51
|
Qian W, Choi S, Gibson GA, Watkins SC, Bakkenist CJ, Van Houten B. Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J Cell Sci 2012; 125:5745-57. [PMID: 23015593 PMCID: PMC4074216 DOI: 10.1242/jcs.109769] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial fission and fusion cycles are integrated with cell cycle progression. In this paper, we demonstrate that the inhibition of mitochondrial fission protein Drp1 causes an unexpected delay in G2/M cell cycle progression and aneuploidy. In investigating the underlying molecular mechanism, we revealed that inhibiting Drp1 triggers replication stress, which is mediated by a hyperfused mitochondrial structure and unscheduled expression of cyclin E in the G2 phase. This persistent replication stress then induces an ATM-dependent activation of the G2 to M transition cell cycle checkpoint. Knockdown of ATR, an essential kinase in preventing replication stress, significantly enhanced DNA damage and cell death of Drp1-deficienct cells. Persistent mitochondrial hyperfusion also induces centrosomal overamplification and chromosomal instability, which are causes of aneuploidy. Analysis using cells depleted of mitochondrial DNA revealed that these events are not mediated by the defects in mitochondrial ATP production and reactive oxygen species (ROS) generation. Thus dysfunctional mitochondrial fission directly induces genome instability by replication stress, which then initiates the DNA damage response. Our findings provide a novel mechanism that contributes to the cellular dysfunction and diseases associated with altered mitochondrial dynamics.
Collapse
Affiliation(s)
- Wei Qian
- Department of Pharmacology and Chemical Biology, Hillman Cancer CenterPittsburgh, PA 15213USA
- The University of Pittsburgh Cancer Institute, Hillman Cancer CenterPittsburgh, PA 15213USA
| | - Serah Choi
- Medical Scientist Training Program, Molecular Pharmacology Graduate Program, Hillman Cancer CenterPittsburgh, PA 15213USA
- The University of Pittsburgh Cancer Institute, Hillman Cancer CenterPittsburgh, PA 15213USA
| | - Gregory A. Gibson
- Department of Cell Biology and Physiology, Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Christopher J. Bakkenist
- Department of Pharmacology and Chemical Biology, Hillman Cancer CenterPittsburgh, PA 15213USA
- Department of Radiation Oncology, University of Pittsburgh School of Medicine and, Hillman Cancer CenterPittsburgh, PA 15213USA
- The University of Pittsburgh Cancer Institute, Hillman Cancer CenterPittsburgh, PA 15213USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, Hillman Cancer CenterPittsburgh, PA 15213USA
- The University of Pittsburgh Cancer Institute, Hillman Cancer CenterPittsburgh, PA 15213USA
- Author for correspondence ()
| |
Collapse
|
52
|
Booher K, Lin DW, Borrego SL, Kaiser P. Downregulation of Cdc6 and pre-replication complexes in response to methionine stress in breast cancer cells. Cell Cycle 2012; 11:4414-23. [PMID: 23159852 DOI: 10.4161/cc.22767] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Methionine and homocysteine are metabolites in the transmethylation pathway leading to synthesis of the methyl-donor S-adenosylmethionine (SAM). Most cancer cells stop proliferating during methionine stress conditions, when methionine is replaced in the growth media by its immediate metabolic precursor homocysteine (Met-Hcy+). Non-transformed cells proliferate in Met-Hcy+ media, making the methionine metabolic requirement of cancer cells an attractive target for therapy, yet there is relatively little known about the molecular mechanisms governing the methionine stress response in cancer cells. To study this phenomenon in breast cancer cells, we selected methionine-independent-resistant cell lines derived from MDAMB468 breast cancer cells. Resistant cells grew normally in Met-Hcy+ media, whereas their parental MDAMB468 cells rapidly arrest in the G 1 phase. Remarkably, supplementing Met-Hcy+ growth media with S-adenosylmethionine suppressed the cell proliferation defects, indicating that methionine stress is a consequence of SAM limitation rather than low amino acid concentrations. Accordingly, mTORC1 activity, the primary effector responding to amino acid limitation, remained high. However, we found that levels of the replication factor Cdc6 decreased and pre-replication complexes were destabilized in methionine-stressed MDAMB468 but not resistant cells. Our study characterizes metabolite requirements and cell cycle responses that occur during methionine stress in breast cancer cells and helps explain the metabolic uniqueness of cancer cells.
Collapse
Affiliation(s)
- Keith Booher
- Department of Biological Chemistry, College of Medicine, University of California Irvine, Irvine, CA USA
| | | | | | | |
Collapse
|
53
|
Shih HJ, Chu KL, Wu MH, Wu PH, Chang WW, Chu JS, Wang LHC, Takeuchi H, Ouchi T, Hsu HL. The involvement of MCT-1 oncoprotein in inducing mitotic catastrophe and nuclear abnormalities. Cell Cycle 2012; 11:934-52. [PMID: 22336915 DOI: 10.4161/cc.11.5.19452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Centrosome amplification and chromosome abnormality are frequently identified in neoplasia and tumorigenesis. However, the mechanisms underlying these defects remain unclear. We here identify that MCT-1 is a centrosomal oncoprotein involved in mitosis. Knockdown of MCT-1 protein results in intercellular bridging, chromosome mis-congregation, cytokinesis delay, and mitotic death. Introduction of MCT-1 oncogene into the p53 deficient cells (MCT-1-p53), the mitotic checkpoint kinases and proteins are deregulated synergistically. These biochemical alterations are accompanied with increased frequencies of cytokinesis failure, multi-nucleation, and centrosome amplification in subsequent cell cycle. As a result, the incidences of polyploidy and aneuploidy are progressively induced by prolonged cell cultivation or further promoted by sustained spindle damage on MCT-1-p53 background. These data show that the oncoprotein perturbs centrosome structure and mitotic progression, which provide the molecular aspect of chromsomal abnormality in vitro and the information for understanding the stepwise progression of tumors under oncogenic stress.
Collapse
Affiliation(s)
- Hung-Ju Shih
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Helmbold H, Galderisi U, Bohn W. The switch from pRb/p105 to Rb2/p130 in DNA damage and cellular senescence. J Cell Physiol 2012; 227:508-13. [PMID: 21465484 DOI: 10.1002/jcp.22786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular senescence is a response to genotoxic stress that results in an irreversible cell cycle arrest. Activation of this pathway relies on the activity of the retinoblastoma proteins and proteins of the DNA damage response cascade. Here, we discuss the functional relevance of the switch from pRb/p105 to Rb2/p130 that becomes apparent when cells enter senescent arrest.
Collapse
Affiliation(s)
- Heike Helmbold
- Department of Tumorvirology, Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | | | | |
Collapse
|
55
|
Nucleoplasmic calcium regulates cell proliferation through legumain. J Hepatol 2011; 55:626-635. [PMID: 21237226 PMCID: PMC3158841 DOI: 10.1016/j.jhep.2010.12.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 12/09/2010] [Accepted: 12/11/2010] [Indexed: 01/19/2023]
Abstract
BACKGROUND & AIMS Nucleoplasmic Ca(2+) regulates cell growth in the liver, but the proteins through which this occurs are unknown. METHODS We used Rapid Subtraction Hybridization (RaSH) to subtract genes in SKHep1 liver cells expressing the Ca(2+) buffer protein parvalbumin (PV) targeted to the nucleus, from genes in cells expressing a mutated form of nuclear-targeted PV which has one of two Ca(2+)-binding sites inactivated. The subtraction permitted the selection of genes whose expression was affected by a small alteration in nuclear Ca(2+) concentration. RESULTS The asparaginyl endopeptidase legumain (LGMN) was identified in this screening. When Ca(2+) was buffered in the nucleus of SKHep1 cells, LGMN mRNA was decreased by 97%, in part by a transcriptional mechanism, and decreased expression at the protein level was observed by immunoblot and immunofluorescence. Treatment with hepatocyte growth factor increased LGMN expression. Knockdown of LGMN by siRNA decreased proliferation of SKHep1 cells by ∼50% as measured both by BrdU uptake and mitotic index, although an inhibitor of LGMN activity did not affect BrdU incorporation. A significant reduction in the fraction of cells in G2/M phase was seen as well. This was associated with increases in the expression of cyclins A and E. Furthermore, LGMN expression was increased in hepatocellular carcinoma cells relative to normal hepatocytes in the same specimens. CONCLUSIONS These findings suggest a new role for LGMN and provide evidence that nuclear Ca(2+) signals regulate cell proliferation in part through the modulation of LGMN expression. Increased expression of LGMN may be involved in liver carcinogenesis.
Collapse
|
56
|
Deng H, Lin Y, Badin M, Vasilcanu D, Strömberg T, Jernberg-Wiklund H, Sehat B, Larsson O. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9. Biochem Biophys Res Commun 2010; 404:667-71. [PMID: 21147068 DOI: 10.1016/j.bbrc.2010.12.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclear IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the β-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over-accumulation of nIGF-1R. Over-accumulation of nIGF-1R may contribute to deregulated gene expression and therewith play a pathophysiological role in cancer cells.
Collapse
Affiliation(s)
- Hua Deng
- Department of Oncology and Pathology, The Karolinska Institute, Cancer Center Karolinska, SE-17176 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Liberal V, De Miguel MP, Henze M, Nistal M, Reed SI. Reduced spermatogonial proliferation and decreased fertility in mice overexpressing cyclin E in spermatogonia. Cell Cycle 2010; 9:4222-7. [PMID: 20962587 PMCID: PMC3055205 DOI: 10.4161/cc.9.20.13544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/04/2010] [Indexed: 12/19/2022] Open
Abstract
Cyclin E is a key component of the cell cycle regulatory machinery, contributing to the activation of Cdk2 and the control of cell cycle progression at several stages. Cyclin E expression is tightly regulated, by periodic transcription and ubiquitin-mediated degradation. Overexpression of cyclin E has been associated with tumor development and poor prognosis in several tumor types, including germ cell tumors and both cyclin E and its partner Cdk2 are required for normal spermatogenesis. Here we have generated and characterized transgenic mice overexpressing a cyclin E mutant protein, resistant to ubiquitin-mediated proteolysis, in testicular germ cells, under the control of the human EF-1alpha promoter. The transgenic mice develop normally and live a normal life span, with no signs of testicular tumor development. The transgenic mice display however reduced fertility and testicular atrophy, due to reduced spermatogonial proliferation as a consequence of deregulated cyclin E levels. Overall our results show that deregulation of cyclin E expression contribute to infertility, due to inability of the spermatogonial cells to start the mitotic cycles prior to entering meiosis.
Collapse
Affiliation(s)
- Vasco Liberal
- Department of Molecular Biology, MB-7, The Scripps Research Institute, La Jolla, CA
| | | | | | | | | |
Collapse
|
58
|
Bagheri-Yarmand R, Nanos-Webb A, Biernacka A, Bui T, Keyomarsi K. Cyclin E deregulation impairs mitotic progression through premature activation of Cdc25C. Cancer Res 2010; 70:5085-95. [PMID: 20530684 PMCID: PMC2946214 DOI: 10.1158/0008-5472.can-09-4095] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cyclin E-cyclin-dependent kinase 2 (CDK2) complex accelerates entry into the S phase of the cell cycle and promotes polyploidy, which may contribute to genomic instability in cancer cells. The effect of low molecular weight isoforms of cyclin E (LMW-E) overexpression on mitotic progression and its link to genomic instability were the focus of this study. Here, we show that full-length cyclin E (EL) and LMW-E overexpression impairs the G(2)-M transition differently by targeting dual-specificity phosphatase Cdc25C activity. We identify Cdc25C as an interaction partner and substrate for cyclin E/CDK2 kinase. Specifically, the cyclin E/CDK2 complex phosphorylates Cdc25C on Ser(214), leading to its premature activation, which coincides with higher cyclin B/CDK1 and Polo-like kinase 1 (PLK1) activities in an S-phase-enriched population that result in faster mitotic entry. Whereas EL overexpression leads to hyperactivation of Cdc25C, cyclin B/CDK1, and PLK1 in a G(2)-M-enriched population, LMW-E overexpression causes premature inactivation of Cdc25C and PLK1, leading to faster mitotic exit. In addition, LMW-E-overexpressing cells showed a reduction in the mitotic index in the presence of a spindle poison and faster degradation of cyclin B, suggesting an increased rate of mitotic slippage and adaptation to the spindle checkpoint. Lastly, downregulation of Cdc25C inhibits LMW-E-mediated chromosome missegregation, anaphase bridges, and centrosome amplification. These results suggest that the high levels of LMW-E isoforms found in breast cancer may contribute to cellular transformation and genomic instability by impairing mitotic progression involving Cdc25C.
Collapse
Affiliation(s)
- Rozita Bagheri-Yarmand
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Angela Nanos-Webb
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Anna Biernacka
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tuyen Bui
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
59
|
Bagheri-Yarmand R, Biernacka A, Hunt KK, Keyomarsi K. Low molecular weight cyclin E overexpression shortens mitosis, leading to chromosome missegregation and centrosome amplification. Cancer Res 2010; 70:5074-84. [PMID: 20530685 DOI: 10.1158/0008-5472.can-09-4094] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Overexpression of the low molecular weight isoforms (LMW-E) of cyclin E induces chromosome instability; however, the degree to which these tumor-specific forms cause genomic instability differs from that of full-length cyclin E (EL), and the underlying mechanism(s) has yet to be elucidated. Here, we show that EL and LMW-E overexpression impairs the G(2)-M transition differently and leads to different degrees of chromosome instability in a breast cancer model system. First, the most significant difference is that EL overexpression prolongs cell cycle arrest in prometaphase, whereas LMW-E overexpression reduces the length of mitosis and accelerates mitotic exit. Second, LMW-E-overexpressing cells are binucleated or multinucleated with amplified centrosomes, whereas EL-overexpressing cells have the normal complement of centrosomes. Third, LMW-E overexpression causes mitotic defects, chromosome missegregation during metaphase, and anaphase bridges during anaphase, most of which are not detected on EL induction. LMW-E induces additional mitotic defects in cooperation with p53 loss in both normal and tumor cells. Fourth, LMW-E-overexpressing cells fail to arrest in the presence of nocodazole. Collectively, the mitotic defects mediated by LMW-E induction led to failed cytokinesis and polyploidy, suggesting that LMW-E expression primes cells to accrue chromosomal instability by shortening the length of mitosis. Lastly, LMW-E expression in human breast cancer tissues correlates with centrosome amplification and higher nuclear grade. These results suggest that LMW-E overexpression leads to higher centrosome numbers in breast cancer, which is a prerequisite for genomic instability.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Line, Tumor
- Centrosome/pathology
- Chromosomal Instability
- Cyclin E/genetics
- Cyclin E/metabolism
- Cytoplasm/metabolism
- Female
- Fluorescent Antibody Technique
- Humans
- Immunoenzyme Techniques
- Middle Aged
- Mitosis/genetics
- Molecular Weight
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Ploidies
Collapse
Affiliation(s)
- Rozita Bagheri-Yarmand
- Department of Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
60
|
Eliades A, Papadantonakis N, Ravid K. New roles for cyclin E in megakaryocytic polyploidization. J Biol Chem 2010; 285:18909-17. [PMID: 20392692 DOI: 10.1074/jbc.m110.102145] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Megakaryocytes are platelet precursor cells that undergo endomitosis. During this process, repeated rounds of DNA synthesis are characterized by lack of late anaphase and cytokinesis. Physiologically, the majority of the polyploid megakaryocytes in the bone marrow are cell cycle arrested. As previously reported, cyclin E is essential for megakaryocyte polyploidy; however, it has remained unclear whether up-regulated cyclin E is an inducer of polyploidy in vivo. We found that cyclin E is up-regulated upon stimulation of primary megakaryocytes by thrombopoietin. Transgenic mice in which elevated cyclin E expression is targeted to megakaryocytes display an increased ploidy profile. Examination of S phase markers, specifically proliferating cell nuclear antigen, cyclin A, and 5-bromo-2-deoxyuridine reveals that cyclin E promotes progression to S phase and cell cycling. Interestingly, analysis of Cdc6 and Mcm2 indicates that cyclin E mediates its effect by promoting the expression of components of the pre-replication complex. Furthermore, we show that up-regulated cyclin E results in the up-regulation of cyclin B1 levels, suggesting an additional mechanism of cyclin E-mediated ploidy increase. These findings define a key role for cyclin E in promoting megakaryocyte entry into S phase and hence, increase in the number of cell cycling cells and in augmenting polyploidization.
Collapse
Affiliation(s)
- Alexia Eliades
- Department of Medicine and Biochemistry, Evans Center for Interdisciplinary Biomedical Research, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
61
|
Wirries A, Breyer S, Quint K, Schobert R, Ocker M. Thymoquinone hydrazone derivatives cause cell cycle arrest in p53-competent colorectal cancer cells. Exp Ther Med 2010; 1:369-375. [PMID: 22993551 DOI: 10.3892/etm_00000058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 12/08/2009] [Indexed: 11/06/2022] Open
Abstract
Thymoquinone (TQ), the major compound of black seed oil, has been shown to induce pro-apoptotic signaling pathways in various human cancer models. Although TQ is commonly used in traditional medicine, its use in humans is limited due to its chemical properties and poor membrane penetration capacity. We therefore attached saturated and unsaturated fatty acid residues to TQ and evaluated the effect on cell proliferation, apoptosis and underlying signaling pathways in HCT116 and HCT116(p53-/-) colon cancer and HepG2 hepatoma cells in vitro. Treatment with thymoquinone-4-α-linolenoylhydrazone (TQ-H-10) or thymoquinone-4-palmitoylhydrazone (TQ-H-11) induced a cytostatic effect, particularly in p53-competent HCT116 cells, mediated by an up-regulation of p21(cip1/waf1) and a down-regulation of cyclin E, and associated with an S/G(2) arrest of the cell cycle. Cells lacking p53 (HCT116(p53-/-)) or HepG2 liver cancer cells showed only a minor response to TQ-H-10. These findings demonstrate that derivatives of TQ inhibit cell proliferation dependent on p53 status by activating the cell cycle inhibitor p21(cip1/waf1) at lower concentrations than unmodified TQ. Structural modifications can therefore contribute to the further clinical development of TQ.
Collapse
Affiliation(s)
- André Wirries
- Department of Medicine 1, University Hospital Erlangen, 91054 Erlangen
| | | | | | | | | |
Collapse
|
62
|
Caldon CE, Musgrove EA. Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Div 2010; 5:2. [PMID: 20180967 PMCID: PMC2835679 DOI: 10.1186/1747-1028-5-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/17/2010] [Indexed: 02/07/2023] Open
Abstract
The highly conserved E-type cyclins are core components of the cell cycle machinery, facilitating the transition into S phase through activation of the cyclin dependent kinases, and assembly of pre-replication complexes on DNA. Cyclin E1 and cyclin E2 are assumed to be functionally redundant, as cyclin E1-/- E2-/- mice are embryonic lethal while cyclin E1-/- and E2-/- single knockout mice have primarily normal phenotypes. However more detailed studies of the functions and regulation of the E-cyclins have unveiled potential additional roles for these proteins, such as in endoreplication and meiosis, which are more closely associated with either cyclin E1 or cyclin E2. Moreover, expression of each E-cyclin can be independently regulated by distinct transcription factors and microRNAs, allowing for context-specific expression. Furthermore, cyclins E1 and E2 are frequently expressed independently of one another in human cancer, with unique associations to signatures of poor prognosis. These data imply an absence of co-regulation of cyclins E1 and E2 during tumorigenesis and possibly different contributions to cancer progression. This is supported by in vitro data identifying divergent regulation of the two genes, as well as potentially different roles in vivo.
Collapse
Affiliation(s)
- C Elizabeth Caldon
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
63
|
Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I, Janakiraman M, Schultz N, Hanrahan AJ, Pao W, Ladanyi M, Sander C, Heguy A, Holland EC, Paty PB, Mischel PS, Liau L, Cloughesy TF, Mellinghoff IK, Solit DB, Chan TA. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet 2009; 42:77-82. [PMID: 19946270 DOI: 10.1038/ng.491] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 10/23/2009] [Indexed: 11/09/2022]
Abstract
Mutation of the gene PARK2, which encodes an E3 ubiquitin ligase, is the most common cause of early-onset Parkinson's disease. In a search for multisite tumor suppressors, we identified PARK2 as a frequently targeted gene on chromosome 6q25.2-q27 in cancer. Here we describe inactivating somatic mutations and frequent intragenic deletions of PARK2 in human malignancies. The PARK2 mutations in cancer occur in the same domains, and sometimes at the same residues, as the germline mutations causing familial Parkinson's disease. Cancer-specific mutations abrogate the growth-suppressive effects of the PARK2 protein. PARK2 mutations in cancer decrease PARK2's E3 ligase activity, compromising its ability to ubiquitinate cyclin E and resulting in mitotic instability. These data strongly point to PARK2 as a tumor suppressor on 6q25.2-q27. Thus, PARK2, a gene that causes neuronal dysfunction when mutated in the germline, may instead contribute to oncogenesis when altered in non-neuronal somatic cells.
Collapse
Affiliation(s)
- Selvaraju Veeriah
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Dalton WB, Yang VW. Role of prolonged mitotic checkpoint activation in the formation and treatment of cancer. Future Oncol 2009; 5:1363-70. [PMID: 19903065 PMCID: PMC2791162 DOI: 10.2217/fon.09.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mitotic abnormalities are a common feature of human cancer cells, and recent studies have provided evidence that such abnormalities may play a causative, rather than merely incidental role, in tumorigenesis. One such abnormality is prolonged activation of the mitotic checkpoint, which can be provoked by a number of the gene changes that drive tumor formation. At the same time, antimitotic chemotherapeutics exert their clinical efficacy through the large-scale induction of prolonged mitotic checkpoint activation, indicating that mitotic arrest is influential in both the formation and treatment of human cancer. However, how this influence occurs is not well understood. In this perspective, we will discuss the current evidence in support of the potential mechanisms by which prolonged activation of the mitotic checkpoint affects both tumorigenesis and antimitotic chemotherapy.
Collapse
Affiliation(s)
- W. Brian Dalton
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, U. S. A
| | - Vincent W. Yang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, U. S. A
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, U. S. A
| |
Collapse
|
65
|
A unique RNA-directed nucleoside analog is cytotoxic to breast cancer cells and depletes cyclin E levels. Breast Cancer Res Treat 2009; 121:355-64. [PMID: 19641990 DOI: 10.1007/s10549-009-0481-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 07/11/2009] [Indexed: 12/13/2022]
Abstract
In contrast to deoxyribose or arabinose containing nucleoside analogs that are currently established for cancer therapeutics, 8-chloro-adenosine (8-Cl-Ado) possesses a ribose sugar. This unique nucleoside analog is RNA-directed and is in a phase I clinical trial for hematological malignancies. RNA-directed therapies are effective for the treatment of many malignancies as their activities are primarily aimed at short-lived transcripts, which are typically encoded by genes that promote the growth and survival of tumor cells such as cyclin E in breast cancer. Based on this, we hypothesized that 8-Cl-Ado, a transcription inhibitor, will be effective for the treatment of breast cancer cells. The metabolism of 8-Cl-Ado and the effect on ATP in the breast cancer cell lines MCF-7 and BT-474 were measured using HPLC analysis. In these cells, 8-Cl-Ado was effectively taken up, converted to its cytotoxic metabolite, 8-Cl-ATP, and depleted the endogenous ATP levels. This in turn led to an inhibition of RNA synthesis. The RNA synthesis inhibition was associated with a depletion of cyclin E expression, which is indicative of a diminished tumorigenic phenotype. The final outcome of 8-Cl-Ado treatment of the breast cancer cells was growth inhibition due to an induction of apoptosis and a loss of clonogenic survival. These results indicate that 8-Cl-Ado, which is currently in clinic for hematological malignancies, may be an effective agent for the treatment of breast cancer.
Collapse
|
66
|
A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci U S A 2009; 106:11960-5. [PMID: 19617534 DOI: 10.1073/pnas.0904875106] [Citation(s) in RCA: 481] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondria undergo fission-fusion events that render these organelles highly dynamic in cells. We report a relationship between mitochondrial form and cell cycle control at the G(1)-S boundary. Mitochondria convert from isolated, fragmented elements into a hyperfused, giant network at G(1)-S transition. The network is electrically continuous and has greater ATP output than mitochondria at any other cell cycle stage. Depolarizing mitochondria at early G(1) to prevent these changes causes cell cycle progression into S phase to be blocked. Inducing mitochondrial hyperfusion by acute inhibition of dynamin-related protein-1 (DRP1) causes quiescent cells maintained without growth factors to begin replicating their DNA and coincides with buildup of cyclin E, the cyclin responsible for G(1)-to-S phase progression. Prolonged or untimely formation of hyperfused mitochondria, through chronic inhibition of DRP1, causes defects in mitotic chromosome alignment and S-phase entry characteristic of cyclin E overexpression. These findings suggest a hyperfused mitochondrial system with specialized properties at G(1)-S is linked to cyclin E buildup for regulation of G(1)-to-S progression.
Collapse
|
67
|
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit E3 ubiquitin ligase that triggers the degradation of multiple substrates during mitosis. Cdc20/Fizzy and Cdh1/Fizzy-related activate the APC/C and confer substrate specificity through complex interactions with both the core APC/C and substrate proteins. The regulation of Cdc20 and Cdh1 is critical for proper APC/C activity and occurs in multiple ways: targeted protein degradation, phosphorylation, and direct binding of inhibitory proteins. During the specialized divisions of meiosis, the activity of the APC/C must be modified to achieve proper chromosome segregation. Recent studies show that one way in which APC/C activity is modified is through the use of meiosis-specific APC/C activators. Furthermore, regulation of the APC/C during meiosis is carried out by both mitotic regulators of the APC/C as well as meiosis-specific regulators. Here, we review the regulation of APC/C activators during mitosis and the role and regulation of the APC/C during female meiosis.
Collapse
Affiliation(s)
- Jillian A Pesin
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
68
|
Li S, Szymborski A, Miron MJ, Marcellus R, Binda O, Lavoie JN, Branton PE. The adenovirus E4orf4 protein induces growth arrest and mitotic catastrophe in H1299 human lung carcinoma cells. Oncogene 2008; 28:390-400. [PMID: 18955965 DOI: 10.1038/onc.2008.393] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human adenovirus E4orf4 protein, when expressed alone, induces p53-independent death in a wide range of cancer cells. Earlier studies by our groups suggested that although in some cases cell death can be associated with some hallmarks of apoptosis, it is not always affected by caspase inhibitors. Thus it is unlikely that E4orf4-induced cell death occurs uniquely through apoptosis. In the present studies using H1299 human lung carcinoma cells as a model system we found that death is induced in the absence of activation of any of the caspases tested, accumulation of reactive oxygen species, or release of cytochrome c from mitochondria. E4orf4 caused a substantial change in cell morphology, including vigorous membrane blebbing, multiple nuclei in many cells and increased cell volume. Most of these characteristics are not typical of apoptosis, but they are of necrosis. FACS analysis and western blotting for cell cycle markers showed that E4orf4-expressing cells became arrested in G(2)/M and also accumulated high levels of cyclin E. The presence of significant numbers of tetraploid and polyploid cells and some cells with micronuclei suggested that E4orf4 appears to induce death in these cells through a process resulting from mitotic catastrophe.
Collapse
Affiliation(s)
- S Li
- Department of Biochemistry, McGill University, McIntyre Medical Building, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
69
|
The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol Cell 2008; 31:544-556. [PMID: 18722180 DOI: 10.1016/j.molcel.2008.07.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 04/09/2008] [Accepted: 07/01/2008] [Indexed: 01/06/2023]
Abstract
In vitro, the anaphase-promoting complex (APC) E3 ligase functions with E2 ubiquitin-conjugating enzymes of the E2-C and Ubc4/5 families to ubiquitinate substrates. However, only the use of the E2-C family, notably UbcH10, is genetically well validated. Here, we biochemically demonstrate preferential use of UbcH10 by the APC, specified by the E2 core domain. Importantly, an additional E2-E3 interaction mediated by the N-terminal extension of UbcH10 regulates APC activity. Mutating the highly conserved N terminus increases substrate ubiquitination and the number of substrate lysines targeted, allows ubiquitination of APC substrates lacking their destruction boxes, increases resistance to the APC inhibitors Emi1 and BubR1 in vitro, and bypasses the spindle checkpoint in vivo. Fusion of the UbcH10 N terminus to UbcH5 restricts ubiquitination activity but does not direct specific interactions with the APC. Thus, UbcH10 combines a specific E2-E3 interface and regulation via its N-terminal extension to limit APC activity for substrate selection and checkpoint control.
Collapse
|
70
|
van Leuken R, Clijsters L, Wolthuis R. To cell cycle, swing the APC/C. Biochim Biophys Acta Rev Cancer 2008; 1786:49-59. [DOI: 10.1016/j.bbcan.2008.05.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/05/2008] [Accepted: 05/13/2008] [Indexed: 11/30/2022]
|
71
|
Cyclin E phosphorylation regulates cell proliferation in hematopoietic and epithelial lineages in vivo. Genes Dev 2008; 22:1677-89. [PMID: 18559482 DOI: 10.1101/gad.1650208] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phosphorylations within N- and C-terminal degrons independently control the binding of cyclin E to the SCF(Fbw7) and thus its ubiquitination and proteasomal degradation. We have now determined the physiologic significance of cyclin E degradation by this pathway. We describe the construction of a knockin mouse in which both degrons were mutated by threonine to alanine substitutions (cyclin E(T74A T393A)) and report that ablation of both degrons abolished regulation of cyclin E by Fbw7. The cyclin E(T74A T393A) mutation disrupted cyclin E periodicity and caused cyclin E to continuously accumulate as cells reentered the cell cycle from quiescence. In vivo, the cyclin E(T74A T393A) mutation greatly increased cyclin E activity and caused proliferative anomalies. Cyclin E(T74A T393A) mice exhibited abnormal erythropoiesis characterized by a large expansion of abnormally proliferating progenitors, impaired differentiation, dysplasia, and anemia. This syndrome recapitulates many features of early stage human refractory anemia/myelodysplastic syndrome, including ineffective erythropoiesis. Epithelial cells also proliferated abnormally in cyclin E knockin mice, and the cyclin E(T74A T393A) mutation delayed mammary gland involution, implicating cyclin E degradation in this anti-mitogenic response. Hyperproliferative mammary epithelia contained increased apoptotic cells, suggesting that apoptosis contributes to tissue homeostasis in the setting of cyclin E deregulation. Overall these data show the critical role of both degrons in regulating cyclin E activity and reveal that complete loss of Fbw7-mediated cyclin E degradation causes spontaneous and cell type-specific proliferative anomalies.
Collapse
|
72
|
Zielke N, Querings S, Rottig C, Lehner C, Sprenger F. The anaphase-promoting complex/cyclosome (APC/C) is required for rereplication control in endoreplication cycles. Genes Dev 2008; 22:1690-703. [PMID: 18559483 DOI: 10.1101/gad.469108] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endoreplicating cells undergo multiple rounds of DNA replication leading to polyploidy or polyteny. Oscillation of Cyclin E (CycE)-dependent kinase activity is the main driving force in Drosophila endocycles. High levels of CycE-Cdk2 activity trigger S phase, while down-regulation of CycE-Cdk2 activity is crucial to allow licensing of replication origins. In mitotic cells relicensing in S phase is prevented by Geminin. Here we show that Geminin protein oscillates in endoreplicating salivary glands of Drosophila. Geminin levels are high in S phase, but drop once DNA replication has been completed. DNA licensing is coupled to mitosis through the action of the anaphase-promoting complex/cyclosome (APC/C). We demonstrate that, even though endoreplicating cells never enter mitosis, APC/C activity is required in endoreplicating cells to mediate Geminin oscillation. Down-regulation of APC/C activity results in stabilization of Geminin protein and blocks endocycle progression. Geminin is only abundant in cells with high CycE-Cdk2 activity, suggesting that APC/C-Fzr activity is periodically inhibited by CycE-Cdk2, to prevent relicensing in S-phase cells.
Collapse
Affiliation(s)
- Norman Zielke
- University of Cologne, Institute for Genetics, 50674 Köln, Germany
| | | | | | | | | |
Collapse
|
73
|
Grim JE, Gustafson MP, Hirata RK, Hagar AC, Swanger J, Welcker M, Hwang HC, Ericsson J, Russell DW, Clurman BE. Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase. ACTA ACUST UNITED AC 2008; 181:913-20. [PMID: 18559665 PMCID: PMC2426948 DOI: 10.1083/jcb.200802076] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The SCFFBW7 ubiquitin ligase degrades proteins involved in cell division, growth, and differentiation and is commonly mutated in cancers. The Fbw7 locus encodes three protein isoforms that occupy distinct subcellular localizations, suggesting that each has unique functions. We used gene targeting to create isoform-specific Fbw7-null mutations in human cells and found that the nucleoplasmic Fbw7α isoform accounts for almost all Fbw7 activity toward cyclin E, c-Myc, and sterol regulatory element binding protein 1. Cyclin E sensitivity to Fbw7 varies during the cell cycle, and this correlates with changes in cyclin E–cyclin-dependent kinase 2 (CDK2)–specific activity, cyclin E autophosphorylation, and CDK2 inhibitory phosphorylation. These data suggest that oscillations in cyclin E–CDK2-specific activity during the cell cycle regulate the timing of cyclin E degradation. Moreover, they highlight the utility of adeno-associated virus–mediated gene targeting in functional analyses of complex loci.
Collapse
Affiliation(s)
- Jonathan E Grim
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Cyclin-dependent kinase-associated proteins Cks1 and Cks2 are essential during early embryogenesis and for cell cycle progression in somatic cells. Mol Cell Biol 2008; 28:5698-709. [PMID: 18625720 DOI: 10.1128/mcb.01833-07] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cks proteins associate with cyclin-dependent kinases and have therefore been assumed to play a direct role in cell cycle regulation. Mammals have two paralogs, Cks1 and Cks2, and individually deleting the gene encoding either in the mouse has previously been shown not to impact viability. In this study we show that simultaneously disrupting CKS1 and CKS2 leads to embryonic lethality, with embryos dying at or before the morula stage after only two to four cell division cycles. RNA interference (RNAi)-mediated silencing of CKS genes in mouse embryonic fibroblasts (MEFs) or HeLa cells causes cessation of proliferation. In MEFs CKS silencing leads to cell cycle arrest in G(2), followed by rereplication and polyploidy. This phenotype can be attributed to impaired transcription of the CCNB1, CCNA2, and CDK1 genes, encoding cyclin B1, cyclin A, and Cdk1, respectively. Restoration of cyclin B1 expression rescues the cell cycle arrest phenotype conferred by RNAi-mediated Cks protein depletion. Consistent with a direct role in transcription, Cks2 is recruited to chromatin in general and to the promoter regions and open reading frames of genes requiring Cks function with a cell cycle periodicity that correlates with their transcription.
Collapse
|
75
|
Tan Y, Sangfelt O, Spruck C. The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett 2008; 271:1-12. [PMID: 18541364 DOI: 10.1016/j.canlet.2008.04.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/23/2008] [Accepted: 04/23/2008] [Indexed: 12/11/2022]
Abstract
Fbxw7/hCdc4 is a member of the F-box family of proteins, which function as interchangeable substrate recognition components of the SCF ubiquitin ligases. SCF(Fbxw7/hCdc4) targets several important oncoproteins including c-Myc, c-Jun, cyclin E1, and Notch, for ubiquitin-dependent proteolysis. Recent studies have shown that FBXW7/hCDC4 is mutated in a variety of human tumor types, suggesting that it is a general tumor suppressor in human cancer. Alteration of Fbxw7/hCdc4 function is linked to defects in differentiation, cellular proliferation, and genetic instability. In this review, we summarize what is known about Fbxw7/hCdc4-mediated degradation in the regulation of cellular proliferation and discuss how alteration of its function contributes to human tumorigenesis.
Collapse
Affiliation(s)
- YingMeei Tan
- Department of Tumor Cell Biology, Sidney Kimmel Cancer Center, San Diego, CA 92121, USA
| | | | | |
Collapse
|
76
|
Di Fiore B, Pines J. Defining the role of Emi1 in the DNA replication-segregation cycle. Chromosoma 2008; 117:333-8. [PMID: 18317792 DOI: 10.1007/s00412-008-0152-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/06/2008] [Accepted: 02/07/2008] [Indexed: 11/30/2022]
Abstract
Ordered progression through the cell cycle is essential to maintain genomic stability, and fundamental to this is ubiquitin-mediated proteolysis. In particular, the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase destabilises specific regulators at defined times in the cycle to ensure that each round of DNA replication is followed by cell division. Thus, the proper regulation of the APC/C is crucial in each cell cycle. There are several APC/C regulators that restrict its activity to specific cell cycle phases, and amongst these the early mitotic inhibitor 1 (Emi1) protein has recently come to prominence. Emi1 has been proposed to control APC/C in early mitosis; however, recent evidence questions this role. In this review we discuss new evidence that indicates that Emi1 is essential to restrict APC/C activity in interphase and, by doing so, ensure the proper coordination between DNA replication and mitosis.
Collapse
Affiliation(s)
- Barbara Di Fiore
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
77
|
Abstract
AIM: To detect the expression of P27 and cyclin D1 and E expression in gastric cancer, and to provide a new way to diagnose and treat gastric cancer.
METHODS: Immunohistochemistry was used to examine the expression of P27, cyclin D1 and cyclin E proteins in gastric carcinoma (n = 54) and normal gastric mucosa (n = 15).
RESULTS: Positive immunohistochemistry was seen in 20 of 54 gastric cancer cases and in 11 of 15 normal gastric tissues. P27 expression differed significantly between gastric cancer and normal gastric tissue (P < 0.05), had no relation with sex, age, tumor size, invasive depth and differentiation, but had a significant relationship with TNM staging and lymph node metastasis (P < 0.05). P27 expression had a negative correlation with cyclin D1 (r = -0.332) and no relationship with cyclin E.
CONCLUSION: The difference in P27 expression in gastric cancer and normal gastric tissue is remarkable. The expression has a significant relationship with TNM staging and lymph node metastasis. P27 expression has a negative correlation with cyclin D1 and no relationship with cyclin E expression.
Collapse
|