthen our previous conclusion based on the antisense cell line 7–11 that ELC is critical for myosin function. The proper localization of myosin in mlcE- cells suggests that its phenotypic defects primarily arise from defective contractile function of myosin rather than its mislocalization. The enzymatic defect of myosin in mlcE- cells also suggests a possible mechanism for the observed chemotactic defect of mlcE- cells. We have shown that while mlcE- cells were able to respond to chemoattractant with proper directionality, their rate of movement was reduced. During chemotaxis, proper directionality toward chemoattractant may depend primarily on proper localization of myosin, while efficient motility requires contractile function. In addition, we have analyzed the morphogenetic events during the development of mlcE- cells using lacZ reporter constructs expressed from cell type specific promoters. By analyzing the morphogenetic patterns of the two major cell types arising during Dictyostelium development, prespore and prestalk cells, we have shown that the localization of prespore cells is more susceptible to the loss of ELC than prestalk cells, although localization of both cell types is abnormal when developed in chimeras formed by mixing equal numbers of wild-type and mutant cells. These results suggest that the morphogenetic events during Dictyostelium development have different requirements for myosin.
Collapse
Affiliation(s)
- T L Chen
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
73
|
Burns CG, Larochelle DA, Erickson H, Reedy M, De Lozanne A. Single-headed myosin II acts as a dominant negative mutation in Dictyostelium. Proc Natl Acad Sci U S A 1995; 92:8244-8. [PMID: 7667276 PMCID: PMC41133 DOI: 10.1073/pnas.92.18.8244] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Conventional myosin II is an essential protein for cytokinesis, capping of cell surface receptors, and development of Dictyostelium cells. Myosin II also plays an important role in the polarization and movement of cells. All conventional myosins are double-headed molecules but the significance of this structure is not understood since single-headed myosin II can produce movement and force in vitro. We found that expression of the tail portion of myosin II in Dictyostelium led to the formation of single-headed myosin II in vivo. The resultant cells contain an approximately equal ratio of double- and single-headed myosin II molecules. Surprisingly, these cells were completely blocked in cytokinesis and capping of concanavalin A receptors although development into fruiting bodies was not impaired. We found that this phenotype is not due to defects in myosin light chain phosphorylation. These results show that single-headed myosin II cannot function properly in vivo and that it acts as a dominant negative mutation for myosin II function. These results suggest the possibility that cooperativity of myosin II heads is critical for force production in vivo.
Collapse
Affiliation(s)
- C G Burns
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
74
|
McCollum D, Balasubramanian MK, Pelcher LE, Hemmingsen SM, Gould KL. Schizosaccharomyces pombe cdc4+ gene encodes a novel EF-hand protein essential for cytokinesis. J Cell Biol 1995; 130:651-60. [PMID: 7622565 PMCID: PMC2120525 DOI: 10.1083/jcb.130.3.651] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Schizosaccharomyces pombe cells divide by medial fission. One class of cell division mutants (cdc), the late septation mutants, defines four genes: cdc3, cdc4, cdc8, and cdc12 (Nurse, P., P. Thuriaux, and K. Nasmyth. 1976. Mol. & Gen. Genet. 146:167-178). We have cloned and characterized the cdc4 gene and show that the predicted gene product. Cdc4p, is a 141-amino acid polypeptide that is similar in sequence to EF-hand proteins including myosin light chains, calmodulin, and troponin C. Two temperature-sensitive lethal alleles, cdc4-8 and cdc4-31, accumulate multiple nuclei and multiple improper F-actin rings and septa but fail to complete cytokinesis. Deletion of cdc4 also results in a lethal terminal phenotype characterized by multinucleate, elongated cells that fail to complete cytokinesis. Sequence comparisons suggest that Cdc4p may be a member of a new class of EF-hand proteins. Cdc4p localizes to a ringlike structure in the medial region of cells undergoing cytokinesis. Thus, Cdc4p appears to be an essential component of the F-actin contractile ring. We find that Cdc4 protein forms a complex with a 200-kD protein which can be cross-linked to UTP, a property common to myosin heavy chains. Together these results suggest that Cdc4p may be a novel myosin light chain.
Collapse
Affiliation(s)
- D McCollum
- Howard Hughes Medical Institute, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
75
|
Abstract
The mechanism of cytokines is an old problem in cell biology that has received fresh attention recently with a large variety of powerful approaches and experimental systems. Significant advances have been made on the structure of the cortical cytoskeleton, the identification of proteins and genes involved, and the regulatory mechanism. Many surprises have surfaced within the past two years, leading us toward a major revision in our understanding of this important process.
Collapse
Affiliation(s)
- D J Fishkind
- Department of Biological Sciences, University of Notre Dame, IN 46556, USA
| | | |
Collapse
|
76
|
Hammer JA. Regulation of Dictyostelium myosin II by phosphorylation: what is essential and what is important? J Cell Biol 1994; 127:1779-82. [PMID: 7806558 PMCID: PMC2120310 DOI: 10.1083/jcb.127.6.1779] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- J A Hammer
- Laboratory of Cell Biology, National Institutes of Health, Bethesda, Maryland 20892-0301
| |
Collapse
|