51
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|
52
|
Deletion of CPEB3 enhances hippocampus-dependent memory via increasing expressions of PSD95 and NMDA receptors. J Neurosci 2013; 33:17008-22. [PMID: 24155305 DOI: 10.1523/jneurosci.3043-13.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Long-term memory requires activity-dependent synthesis of plasticity-related proteins (PRPs) to strengthen synaptic efficacy and consequently consolidate memory. Cytoplasmic polyadenylation element binding protein (CPEB)3 is a sequence-specific RNA-binding protein that regulates translation of several PRP RNAs in neurons. To understand whether CPEB3 plays a part in learning and memory, we generated CPEB3 knock-out (KO) mice and found that the null mice exhibited enhanced hippocampus-dependent, short-term fear memory in the contextual fear conditioning test and long-term spatial memory in the Morris water maze. The basal synaptic transmission of Schaffer collateral-CA1 neurons was normal but long-term depression evoked by paired-pulse low-frequency stimulation was modestly facilitated in the juvenile KO mice. Molecular and cellular characterizations revealed several molecules in regulating plasticity of glutamatergic synapses are translationally elevated in the CPEB3 KO neurons, including the scaffolding protein PSD95 and the NMDA receptors along with the known CPEB3 target, GluA1. Together, CPEB3 functions as a negative regulator to confine the strength of glutamatergic synapses by downregulating the expression of multiple PRPs and plays a role underlying certain forms of hippocampus-dependent memories.
Collapse
|
53
|
Luo J, Ashikaga E, Rubin PP, Heimann MJ, Hildick KL, Bishop P, Girach F, Josa-Prado F, Tang LTH, Carmichael RE, Henley JM, Wilkinson KA. Receptor trafficking and the regulation of synaptic plasticity by SUMO. Neuromolecular Med 2013; 15:692-706. [PMID: 23934328 DOI: 10.1007/s12017-013-8253-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/25/2013] [Indexed: 12/18/2022]
Abstract
Timely and efficient information transfer at synapses is fundamental to brain function. Synapses are highly dynamic structures that exhibit long-lasting activity-dependent alterations to their structure and transmission efficiency, a phenomenon termed synaptic plasticity. These changes, which occur through alterations in presynaptic release or in the trafficking of postsynaptic receptor proteins, underpin the formation and stabilisation of neural circuits during brain development, and encode, process and store information essential for learning, memory and cognition. In recent years, it has emerged that the ubiquitin-like posttranslational modification SUMOylation is an important mediator of several aspects of neuronal and synaptic function. Through orchestrating synapse formation, presynaptic release and the trafficking of postsynaptic receptor proteins during forms of synaptic plasticity such as long-term potentiation, long-term depression and homeostatic scaling, SUMOylation is being increasingly appreciated to play a central role in neurotransmission. In this review, we outline key discoveries in this relatively new field, provide an update on recent progress regarding the targets and consequences of protein SUMOylation in synaptic function and plasticity, and highlight key outstanding questions regarding the roles of protein SUMOylation in the brain.
Collapse
Affiliation(s)
- Jia Luo
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Dysfunction of the ubiquitin proteasome and ubiquitin-like systems in schizophrenia. Neuropsychopharmacology 2013; 38:1910-20. [PMID: 23571678 PMCID: PMC3746696 DOI: 10.1038/npp.2013.84] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 02/06/2023]
Abstract
Protein expression abnormalities have been implicated in the pathophysiology of schizophrenia, but the underlying cause of these changes is not known. We sought to investigate ubiquitin and ubiquitin-like (UBL) systems (SUMOylation, NEDD8ylation, and Ufmylation) as putative mechanisms underlying protein expression abnormalities seen in schizophrenia. For this, we performed western blot analysis of total ubiquitination, free ubiquitin, K48- and K63-linked ubiquitination, and E1 activases, E2 conjugases, and E3 ligases involved in ubiquitination and UBL post-translational modifications in postmortem brain tissue samples from persons with schizophrenia (n=13) and comparison subjects (n=13). We studied the superior temporal gyrus (STG) of subjects from the Mount Sinai Medical Center brain collection that were matched for age, tissue pH, and sex. We found an overall reduction of protein ubiquitination, free ubiquitin, K48-linked ubiquitination, and increased K63 polyubiquitination in schizophrenia. Ubiquitin E1 activase UBA (ubiquitin activating enzyme)-6 and E3 ligase Nedd (neural precursor cell-expressed developmentally downregulated)-4 were decreased in this illness, as were E3 ligases involved in Ufmylation (UFL1) and SUMOylation (protein inhibitor of activated STAT 3, PIAS3). NEDD8ylation was also dysregulated in schizophrenia, with decreased levels of the E1 activase UBA3 and the E3 ligase Rnf7. This study of ubiquitin and UBL systems in schizophrenia found abnormalities of ubiquitination, Ufmylation, SUMOylation, and NEDD8ylation in the STG in this disorder. These results suggest a novel approach to the understanding of schizophrenia pathophysiology, where a disruption in homeostatic adaptation of the cell underlies discreet changes seen at the protein level in this illness.
Collapse
|
55
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and is the most common cause of dementia in the elderly. Histopathologically, AD features insoluble aggregates of two proteins in the brain, amyloid-β (Aβ) and the microtubule-associated protein tau, both of which have been linked to the small ubiquitin-like modifier (SUMO). A large body of research has elucidated many of the molecular and cellular pathways that underlie AD, including those involving the abnormal Aβ and tau aggregates. However, a full understanding of the etiology and pathogenesis of the disease has remained elusive. Consequently, there are currently no effective therapeutic options that can modify the disease progression and slow or stop the decline of cognitive functioning. As part of the effort to address this lacking, there needs a better understanding of the signaling pathways that become impaired under AD pathology, including the regulatory mechanisms that normally control those networks. One such mechanism involves SUMOylation, which is a post-translational modification (PTM) that is involved in regulating many aspects of cell biology and has also been found to have several critical neuron-specific roles. Early studies have indicated that the SUMO system is likely altered with AD-type pathology, which may impact Aβ levels and tau aggregation. Although still a relatively unexplored topic, SUMOylation will likely emerge as a significant factor in AD pathogenesis in ways which may be somewhat analogous to other regulatory PTMs such as phosphorylation. Thus, in addition to the upstream effects on tau and Aβ processing, there may also be downstream effects mediated by Aβ aggregates or other AD-related factors on SUMO-regulated signaling pathways. Multiple proteins that have functions relevant to AD pathology have been identified as SUMO substrates, including those involved in synaptic physiology, mitochondrial dynamics, and inflammatory signaling. Ongoing studies will determine how these SUMO-regulated functions in neurons and glial cells may be impacted by Aβ and AD pathology. Here, we present a review of the current literature on the involvement of SUMO in AD, as well as an overview of the SUMOylated proteins and pathways that are potentially dysregulated with AD pathogenesis.
Collapse
|
56
|
Abstract
Parkinson's disease (PD) is one of the most common degenerative disorders of the central nervous system that produces motor and non-motor symptoms. The majority of cases are idiopathic and characterized by the presence of Lewy bodies containing fibrillar α-synuclein. Small ubiquitin-related modifier (SUMO) immunoreactivity was observed among others in cases with PD. Key disease-associated proteins are SUMO-modified, linking this posttranslational modification to neurodegeneration. SUMOylation and SUMO-mediated mechanisms have been intensively studied in recent years, revealing nuclear and extranuclear functions for SUMO in a variety of cellular processes, including the regulation of transcriptional activity, modulation of signal transduction pathways, and response to cellular stress. This points to a role for SUMO more than just an antagonist to ubiquitin and proteasomal degradation. The identification of risk and age-at-onset gene loci was a breakthrough in PD and promoted the understanding of molecular mechanisms in the pathology. PD has been increasingly linked with mitochondrial dysfunction and impaired mitochondrial quality control. Interestingly, SUMO is involved in many of these processes and up-regulated in response to cellular stress, further emphasizing the importance of SUMOylation in physiology and disease.
Collapse
Affiliation(s)
- Katrin Eckermann
- Department of Neurology, University Medical Center Goettingen, Waldweg 33, 37073, Goettingen, Germany,
| |
Collapse
|
57
|
Gwizdek C, Cassé F, Martin S. Protein sumoylation in brain development, neuronal morphology and spinogenesis. Neuromolecular Med 2013; 15:677-91. [PMID: 23907729 DOI: 10.1007/s12017-013-8252-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/22/2013] [Indexed: 01/11/2023]
Abstract
Small ubiquitin-like modifiers (SUMOs) are polypeptides resembling ubiquitin that are covalently attached to specific lysine residue of target proteins through a specific enzymatic pathway. Sumoylation is now seen as a key posttranslational modification involved in many biological processes, but little is known about how this highly dynamic protein modification is regulated in the brain. Disruption of the sumoylation enzymatic pathway during the embryonic development leads to lethality revealing a pivotal role for this protein modification during development. The main aim of this review is to briefly describe the SUMO pathway and give an overview of the sumoylation regulations occurring in brain development, neuronal morphology and synapse formation.
Collapse
Affiliation(s)
- Carole Gwizdek
- Institut de Pharmacologie Moléculaire et Cellulaire, Laboratory of Excellence 'Network for Innovation on Signal Transduction Pathways in Life Sciences', UMR7275, Centre National de la Recherche Scientifique, University of Nice-Sophia-Antipolis, 660 route des lucioles, 06560, Valbonne, France
| | | | | |
Collapse
|
58
|
Gnanasekaran A, Sundukova M, Hullugundi S, Birsa N, Bianchini G, Hsueh YP, Nistri A, Fabbretti E. Calcium/calmodulin-dependent serine protein kinase (CASK) is a new intracellular modulator of P2X3 receptors. J Neurochem 2013; 126:102-12. [PMID: 23600800 DOI: 10.1111/jnc.12272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/20/2022]
Abstract
ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of painful stimuli and are modulated by extracellular algogenic substances, via changes in the receptor phosphorylation state. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in interacting and controlling P2X3 receptor expression and function in mouse trigeminal ganglia. Most ganglion neurons in situ or in culture co-expressed P2X3 and CASK. CASK was immunoprecipitated with P2X3 receptors from trigeminal ganglia and from P2X3/CASK-cotransfected human embryonic kidney (HEK) cells. Recombinant P2X3/CASK expression in HEK cells increased serine phosphorylation of P2X3 receptors, typically associated with receptor upregulation. CASK deletion mutants also enhanced P2X3 subunit expression. After silencing CASK, cell surface P2X3 receptor expression was decreased, which is consistent with depressed P2X3 currents. The reduction in P2X3 expression levels was reversed by the proteasomal inhibitor MG-132. Moreover, neuronal CASK/P2X3 interaction was up-regulated by nerve growth factor (NGF) signaling and down-regulated by P2X3 agonist-induced desensitization. These data suggest a novel interaction between CASK and P2X3 receptors with positive outcome for receptor stability and function. As CASK-mediated control of P2X3 receptors was dependent on the receptor activation state, CASK represents an intracellular gateway to regulate purinergic nociceptive signaling.
Collapse
Affiliation(s)
- Aswini Gnanasekaran
- Neuroscience Department, International School for Advanced Studies-SISSA, Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Watkins RJ, Patil R, Goult BT, Thomas MG, Gottlob I, Shackleton S. A novel interaction between FRMD7 and CASK: evidence for a causal role in idiopathic infantile nystagmus. Hum Mol Genet 2013; 22:2105-18. [PMID: 23406872 PMCID: PMC3633374 DOI: 10.1093/hmg/ddt060] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Idiopathic infantile nystagmus (IIN) is a genetically heterogeneous disorder of eye movement that can be caused by mutations in the FRMD7 gene that encodes a FERM domain protein. FRMD7 is expressed in the brain and knock-down studies suggest it plays a role in neurite extension through modulation of the actin cytoskeleton, yet little is known about its precise molecular function and the effects of IIN mutations. Here, we studied four IIN-associated missense mutants and found them to have diverse effects on FRMD7 expression and cytoplasmic localization. The C271Y mutant accumulates in the nucleus, possibly due to disruption of a nuclear export sequence located downstream of the FERM-adjacent domain. While overexpression of wild-type FRMD7 promotes neurite outgrowth, mutants reduce this effect to differing degrees and the nuclear localizing C271Y mutant acts in a dominant-negative manner to inhibit neurite formation. To gain insight into FRMD7 molecular function, we used an IP-MS approach and identified the multi-domain plasma membrane scaffolding protein, CASK, as a FRMD7 interactor. Importantly, CASK promotes FRMD7 co-localization at the plasma membrane, where it enhances CASK-induced neurite length, whereas IIN-associated FRMD7 mutations impair all of these features. Mutations in CASK cause X-linked mental retardation. Patients with C-terminal CASK mutations also present with nystagmus and, strikingly, we show that these mutations specifically disrupt interaction with FRMD7. Together, our data strongly support a model whereby CASK recruits FRMD7 to the plasma membrane to promote neurite outgrowth during development of the oculomotor neural network and that defects in this interaction result in nystagmus.
Collapse
Affiliation(s)
- Rachel J Watkins
- Department of Biochemistry, University of Leicester, Leicester, UK
| | | | | | | | | | | |
Collapse
|
60
|
Loriol C, Khayachi A, Poupon G, Gwizdek C, Martin S. Activity-dependent regulation of the sumoylation machinery in rat hippocampal neurons. Biol Cell 2012; 105:30-45. [PMID: 23066795 DOI: 10.1111/boc.201200016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 10/09/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND INFORMATION Sumoylation is a key post-translational modification by which the Small Ubiquitin-like MOdifier (SUMO) polypeptide is covalently attached to specific lysine residues of substrate proteins through a specific enzymatic pathway. Although sumoylation participates in the regulation of nuclear homeostasis, the sumoylation machinery is also expressed outside of the nucleus where little is still known regarding its non-nuclear functions, particularly in the Central Nervous System (CNS). We recently reported that the sumoylation process is developmentally regulated in the rat CNS. RESULTS Here, we demonstrate that there is an activity-dependent redistribution of endogenous sumoylation enzymes in hippocampal neurons. By performing biochemical and immunocytochemical experiments on primary cultures of rat hippocampal neurons, we show that sumoylation and desumoylation enzymes are differentially redistributed in and out of synapses upon neuronal stimulation. This enzymatic redistribution in response to a neuronal depolarisation results in the transient decrease of sumoylated protein substrates at synapses. CONCLUSIONS Taken together, our data identify an activity-dependent regulation of the sumoylation machinery in neurons that directly impacts on synaptic sumoylation levels. This process may provide a mechanism for neurons to adapt their physiological responses to changes occurring during neuronal activation.
Collapse
Affiliation(s)
- Céline Loriol
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR-7275, University of Nice Sophia-Antipolis, Valbonne 06560, France
| | | | | | | | | |
Collapse
|
61
|
Weigand JE, Boeckel JN, Gellert P, Dimmeler S. Hypoxia-induced alternative splicing in endothelial cells. PLoS One 2012; 7:e42697. [PMID: 22876330 PMCID: PMC3411717 DOI: 10.1371/journal.pone.0042697] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/11/2012] [Indexed: 01/12/2023] Open
Abstract
Background Adaptation to low oxygen by changing gene expression is vitally important for cell survival and tissue development. The sprouting of new blood vessels, initiated from endothelial cells, restores the oxygen supply of ischemic tissues. In contrast to the transcriptional response induced by hypoxia, which is mainly mediated by members of the HIF family, there are only few studies investigating alternative splicing events. Therefore, we performed an exon array for the genome-wide analysis of hypoxia-related changes of alternative splicing in endothelial cells. Methodology/Principal findings Human umbilical vein endothelial cells (HUVECs) were incubated under hypoxic conditions (1% O2) for 48 h. Genome-wide transcript and exon expression levels were assessed using the Affymetrix GeneChip Human Exon 1.0 ST Array. We found altered expression of 294 genes after hypoxia treatment. Upregulated genes are highly enriched in glucose metabolism and angiogenesis related processes, whereas downregulated genes are mainly connected to cell cycle and DNA repair. Thus, gene expression patterns recapitulate known adaptations to low oxygen supply. Alternative splicing events, until now not related to hypoxia, are shown for nine genes: six which are implicated in angiogenesis-mediated cytoskeleton remodeling (cask, itsn1, larp6, sptan1, tpm1 and robo1); one, which is involved in the synthesis of membrane-anchors (pign) and two universal regulators of gene expression (cugbp1 and max). Conclusions/Significance For the first time, this study investigates changes in splicing in the physiological response to hypoxia on a genome-wide scale. Nine alternative splicing events, until now not related to hypoxia, are reported, considerably expanding the information on splicing changes due to low oxygen supply. Therefore, this study provides further knowledge on hypoxia induced gene expression changes and presents new starting points to study the hypoxia adaptation of endothelial cells.
Collapse
Affiliation(s)
- Julia E Weigand
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Johann Wolfgang Goethe University Frankfurt, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
62
|
Craig TJ, Henley JM. Protein SUMOylation in spine structure and function. Curr Opin Neurobiol 2012; 22:480-7. [PMID: 22054923 PMCID: PMC3379963 DOI: 10.1016/j.conb.2011.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 11/18/2022]
Abstract
The active regulation of spine structure and function is of fundamental importance for information storage in the brain. Many proteins involved in spine development and activity-dependent remodelling are potential or validated substrates for modification by the Small Ubiquitin-like Modifier (SUMO). The functional consequences of neuronal protein SUMOylation appear diverse and, in many cases, have not yet been determined. However, for several proteins SUMOylation has been shown to be a key regulator, which has a profound impact on spine dynamics and protein trafficking and function. Here we provide an overview of neuronal SUMOylation and discuss how greater understanding of this relatively recently discovered posttranslational modification will provide insight into the complexity of protein interactions that control synaptic activity and dysfunction.
Collapse
Affiliation(s)
- Tim J Craig
- MRC Centre for Synaptic Plasticity, School of Biochemistry Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | |
Collapse
|
63
|
Craig TJ, Jaafari N, Petrovic MM, Jacobs SC, Rubin PP, Mellor JR, Henley JM. Homeostatic synaptic scaling is regulated by protein SUMOylation. J Biol Chem 2012; 287:22781-8. [PMID: 22582390 PMCID: PMC3391081 DOI: 10.1074/jbc.m112.356337] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homeostatic scaling allows neurons to alter synaptic transmission to compensate for changes in network activity. Here, we show that suppression of network activity with tetrodotoxin, which increases surface expression of AMPA receptors (AMPARs), dramatically reduces levels of the deSUMOylating (where SUMO is small ubiquitin-like modifier) enzyme SENP1, leading to a consequent increase in protein SUMOylation. Overexpression of the catalytic domain of SENP1 prevents this scaling effect, and we identify Arc as a SUMO substrate involved in the tetrodotoxin-induced increase in AMPAR surface expression. Thus, protein SUMOylation plays an important and previously unsuspected role in synaptic trafficking of AMPARs that underlies homeostatic scaling.
Collapse
Affiliation(s)
- Tim J Craig
- Medical Research Council Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
64
|
Loriol C, Parisot J, Poupon G, Gwizdek C, Martin S. Developmental regulation and spatiotemporal redistribution of the sumoylation machinery in the rat central nervous system. PLoS One 2012; 7:e33757. [PMID: 22438991 PMCID: PMC3306303 DOI: 10.1371/journal.pone.0033757] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/21/2012] [Indexed: 01/14/2023] Open
Abstract
Background Small Ubiquitin-like MOdifier protein (SUMO) is a key regulator of nuclear functions but little is known regarding the role of the post-translational modification sumoylation outside of the nucleus, particularly in the Central Nervous System (CNS). Methodology/Principal Findings Here, we report that the expression levels of SUMO-modified substrates as well as the components of the sumoylation machinery are temporally and spatially regulated in the developing rat brain. Interestingly, while the overall sumoylation is decreasing during brain development, there are progressively more SUMO substrates localized at synapses. This increase is correlated with a differential redistribution of the sumoylation machinery into dendritic spines during neuronal maturation. Conclusions/Significance Overall, our data clearly demonstrate that the sumoylation process is developmentally regulated in the brain with high levels of nuclear sumoylation early in the development suggesting a role for this post-translational modification during the synaptogenesis period and a redistribution of the SUMO system towards dendritic spines at a later developmental stage to modulate synaptic protein function.
Collapse
Affiliation(s)
- Céline Loriol
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice - Sophia-Antipolis, Nice, France
| | | | - Gwénola Poupon
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice - Sophia-Antipolis, Nice, France
| | - Carole Gwizdek
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice - Sophia-Antipolis, Nice, France
| | - Stéphane Martin
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice - Sophia-Antipolis, Nice, France
- * E-mail:
| |
Collapse
|
65
|
Cortactin-binding protein 2 modulates the mobility of cortactin and regulates dendritic spine formation and maintenance. J Neurosci 2012; 32:1043-55. [PMID: 22262902 DOI: 10.1523/jneurosci.4405-11.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines, the actin-rich protrusions emerging from dendrites, are the locations of excitatory synapses in mammalian brains. Many molecules that regulate actin dynamics also influence the morphology and/or density of dendritic spines. Since dendritic spines are neuron-specific subcellular structures, neuron-specific proteins or signals are expected to control spinogenesis. In this report, we characterize the distribution and function of neuron-predominant cortactin-binding protein 2 (CTTNBP2) in rodents. An analysis of an Expressed Sequence Tag database revealed three splice variants of mouse CTTNBP2: short, long, and intron. Immunoblotting indicated that the short form is the dominant CTTNBP2 variant in the brain. CTTNBP2 proteins were highly concentrated at dendritic spines in cultured rat hippocampal neurons as well as in the mouse brain. Knockdown of CTTNBP2 in neurons reduced the density and size of dendritic spines. Consistent with these morphological changes, the frequencies of miniature EPSCs in CTTNBP2 knockdown neurons were lower than those in control neurons. Cortactin acts downstream of CTTNBP2 in spinogenesis, as the defects caused by CTTNBP2 knockdown were rescued by overexpression of cortactin but not expression of a CTTNBP2 mutant protein lacking the cortactin interaction. Finally, immunofluorescence staining demonstrated that, unlike cortactin, CTTNBP2 stably resided at dendritic spines even after glutamate stimulation. Fluorescence recovery after photobleaching further suggested that CTTNBP2 modulates the mobility of cortactin in neurons. CTTNBP2 may thus help to immobilize cortactin in dendritic spines and control the density of dendritic spines.
Collapse
|
66
|
Wang HF, Shih YT, Chen CY, Chao HW, Lee MJ, Hsueh YP. Valosin-containing protein and neurofibromin interact to regulate dendritic spine density. J Clin Invest 2011; 121:4820-37. [PMID: 22105171 DOI: 10.1172/jci45677] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 09/21/2011] [Indexed: 01/11/2023] Open
Abstract
Inclusion body myopathy with Paget disease of bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disorder characterized by progressive myopathy that is often accompanied by bone weakening and/or frontotemporal dementia. Although it is known to be caused by mutations in the gene encoding valosin-containing protein (VCP), the underlying disease mechanism remains elusive. Like IBMPFD, neurofibromatosis type 1 (NF1) is an autosomal dominant disorder. Neurofibromin, the protein encoded by the NF1 gene, has been shown to regulate synaptogenesis. Here, we show that neurofibromin and VCP interact and work together to control the density of dendritic spines. Certain mutations identified in IBMPFD and NF1 patients reduced the interaction between VCP and neurofibromin and impaired spinogenesis. The functions of neurofibromin and VCP in spinogenesis were shown to correlate with the learning disability and dementia phenotypes seen in patients with IBMPFD. Consistent with the previous finding that treatment with a statin rescues behavioral defects in Nf1(+/-) mice and providing further support for our hypothesis that there is crosstalk between neurofibromin and VCP, statin exposure neutralized the effect of VCP knockdown on spinogenesis in cultured hippocampal neurons. The data presented here demonstrate that there is a link between IBMPFD and NF1 and indicate a role for VCP in synapse formation.
Collapse
Affiliation(s)
- Hsiao-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
67
|
|
68
|
Pre and postsynaptic roles for Drosophila CASK. Mol Cell Neurosci 2011; 48:171-82. [PMID: 21820054 DOI: 10.1016/j.mcn.2011.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 12/24/2022] Open
Abstract
CASK ('calcium/calmodulin-dependent serine protein kinase'), also known in Drosophila as 'Caki' or 'Camguk/CMG', and in C. elegans as 'Lin-2', is thought to play an important role in cell-cell junction formation and at synapses in particular. To understand the role of CASK in synapse formation and function, we functionally and morphologically analyzed Drosophila embryonic and larval glutamatergic neuromuscular junctions (NMJs) after pan-cellular and tissue-specific manipulation of CASK expression. Our results show that Drosophila CASK is associated with both pre and postsynaptic membranes. Loss of presynaptic CASK led to less evoked synaptic transmission, fewer spontaneous synaptic events, and reduced synaptic vesicle cycling. These changes were accompanied by a reduction in the number of synapses but no change in overall NMJ size. Loss of postsynaptic CASK, on the other hand, caused reduced spontaneous synaptic current amplitudes and smaller glutamate-gated currents. These changes were accompanied by loss of postsynaptic glutamate receptors, but the receptor loss was subtype-specific: Only receptors containing GluRIIA subunits were lost in CASK mutants. Receptors containing GluRIIB were unaffected.
Collapse
|
69
|
Stafford RL, Ear J, Knight MJ, Bowie JU. The molecular basis of the Caskin1 and Mint1 interaction with CASK. J Mol Biol 2011; 412:3-13. [PMID: 21763699 DOI: 10.1016/j.jmb.2011.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 07/05/2011] [Accepted: 07/05/2011] [Indexed: 12/21/2022]
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) is a conserved multi-domain scaffolding protein involved in brain development, synapse formation, and establishment of cell polarity. To accomplish these diverse functions, CASK participates in numerous protein-protein interactions. In particular, CASK forms competing CASK/Mint1/Velis and CASK/Caskin1/Velis tripartite complexes that physically associate with the cytoplasmic tail of neurexin, a transmembrane protein enriched at presynaptic sites. This study shows that a short linear EEIWVLRK peptide motif from Caskin1 is necessary and sufficient for binding CASK. We also identified the conserved binding site for the peptide on the CASK calmodulin kinase domain. A related EPIWVMRQ peptide from Mint1 was also discovered to be sufficient for binding. Searching all human proteins for the Mint1/Caskin1 consensus peptide ExIWVxR revealed that T-cell lymphoma invasion and metastasis 1 (TIAM1) contains a conserved EEVIWVRRE peptide that was also found to be sufficient for CASK binding in vitro. TIAM1 is well known for its role in tumor metastasis, but it also possesses overlapping cellular and neurological functions with CASK, suggesting a previously unknown cooperation between the two proteins. This new peptide interaction motif also explains how Caskin1 and Mint1 form competing complexes and suggests a new role for the cellular hub protein CASK.
Collapse
Affiliation(s)
- Ryan L Stafford
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | | | | | | |
Collapse
|
70
|
Novel intragenic duplications and mutations of CASK in patients with mental retardation and microcephaly with pontine and cerebellar hypoplasia (MICPCH). Hum Genet 2011; 131:99-110. [DOI: 10.1007/s00439-011-1047-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 06/15/2011] [Indexed: 01/15/2023]
|
71
|
Chen CY, Lin CW, Chang CY, Jiang ST, Hsueh YP. Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. ACTA ACUST UNITED AC 2011; 193:769-84. [PMID: 21555464 PMCID: PMC3166868 DOI: 10.1083/jcb.201008050] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendritic arborization is a critical neuronal differentiation process. Here, we demonstrate that syndecan-2 (Sdc2), a synaptic heparan sulfate proteoglycan that triggers dendritic filopodia and spine formation, regulates dendritic arborization in cultured hippocampal neurons. This process is controlled by sterile α and TIR motif-containing 1 protein (Sarm1), a negative regulator of Toll-like receptor 3 (TLR3) in innate immunity signaling. We show that Sarm1 interacts with and receives signal from Sdc2 and controls dendritic arborization through the MKK4-JNK pathway. In Sarm1 knockdown mice, dendritic arbors of neurons were less complex than those of wild-type littermates. In addition to acting downstream of Sdc2, Sarm1 is expressed earlier than Sdc2, which suggests that it has multiple roles in neuronal morphogenesis. Specifically, it is required for proper initiation and elongation of dendrites, axonal outgrowth, and neuronal polarization. These functions likely involve Sarm1-mediated regulation of microtubule stability, as Sarm1 influenced tubulin acetylation. This study thus reveals the molecular mechanism underlying the action of Sarm1 in neuronal morphogenesis.
Collapse
Affiliation(s)
- Chiung-Ya Chen
- Institute of Molecular Biology and 2 Molecular and Cell Biology Program, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
72
|
Nakamura Y, Wood CL, Patton AP, Jaafari N, Henley JM, Mellor JR, Hanley JG. PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic plasticity. EMBO J 2011; 30:719-30. [PMID: 21252856 PMCID: PMC3041953 DOI: 10.1038/emboj.2010.357] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 12/20/2010] [Indexed: 12/19/2022] Open
Abstract
Activity-dependent remodelling of dendritic spines is essential for neural circuit development and synaptic plasticity, but the precise molecular mechanisms that regulate this process are unclear. Activators of Arp2/3-mediated actin polymerisation are required for spine enlargement; however, during long-term depression (LTD), spines shrink via actin depolymerisation and Arp2/3 inhibitors in this process have not yet been identified. Here, we show that PICK1 regulates spine size in hippocampal neurons via inhibition of the Arp2/3 complex. PICK1 knockdown increases spine size, whereas PICK1 overexpression reduces spine size. NMDA receptor activation results in spine shrinkage, which is blocked by PICK1 knockdown or overexpression of a PICK1 mutant that cannot bind Arp2/3. Furthermore, we show that PICK1-Arp2/3 interactions are required for functional hippocampal LTD. This work demonstrates that PICK1 is a novel regulator of spine dynamics. Via Arp2/3 inhibition, PICK1 has complementary yet distinct roles during LTD to regulate AMPA receptor trafficking and spine size, and therefore functions as a crucial factor in both structural and functional plasticity.
Collapse
Affiliation(s)
- Yasuko Nakamura
- MRC Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
73
|
Wilkinson KA, Nakamura Y, Henley JM. Targets and consequences of protein SUMOylation in neurons. BRAIN RESEARCH REVIEWS 2010; 64:195-212. [PMID: 20382182 PMCID: PMC3310160 DOI: 10.1016/j.brainresrev.2010.04.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/24/2010] [Accepted: 04/01/2010] [Indexed: 11/26/2022]
Abstract
The post-translational modification of proteins is critical for the spatial and temporal regulation of signalling cascades. This is especially important in the CNS where the processes affecting differentiation, growth, targeting and communication between neurones are highly complex and very tightly regulated. In recent years it has emerged that modification of proteins by members of the SUMO (small ubiquitin-related modifier) family of proteins play key roles in neuronal function. SUMOylation involves the covalent conjugation of a member of the SUMO family to lysine residues in target proteins. Multiple nuclear and perinuclear SUMOylation targets have been reported to be involved in nuclear organisation and transcriptional regulation. In addition, a growing number of extranuclear SUMO substrates have been identified that can have important acute effects on neuronal function. The SUMOylation of both intra- and extranuclear proteins have been implicated in a diverse array of processes that have far-reaching implications for neuronal function and pathophysiology. Here we review the current understanding of the targets and consequences of protein SUMOylation in the brain and examine its established and potential involvement in a wide range of neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kevin A. Wilkinson
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Yasuko Nakamura
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M. Henley
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
74
|
Boda B, Dubos A, Muller D. Signaling mechanisms regulating synapse formation and function in mental retardation. Curr Opin Neurobiol 2010; 20:519-27. [PMID: 20413294 DOI: 10.1016/j.conb.2010.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Major progress has been carried out in the last two decades in the identification of genetic alterations associated with mental retardation and autism spectrum disorders. In many instances these defects concern genes coding for synaptic proteins or proteins involved in regulation of synaptic properties. Analyses of the underlying mechanisms using gain and loss of function approaches have revealed alterations of spine morphology, density or plasticity, raising the possibility that these disorders result from synaptopathies. Also the multiplicity of genes and proteins involved points to the implication of specific signaling pathways among which small GTPases appear to play a central role. We review here this evidence and discuss the mechanisms through which they might lead to synaptic network dysfunction.
Collapse
Affiliation(s)
- Bernadett Boda
- Department of Basic Neuroscience, University of Geneva School of Medicine, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
75
|
Huang TN, Chang HP, Hsueh YP. CASK phosphorylation by PKA regulates the protein-protein interactions of CASK and expression of the NMDAR2b gene. J Neurochem 2010; 112:1562-73. [PMID: 20067577 DOI: 10.1111/j.1471-4159.2010.06569.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium/calmodulin-dependent serine kinase (CASK), a causative gene in X-linked mental retardation, acts as a multi-domain scaffold protein and interacts with more than 20 cellular proteins in different subcellular regions of neurons. It is of interest, therefore, to explore whether post-translational modification regulates CASK's protein-protein interactions. Here, we provide evidence that CASK is phosphorylated by protein kinase A (PKA), identifying residue S562 in the PSD-95-Dlg-ZO-1 domain and residue T724 in the guanylate kinase domain as PKA sites by an in vitro PKA kinase reaction and site-directed mutagenesis. Although the role of S562 phosphorylation is not clear, T724 phosphorylation up-regulates the interaction between CASK and T-box transcription factor T-brain-1 (Tbr-1). NMDAR2b, a downstream target of the CASK-Tbr-1 complex, was then used to explore the significance of CASK phosphorylation by PKA. In cultured cortical neurons, the PKA pathway stimulates both the protein expression and the promoter activity of NMDAR2b. Deletion of the Tbr-1-binding sites greatly reduces the 3'-5'-cyclic AMP responsiveness of the NMDAR2b promoter, and the CASK T724A mutation does not promote the 3'-5'-cyclic AMP responsiveness of NMDAR2b. In conclusion, our data provide evidence that PKA phosphorylates CASK, regulates the nuclear function of CASK, and consequently modulates NMDAR2b expression.
Collapse
Affiliation(s)
- Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
76
|
X-linked mental retardation gene CASK interacts with Bcl11A/CTIP1 and regulates axon branching and outgrowth. J Neurosci Res 2010; 88:2364-73. [DOI: 10.1002/jnr.22407] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
77
|
Hsueh YP. Calcium/calmodulin-dependent serine protein kinase and mental retardation. Ann Neurol 2009; 66:438-43. [PMID: 19847910 DOI: 10.1002/ana.21755] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) belongs to the membrane-associated guanylate kinase protein family. The members of this protein family function as multiple domain adaptor proteins originally identified at cell junctions and synapses. Insertional mutations or targeted disruption of the CASK gene in mice results in neonatal lethality, indicating an important role for CASK in development. Recently, several reports have also indicated that mutations in the human CASK gene result in X-linked malformations of the brain and mental retardation. At the molecular level, many studies indicate that CASK is critical for synapse formation at both presynaptic and postsynaptic junctions, and in the regulation of gene expression. The known molecular functions of CASK explain, at least partially, mental retardation and brain developmental defects in patients. In this review, recent findings about CASK are summarized and discussed.
Collapse
Affiliation(s)
- Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
78
|
Martin S. Nouvelles fonctions extranucléaires de la sumoylation des protéines dans le système nerveux central. Med Sci (Paris) 2009; 25:693-8. [DOI: 10.1051/medsci/2009258-9693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
79
|
Lee CD, Yan YP, Liang SM, Wang TF. Production of FMDV virus-like particles by a SUMO fusion protein approach in Escherichia coli. J Biomed Sci 2009; 16:69. [PMID: 19671144 PMCID: PMC2736159 DOI: 10.1186/1423-0127-16-69] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 08/11/2009] [Indexed: 11/24/2022] Open
Abstract
Virus-like particles (VLPs) are formed by the self-assembly of envelope and/or capsid proteins from many viruses. Some VLPs have been proven successful as vaccines, and others have recently found applications as carriers for foreign antigens or as scaffolds in nanoparticle biotechnology. However, production of VLP was usually impeded due to low water-solubility of recombinant virus capsid proteins. Previous studies revealed that virus capsid and envelope proteins were often posttranslationally modified by SUMO in vivo, leading into a hypothesis that SUMO modification might be a common mechanism for virus proteins to retain water-solubility or prevent improper self-aggregation before virus assembly. We then propose a simple approach to produce VLPs of viruses, e.g., foot-and-mouth disease virus (FMDV). An improved SUMO fusion protein system we developed recently was applied to the simultaneous expression of three capsid proteins of FMDV in E. coli. The three SUMO fusion proteins formed a stable heterotrimeric complex. Proteolytic removal of SUMO moieties from the ternary complexes resulted in VLPs with size and shape resembling the authentic FMDV. The method described here can also apply to produce capsid/envelope protein complexes or VLPs of other disease-causing viruses.
Collapse
Affiliation(s)
- Chien-Der Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
80
|
Yoshihara Y, De Roo M, Muller D. Dendritic spine formation and stabilization. Curr Opin Neurobiol 2009; 19:146-53. [PMID: 19523814 DOI: 10.1016/j.conb.2009.05.013] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 05/15/2009] [Accepted: 05/27/2009] [Indexed: 12/16/2022]
Abstract
Formation, elimination and remodeling of excitatory synapses on dendritic spines represent a continuous process that shapes the organization of synaptic networks during development. The molecular mechanisms controlling dendritic spine formation and stabilization therefore critically determine the rules of network selectivity. Recent studies have identified new molecules, such as Ephrins and Telencephalin that regulate filopodia motility and their transformation into dendritic spines. Trans-synaptic signaling involving nitric oxide, protease, adhesion molecules and Rho GTPases further controls contact formation or the structural remodeling of spines and their stability. Evidence also suggests that activity and induction of plasticity participate to the selection of persistent spines. Together these new data provide a better understanding of the mechanisms, speed and steps leading to the establishment of a stable excitatory synapse.
Collapse
Affiliation(s)
- Yoshihiro Yoshihara
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
81
|
Autometallographic enhancement of the Golgi-Cox staining enables high resolution visualization of dendrites and spines. Histochem Cell Biol 2009; 132:369-74. [DOI: 10.1007/s00418-009-0611-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2009] [Indexed: 10/20/2022]
|
82
|
Huang TN, Hsueh YP. CASK point mutation regulates protein–protein interactions and NR2b promoter activity. Biochem Biophys Res Commun 2009; 382:219-22. [DOI: 10.1016/j.bbrc.2009.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
|