51
|
Rogers RS, Nishimune H. The role of laminins in the organization and function of neuromuscular junctions. Matrix Biol 2016; 57-58:86-105. [PMID: 27614294 DOI: 10.1016/j.matbio.2016.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction (NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix molecules that are key members of the basal lamina. Laminin α4, α5, and β2 chains specifically localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and organization of synaptic vesicle release sites known as active zones. These individual laminin chains exert their role in organizing NMJs by binding to their receptors including integrins, dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins and their receptor interactions may be insightful in treating neuromuscular diseases and aging related degeneration of NMJs.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| |
Collapse
|
52
|
Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice. Sci Rep 2016; 6:27935. [PMID: 27321892 PMCID: PMC4913281 DOI: 10.1038/srep27935] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/16/2016] [Indexed: 11/08/2022] Open
Abstract
Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography.
Collapse
|
53
|
Moazedi-Fuerst FC, Gruber G, Stradner MH, Guidolin D, Jones JC, Bodo K, Wagner K, Peischler D, Krischan V, Weber J, Sadoghi P, Glehr M, Leithner A, Graninger WB. Effect of Laminin-A4 inhibition on cluster formation of human osteoarthritic chondrocytes. J Orthop Res 2016; 34:419-26. [PMID: 26295200 PMCID: PMC5727909 DOI: 10.1002/jor.23036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/14/2015] [Indexed: 02/04/2023]
Abstract
Formation of chondrocyte clusters is not only a morphological sign of osteoarthritis but it is also observed in cell culture. Active locomotion of chondrocytes is controlled by integrins in vitro. Integrins bind to Laminin-A4 (LAMA4), a protein that is highly expressed in vivo in clusters of hypertrophic chondrocytes. We tested if LAMA4 is relevant for cluster formation. Human chondrocytes were cultured in a 2D matrigel model and treated with different concentrations of a monoclonal inhibitory anti-LAMA4-antibody. Migration and cluster formation was analysed using live cell imaging technique. Full genome gene expression analysis was performed to assess the effect of LAMA4 inhibition. The data set were screened for genes relevant to cell motility. F-actin staining was performed to document cytoskeletal changes. Anti-LAMA4 treatment significantly reduced the rate of cluster formation in human chondrocytes. Cells changed their surface morphology and exhibited fewer protrusions. Expression of genes associated with cellular motility and migration was affected by anti-LAMA4 treatment. LAMA4-integrin signalling affects chondrocyte morphology and gene expression in vitro, thereby contributing to cluster formation in human osteoarthritic chondrocytes.
Collapse
Affiliation(s)
| | - Gerald Gruber
- Department of Orthopaedic Surgery, Medical University Graz
| | | | - Diego Guidolin
- Department of Molecular Medicine, Section of Anatomy, University of Padua
| | - Jonathan C. Jones
- Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago
| | - Koppany Bodo
- Department of Pathology, Medical University Graz
| | - Karin Wagner
- Center of Medical Research, Corefacility Molecular biology, Medical University Graz
| | | | - Verena Krischan
- Division of Rheumatology and Immunology, Medical University Graz
| | - Jennifer Weber
- Division of Rheumatology and Immunology, Medical University Graz
| | | | - Mathias Glehr
- Department of Orthopaedic Surgery, Medical University Graz
| | | | | |
Collapse
|
54
|
Deschenes MR, Kressin KA, Garratt RN, Leathrum CM, Shaffrey EC. Effects of exercise training on neuromuscular junction morphology and pre- to post-synaptic coupling in young and aged rats. Neuroscience 2016; 316:167-77. [PMID: 26711679 PMCID: PMC4724510 DOI: 10.1016/j.neuroscience.2015.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/13/2015] [Accepted: 12/02/2015] [Indexed: 11/17/2022]
Abstract
The objective of this study was to determine whether pre- to post-synaptic coupling of the neuromuscular junction (NMJ) could be maintained in the face of significant morphological remodeling brought about by exercise training, and whether aging altered this capacity. Eighteen young adult (8 mo) and eighteen aged (24 mo) Fischer 344 rats were randomly assigned to either endurance trained (treadmill running) or untrained control conditions resulting in four groups (N=9/group). After the 10-week intervention rats were euthanized and hindlimb muscles were surgically removed, quickly frozen at approximate resting length and stored at -85°C. The plantaris and EDL muscles were selected for study as they have different functions (ankle extensor and ankle flexor, respectively) but both are similarly and overwhelmingly comprised of fast-twitch myofibers. NMJs were stained with immunofluorescent procedures and images were collected with confocal microscopy. Each variable of interest was analyzed with a 2-way ANOVA with main effects of age and endurance training; in all cases significance was set at P⩽0.05. Results showed that no main effects of aging were detected in NMJs of either the plantaris or the EDL. Similarly, endurance training failed to alter any synaptic parameters of EDL muscles. The same exercise stimulus in the plantaris however, resulted in significant pre- and post-synaptic remodeling, but without altering pre- to post-synaptic coupling of the NMJs. Myofiber profiles of the same plantaris and EDL muscles were also analyzed. Unlike NMJs, myofibers displayed significant age-related atrophy in both the plantaris and EDL muscles. Overall, these results confirm that despite significant training-induced reconfiguration of NMJs, pre- to post-synaptic coupling remains intact underscoring the importance of maintaining proper apposition of neurotransmitter release and binding sites so that effective nerve to muscle communication is assured.
Collapse
Affiliation(s)
- M R Deschenes
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA 23187-8795, USA; Program in Neuroscience, College of William & Mary, Williamsburg, VA 23187-8795, USA.
| | - K A Kressin
- Program in Neuroscience, College of William & Mary, Williamsburg, VA 23187-8795, USA
| | - R N Garratt
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA 23187-8795, USA
| | - C M Leathrum
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA 23187-8795, USA
| | - E C Shaffrey
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA 23187-8795, USA
| |
Collapse
|
55
|
De Luca M, Chandler-Laney PC, Wiener H, Fernandez JR. Common variants in the LAMA5 gene associate with fasting plasma glucose and serum triglyceride levels in a cohort of pre-and early pubertal children. J Pediatr Genet 2015; 1. [PMID: 23264881 DOI: 10.3233/pge-12036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Laminins are large glycoproteins found in basement membranes where they play a vital role in tissue architecture and cell behavior. Previously, we reported the association of two LAMA5 polymorphisms (rs659822 and rs944895) with anthropometric traits, fasting lipid profile, and plasma glucose levels in pre-menopausal women and elderly subjects. Furthermore, earlier work in mice showed that Lama5 is involved in organogenesis and placental function during pregnancy. The objective of this study was to investigate whether LAMA5 rs659822 or rs944895 are associated with inter-individual variability in birth weight as well as anthropometric, fasting lipid profile, and fasting glucose levels in children. Two hundred and eighty nine healthy children aged 7-12 years of European, Hispanic, and African-American ancestry were studied. Co-dominant models adjusted for genetic admixture, age, gender, and stages of puberty were used to test for the association of the polymorphisms with each trait. Our analysis showed significant associations of rs659822 with fasting plasma glucose levels (p = 0.0004) and of rs944895 with fasting serum triglycerides (p = 0.004) after Bonferroni correction for multiple testing. Our results corroborate our previous findings that genetic variants in LAMA5 contribute to variation in metabolic phenotypes and provide evidence that this may occur early in life.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
56
|
Bloch-Gallego E. Mechanisms controlling neuromuscular junction stability. Cell Mol Life Sci 2015; 72:1029-43. [PMID: 25359233 PMCID: PMC11113273 DOI: 10.1007/s00018-014-1768-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/06/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
Abstract
The neuromuscular junction (NMJ) is the synaptic connection between motor neurons and muscle fibers. It is involved in crucial processes such as body movements and breathing. Its proper development requires the guidance of motor axons toward their specific targets, the development of multi-innervated myofibers, and a selective synapse stabilization. It first consists of the removal of excessive motor axons on myofibers, going from multi-innervation to a single innervation of each myofiber. Whereas guidance cues of motor axons toward their specific muscular targets are well characterized, only few molecular and cellular cues have been reported as clues for selecting and stabilizing specific neuromuscular junctions. We will first provide a brief summary on NMJ development. We will then review molecular cues that are involved in NMJ stabilization, in both pre- and post-synaptic compartments, considering motor neurons and Schwann cells on the one hand, and muscle on the other hand. We will provide links with pathologies and highlight advances that can be brought both by basic research on NMJ development and clinical data resulting from the analyses of neurodegeneration of synaptic connections to obtain a better understanding of this process. The goal of this review is to highlight the findings toward understanding the roles of poly- or single-innervations and the underlying mechanisms of NMJ stabilization.
Collapse
Affiliation(s)
- Evelyne Bloch-Gallego
- Institut Cochin, INSERM U. 1016, CNRS UMR 8104, University Paris Descartes 24, rue du Fbg St-Jacques, 75014, Paris, France,
| |
Collapse
|
57
|
Chand KK, Lee KM, Schenning MP, Lavidis NA, Noakes PG. Loss of β2-laminin alters calcium sensitivity and voltage-gated calcium channel maturation of neurotransmission at the neuromuscular junction. J Physiol 2014; 593:245-65. [PMID: 25556799 DOI: 10.1113/jphysiol.2014.284133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Neuromuscular junctions from β2-laminin-deficient mice exhibit lower levels of calcium sensitivity. Loss of β2-laminin leads to a failure in switching from N- to P/Q-type voltage-gated calcium channel (VGCC)-mediated transmitter release that normally occurs with neuromuscular junction maturation. The motor nerve terminals from β2-laminin-deficient mice fail to up-regulate the expression of P/Q-type VGCCs clusters and down-regulate N-type VGCCs clusters, as they mature. There is decreased co-localisation of presynaptic specialisations in β2-laminin-deficient neuromuscular junctions as a consequence of lesser P/Q-type VGCC expression. These findings support the idea that β2-laminin is critical in the organisation and maintenance of active zones at the neuromuscular junction via its interaction with P/Q-type VGCCs, which aid in stabilisation of the synapse. β2-laminin is a key mediator in the differentiation and formation of the skeletal neuromuscular junction. Loss of β2-laminin results in significant structural and functional aberrations such as decreased number of active zones and reduced spontaneous release of transmitter. In vitro β2-laminin has been shown to bind directly to the pore forming subunit of P/Q-type voltage-gated calcium channels (VGCCs). Neurotransmission is initially mediated by N-type VGCCs, but by postnatal day 18 switches to P/Q-type VGCC dominance. The present study investigated the changes in neurotransmission during the switch from N- to P/Q-type VGCC-mediated transmitter release at β2-laminin-deficient junctions. Analysis of the relationship between quantal content and extracellular calcium concentrations demonstrated a decrease in the calcium sensitivity, but no change in calcium dependence at β2-laminin-deficient junctions. Electrophysiological studies on VGCC sub-types involved in transmitter release indicate N-type VGCCs remain the primary mediator of transmitter release at matured β2-laminin-deficient junctions. Immunohistochemical analyses displayed irregularly shaped and immature β2-laminin-deficient neuromuscular junctions when compared to matured wild-type junctions. β2-laminin-deficient junctions also maintained the presence of N-type VGCC clustering within the presynaptic membrane, which supported the functional findings of the present study. We conclude that β2-laminin is a key regulator in development of the NMJ, with its loss resulting in reduced transmitter release due to decreased calcium sensitivity stemming from a failure to switch from N- to P/Q-type VGCC-mediated synaptic transmission.
Collapse
Affiliation(s)
- Kirat K Chand
- School of Biomedical Sciences, The University of Queensland, St Lucia, 4067, Australia
| | | | | | | | | |
Collapse
|
58
|
Levy AD, Omar MH, Koleske AJ. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood. Front Neuroanat 2014; 8:116. [PMID: 25368556 PMCID: PMC4202714 DOI: 10.3389/fnana.2014.00116] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022] Open
Abstract
Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer's disease. The extracellular matrix (ECM), composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults.
Collapse
Affiliation(s)
- Aaron D Levy
- Interdepartmental Neuroscience Program, Yale University New Haven, CT, USA ; Department of Molecular Biophysics and Biochemistry, Yale University New Haven, CT, USA
| | - Mitchell H Omar
- Interdepartmental Neuroscience Program, Yale University New Haven, CT, USA ; Department of Molecular Biophysics and Biochemistry, Yale University New Haven, CT, USA
| | - Anthony J Koleske
- Interdepartmental Neuroscience Program, Yale University New Haven, CT, USA ; Department of Molecular Biophysics and Biochemistry, Yale University New Haven, CT, USA ; Department of Neurobiology, Yale University New Haven, CT, USA
| |
Collapse
|
59
|
Darabid H, Perez-Gonzalez AP, Robitaille R. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat Rev Neurosci 2014; 15:630-1. [DOI: 10.1038/nrn3821] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
60
|
Bernadzki KM, Rojek KO, Prószyński TJ. Podosomes in muscle cells and their role in the remodeling of neuromuscular postsynaptic machinery. Eur J Cell Biol 2014; 93:478-85. [DOI: 10.1016/j.ejcb.2014.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/23/2014] [Accepted: 06/05/2014] [Indexed: 11/28/2022] Open
|
61
|
Kikkawa Y, Ogawa T, Sudo R, Yamada Y, Katagiri F, Hozumi K, Nomizu M, Miner JH. The lutheran/basal cell adhesion molecule promotes tumor cell migration by modulating integrin-mediated cell attachment to laminin-511 protein. J Biol Chem 2013; 288:30990-1001. [PMID: 24036115 DOI: 10.1074/jbc.m113.486456] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors.
Collapse
Affiliation(s)
- Yamato Kikkawa
- From the Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Robinson KG, Mendonca JL, Militar JL, Theroux MC, Dabney KW, Shah SA, Miller F, Akins RE. Disruption of basal lamina components in neuromotor synapses of children with spastic quadriplegic cerebral palsy. PLoS One 2013; 8:e70288. [PMID: 23976945 PMCID: PMC3745387 DOI: 10.1371/journal.pone.0070288] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/18/2013] [Indexed: 11/18/2022] Open
Abstract
Cerebral palsy (CP) is a static encephalopathy occurring when a lesion to the developing brain results in disordered movement and posture. Patients present with sometimes overlapping spastic, athetoid/dyskinetic, and ataxic symptoms. Spastic CP, which is characterized by stiff muscles, weakness, and poor motor control, accounts for ∼80% of cases. The detailed mechanisms leading to disordered movement in spastic CP are not completely understood, but clinical experience and recent studies suggest involvement of peripheral motor synapses. For example, it is recognized that CP patients have altered sensitivities to drugs that target neuromuscular junctions (NMJs), and protein localization studies suggest that NMJ microanatomy is disrupted in CP. Since CP originates during maturation, we hypothesized that NMJ disruption in spastic CP is associated with retention of an immature neuromotor phenotype later in life. Scoliosis patients with spastic CP or idiopathic disease were enrolled in a prospective, partially-blinded study to evaluate NMJ organization and neuromotor maturation. The localization of synaptic acetylcholine esterase (AChE) relative to postsynaptic acetylcholine receptor (AChR), synaptic laminin β2, and presynaptic vesicle protein 2 (SV2) appeared mismatched in the CP samples; whereas, no significant disruption was found between AChR and SV2. These data suggest that pre- and postsynaptic NMJ components in CP children were appropriately distributed even though AChE and laminin β2 within the synaptic basal lamina appeared disrupted. Follow up electron microscopy indicated that NMJs from CP patients appeared generally mature and similar to controls with some differences present, including deeper postsynaptic folds and reduced presynaptic mitochondria. Analysis of maturational markers, including myosin, syntrophin, myogenin, and AChR subunit expression, and telomere lengths, all indicated similar levels of motor maturation in the two groups. Thus, NMJ disruption in CP was found to principally involve components of the synaptic basal lamina and subtle ultra-structural modifications but appeared unrelated to neuromotor maturational status.
Collapse
Affiliation(s)
- Karyn G. Robinson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Janet L. Mendonca
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Jaimee L. Militar
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Mary C. Theroux
- Department of Anesthesiology and Critical Care, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Kirk W. Dabney
- Department of Orthopedic Surgery, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Suken A. Shah
- Department of Orthopedic Surgery, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Freeman Miller
- Department of Orthopedic Surgery, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Robert E. Akins
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- * E-mail:
| |
Collapse
|
63
|
Proszynski TJ, Sanes JR. Amotl2 interacts with LL5β, localizes to podosomes and regulates postsynaptic differentiation in muscle. J Cell Sci 2013; 126:2225-35. [PMID: 23525008 DOI: 10.1242/jcs.121327] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neuromuscular junctions (NMJs) in mammalian skeletal muscle undergo a postnatal topological transformation from a simple oval plaque to a complex branched structure. We previously showed that podosomes, actin-rich adhesive organelles, promote the remodeling process, and demonstrated a key role for one podosome component, LL5β. To further investigate molecular mechanisms of postsynaptic maturation, we purified LL5β-associated proteins from myotubes and showed that three regulators of the actin cytoskeleton--Amotl2, Asef2 and Flii--interact with LL5β. These and other LL5β-interacting proteins are associated with conventional podosomes in macrophages and podosome-like invadopodia in fibroblasts, strengthening the close relationship between synaptic and non-synaptic podosomes. We then focused on Amotl2, showing that it is associated with synaptic podosomes in cultured myotubes and with NMJs in vivo. Depletion of Amotl2 in myotubes leads to increased size of synaptic podosomes and corresponding alterations in postsynaptic topology. Depletion of Amotl2 from fibroblasts disrupts invadopodia in these cells. These results demonstrate a role for Amotl2 in synaptic maturation and support the involvement of podosomes in this process.
Collapse
Affiliation(s)
- Tomasz J Proszynski
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
64
|
Maselli RA, Arredondo J, Ferns MJ, Wollmann RL. Synaptic basal lamina-associated congenital myasthenic syndromes. Ann N Y Acad Sci 2013; 1275:36-48. [PMID: 23278576 DOI: 10.1111/j.1749-6632.2012.06807.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteins associated with the basal lamina (BL) participate in complex signal transduction processes that are essential for the development and maintenance of the neuromuscular junction (NMJ). Most important junctional BL proteins are collagens, such as collagen IV (α3-6), collagen XIII, and ColQ; laminins; nidogens; and heparan sulfate proteoglycans, such as perlecan and agrin. Mice lacking Colq (Colq(-/-)), laminin β2 (Lamb2(-/-)), or collagen XIII (Col13a1(-/-)) show immature nerve terminals enwrapped by Schwann cell projections that invaginate into the synaptic cleft and decrease contact surface for neurotransmission. Human mutations in COLQ, LAMB2, and AGRN cause congenital myasthenic syndromes (CMSs) owing to deficiency of ColQ, laminin-β2, and agrin, respectively. In these syndromes the NMJ ultrastructure shows striking resemblance to that of mice lacking the corresponding protein; furthermore, the extracellular localization of mutant proteins may provide favorable conditions for replacement strategies based on gene therapy and stem cells.
Collapse
Affiliation(s)
- Ricardo A Maselli
- Department of Neurology, University of California, Davis, California, USA.
| | | | | | | |
Collapse
|
65
|
Induced formation and maturation of acetylcholine receptor clusters in a defined 3D bio-artificial muscle. Mol Neurobiol 2013; 48:397-403. [PMID: 23371342 DOI: 10.1007/s12035-013-8412-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 12/28/2022]
Abstract
Dysfunction of the neuromuscular junction is involved in a wide range of muscular diseases. The development of neuromuscular junction through which skeletal muscle is innervated requires the functional modulation of acetylcholine receptor (AchR) clustering on myofibers. However, studies on AchR clustering in vitro are mostly done on monolayer muscle cell culture, which lacks a three-dimensional (3D) structure, a prominent limitation of the two-dimensional (2D) system. To enable a better understanding on the structure-function correlation underlying skeletal muscle innervation, a muscle system with a well-defined geometry mimicking the in vivo muscular setting is needed. Here, we report a 3D bio-artificial muscle (BAM) bioengineered from green fluorescent protein-transduced C3H murine myoblasts as a novel in vitro tissue-based model for muscle innervation studies. Our cell biological and molecular analysis showed that this BAM is structurally similar to in vivo muscle tissue and can reach the perinatal differentiation stage, higher than does 2D culture. Effective clustering and morphological maturation of AchRs on BAMs induced by agrin and laminin indicate the functional activity and plasticity of this BAM system toward innervation. Taken together, our results show that the BAM provides a favorable 3D environment that at least partially recapitulates real physiological skeletal muscle with regard to innervation. With a convenience of fabrication and manipulation, this 3D in vitro system offers a novel model for studying mechanisms underlying skeletal muscle innervation and testing therapeutic strategies for relevant nervous and muscular diseases.
Collapse
|
66
|
Affiliation(s)
- Anna Domogatskaya
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| | - Sergey Rodin
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| | - Karl Tryggvason
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| |
Collapse
|
67
|
Activity-dependent retrograde laminin A signaling regulates synapse growth at Drosophila neuromuscular junctions. Proc Natl Acad Sci U S A 2012; 109:17699-704. [PMID: 23054837 DOI: 10.1073/pnas.1206416109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retrograde signals induced by synaptic activities are derived from postsynaptic cells to potentiate presynaptic properties, such as cytoskeletal dynamics, gene expression, and synaptic growth. However, it is not known whether activity-dependent retrograde signals can also depotentiate synaptic properties. Here we report that laminin A (LanA) functions as a retrograde signal to suppress synapse growth at Drosophila neuromuscular junctions (NMJs). The presynaptic integrin pathway consists of the integrin subunit βν and focal adhesion kinase 56 (Fak56), both of which are required to suppress crawling activity-dependent NMJ growth. LanA protein is localized in the synaptic cleft and only muscle-derived LanA is functional in modulating NMJ growth. The LanA level at NMJs is inversely correlated with NMJ size and regulated by larval crawling activity, synapse excitability, postsynaptic response, and anterograde Wnt/Wingless signaling, all of which modulate NMJ growth through LanA and βν. Our data indicate that synaptic activities down-regulate levels of the retrograde signal LanA to promote NMJ growth.
Collapse
|
68
|
Agrin and synaptic laminin are required to maintain adult neuromuscular junctions. PLoS One 2012; 7:e46663. [PMID: 23056392 PMCID: PMC3463559 DOI: 10.1371/journal.pone.0046663] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/04/2012] [Indexed: 11/19/2022] Open
Abstract
As synapses form and mature the synaptic partners produce organizing molecules that regulate each other’s differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ), these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs.
Collapse
|
69
|
Singhal N, Xu R, Martin PT. Distinct contributions of Galgt1 and Galgt2 to carbohydrate expression and function at the mouse neuromuscular junction. Mol Cell Neurosci 2012; 51:112-26. [PMID: 22982027 DOI: 10.1016/j.mcn.2012.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 08/02/2012] [Accepted: 08/30/2012] [Indexed: 01/15/2023] Open
Abstract
At the mammalian neuromuscular junction (NMJ), the CT (cytotoxic T cell) carbohydrate antigen [GalNAcβ1,4[Neu5Ac/Gcα2,3]Galβ1,4GlcNAc-] is a unique synaptic cell surface carbohydrate present in both the presynaptic and postsynaptic membranes. Here we show that Galgt1, which synthesizes the β1,4GalNAc linkage of the CT carbohydrate on gangliosides, is required for presynaptic expression of the CT carbohydrate at the NMJ, while Galgt2, which can synthesize the β1,4GalNAc of the CT carbohydrate on glycoproteins, is required for postsynaptic expression. Proper postsynaptic localization of the CT carbohydrate also required muscle expression of dystroglycan, a known muscle substrate for Galgt2. Transgenic overexpression of Galgt2 in skeletal myofibers altered the expression of synaptic muscle proteins and altered neuromuscular topography, which was partially NCAM-dependent, while an increase in postsynaptic AChR-rich domains was observed in both neuron- and skeletal muscle-specific Galgt2 transgenic mice. By contrast, overexpression of Galgt1 in muscle did not allow for increased expression of CT carbohydrate on the sarcolemmal membrane and instead caused muscle pathology. Loss of Galgt2 increased intracellular accumulation of acetylcholine receptors and acetylcholinesterase within skeletal myofibers, suggesting an additional role for Galgt2 in neuromuscular stability. These experiments demonstrate that Galgt1 and Galgt2 contribute in distinct ways to the expression and function of synaptic βGalNAc-containing carbohydrates at the NMJ.
Collapse
Affiliation(s)
- Neha Singhal
- Integrated Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | | | | |
Collapse
|
70
|
Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 2012; 71:982-1005. [PMID: 21766463 DOI: 10.1002/dneu.20953] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate neuromuscular junction (NMJ) remains the best-studied model for understanding the mechanisms involved in synaptogenesis, due to its relatively large size, its simplicity of patterning, and its unparalleled experimental accessibility. During neuromuscular development, each skeletal myofiber secretes and deposits around its extracellular surface an assemblage of extracellular matrix (ECM) proteins that ultimately form a basal lamina. This is also the case at the NMJ, where the motor nerve contributes additional factors. Before most of the current molecular components were known, it was clear that the synaptic ECM of adult skeletal muscles was unique in composition and contained factors sufficient to induce the differentiation of both pre- and postsynaptic membranes. Biochemical, genetic, and microscopy studies have confirmed that agrin, laminin (221, 421, and 521), collagen IV (α3-α6), collagen XIII, perlecan, and the ColQ-bound form of acetylcholinesterase are all synaptic ECM proteins with important roles in neuromuscular development. The roles of their many potential receptors and/or binding proteins have been more difficult to assess at the genetic level due to the complexity of membrane interactions with these large proteins, but roles for MuSK-LRP4 in agrin signaling and for integrins, dystroglycan, and voltage-gated calcium channels in laminin-dependent phenotypes have been identified. Synaptic ECM proteins and their receptors are involved in almost all aspects of synaptic development, including synaptic initiation, topography, ultrastructure, maturation, stability, and transmission.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | |
Collapse
|
71
|
Katagiri F, Sudo M, Hamakubo T, Hozumi K, Nomizu M, Kikkawa Y. Identification of active sequences in the L4a domain of laminin α5 promoting neurite elongation. Biochemistry 2012; 51:4950-8. [PMID: 22621685 DOI: 10.1021/bi300214g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Laminin α5 is an extracellular matrix protein containing multiple domains implicated in various biological processes, such as embryogenesis and renal function. In this study, we used recombinant proteins and synthetic peptides to identify amino acid residues within the short arm region of α5 that were critical for neurite outgrowth activity. The short arm of α5 contains three globular domains (LN, L4a, and L4b) and three rodlike elements (LEa, LEb, and LEc). Recombinant proteins comprised of the α5 short arm fused with a Fc tag produced in 293 cells were assayed for PC12 (pheochromocytoma) cell adhesion and neurite outgrowth activities. Although it did not have cell attachment activity, neurite outgrowth was promoted by the recombinant protein. To narrow the region involved in neurite outgrowth activity, two truncated recombinant proteins were produced in 293 cells. A recombinant protein lacking L4a and LEb lost activity. Furthermore, we synthesized 78 partially overlapping peptides representing most of the amino acid sequences of L4a and LEb. Of the peptides, A5-76 [mouse laminin α5 928-939 (TSPDLFRLVFRY) in L4a] exhibited neurite outgrowth activity. Mutagenesis studies showed that Phe(933) and Arg(934) were involved in neurite outgrowth activity. Moreover, inhibition assays using anti-integrin monoclonal antibodies showed that neurite outgrowth on the α5 short arm was partially mediated by integrin α1β1. However, the antibodies to integrin α1 and β1 did not inhibit neurite elongation on the A5-76 peptide. These results suggest that in addition to cellular interactions with the active site in the L4a domain, the binding of integrin α1β1 seems to modulate neurite elongation on the short arm of α5.
Collapse
Affiliation(s)
- Fumihiko Katagiri
- Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | | | | | | | | | | |
Collapse
|
72
|
Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 2012; 35:441-53. [PMID: 22633140 DOI: 10.1016/j.tins.2012.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 01/22/2023]
Abstract
The vertebrate neuromuscular junction (NMJ), a peripheral synapse formed between motoneuron and skeletal muscle, is characterized by a protracted postnatal period of maturation and life-long maintenance. In neuromuscular disorders such as congenital myasthenic syndromes (CMSs), disruptions of NMJ maturation and/or maintenance are frequently observed. In particular, defective neuromuscular transmission associated with structural and molecular abnormalities at the pre- and postsynaptic membranes, as well as at the synaptic cleft, has been reported in these patients. Here, we review recent advances in the understanding of molecular and cellular events that mediate NMJ maturation and maintenance. The underlying regulatory mechanisms, including key molecular regulators at the presynaptic nerve terminal, synaptic cleft, and postsynaptic muscle membrane, are discussed.
Collapse
|
73
|
Wu H, Lu Y, Barik A, Joseph A, Taketo MM, Xiong WC, Mei L. β-Catenin gain of function in muscles impairs neuromuscular junction formation. Development 2012; 139:2392-404. [PMID: 22627288 DOI: 10.1242/dev.080705] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neuromuscular junction (NMJ) formation requires proper interaction between motoneurons and muscle cells. β-Catenin is required in muscle cells for NMJ formation. To understand underlying mechanisms, we investigated the effect of β-catenin gain of function (GOF) on NMJ development. In HSA-β-cat(flox(ex3)/+) mice, which express stable β-catenin specifically in muscles, motor nerve terminals became extensively defasciculated and arborized. Ectopic muscles were observed in the diaphragm and were innervated by ectopic phrenic nerve branches. Moreover, extensive outgrowth and branching of spinal axons were evident in the GOF mice. These results indicate that increased β-catenin in muscles alters presynaptic differentiation. Postsynaptically, AChR clusters in HSA-β-cat(flox(ex3)/+) diaphragms were distributed in a wider region, suggesting that muscle β-catenin GOF disrupted the signal that restricts AChR clustering to the middle region of muscle fibers. Expression of stable β-catenin in motoneurons, however, had no effect on NMJ formation. These observations provide additional genetic evidence that pre- and postsynaptic development of the NMJ requires an intricate balance of β-catenin activity in muscles.
Collapse
Affiliation(s)
- Haitao Wu
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Chen J, Mizushige T, Nishimune H. Active zone density is conserved during synaptic growth but impaired in aged mice. J Comp Neurol 2012; 520:434-52. [PMID: 21935939 DOI: 10.1002/cne.22764] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Presynaptic active zones are essential structures for synaptic vesicle release, but the developmental regulation of their number and maintenance during aging at mammalian neuromuscular junctions (NMJs) remains unknown. Here, we analyzed the distribution of active zones in developing, mature, and aged mouse NMJs by immunohistochemical detection of the active zone-specific protein Bassoon. Bassoon is a cytosolic scaffolding protein essential for the active zone assembly in ribbon synapses and some brain synapses. Bassoon staining showed a punctate pattern in nerve terminals and axons at the nascent NMJ on embryonic days 16.5-18.5. Three-dimensional reconstruction of NMJs revealed that the majority of Bassoon puncta within an NMJ were attached to the presynaptic membrane from postnatal day 0 to adulthood, and colocalized with another active zone protein, Piccolo. During postnatal development, the number of Bassoon puncta increased as the size of the synapses increased. Importantly, the density of Bassoon puncta remained relatively constant from postnatal day 0 to 54 at 2.3 puncta/μm(2) , while the synapse size increased 3.3-fold. However, Bassoon puncta density and signal intensity were significantly attenuated at the NMJs of 27-month-old aged mice. These results suggest that synapses maintain the density of synaptic vesicle release sites while the synapse size changes, but this density becomes impaired during aging.
Collapse
Affiliation(s)
- Jie Chen
- Department of Anatomy and Cell Biology and Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical School, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
75
|
Jensen LT, Møller TH, Larsen SA, Jakobsen H, Olsen A. A new role for laminins as modulators of protein toxicity in Caenorhabditis elegans. Aging Cell 2012; 11:82-92. [PMID: 22051349 DOI: 10.1111/j.1474-9726.2011.00767.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein misfolding is a common theme in aging and several age-related diseases such as Alzheimer's and Parkinson's disease. The processes involved in the development of these diseases are many and complex. Here, we show that components of the basement membrane (BM), particularly laminin, affect protein integrity of the muscle cells they support. We knocked down gene expression of epi-1, a laminin α-chain, and found that this resulted in increased proteotoxicity in different Caenorhabditis elegans transgenic models, expressing aggregating proteins in the body wall muscle. The effect could partially be rescued by decreased insulin-like signaling, known to slow the aging process and the onset of various age-related diseases. Our data points to an underlying molecular mechanism involving proteasomal degradation and HSP-16 chaperone activity. Furthermore, epi-1-depleted animals had altered synaptic function and displayed hypersensitivity to both levamisole and aldicarb, an acetylcholine receptor agonist and an acetylcholinesterase inhibitor, respectively. Our results implicate the BM as an extracellular modulator of protein homeostasis in the adjacent muscle cells. This is in agreement with previous research showing that imbalance in neuromuscular signaling disturbs protein homeostasis in the postsynaptic cell. In our study, proteotoxicity may indeed be mediated by the neuromuscular junction which is part of the BM, where laminins are present in high concentration, ensuring the proper microenvironment for neuromuscular signaling. Laminins are evolutionarily conserved, and thus the BM may play a much more causal role in protein misfolding diseases than currently recognized.
Collapse
Affiliation(s)
- Louise T Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
76
|
The formation of complex acetylcholine receptor clusters requires MuSK kinase activity and structural information from the MuSK extracellular domain. Mol Cell Neurosci 2011; 49:475-86. [PMID: 22210232 PMCID: PMC3359500 DOI: 10.1016/j.mcn.2011.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 01/05/2023] Open
Abstract
Efficient synaptic transmission at the neuromuscular junction (NMJ) requires the topological maturation of the postsynaptic apparatus from an oval acetylcholine receptor (AChR)-rich plaque into a complex pretzel-shaped array of branches. However, compared to NMJ formation very little is known about the mechanisms that regulate NMJ maturation. Recently the process of in vivo transformation from plaque into pretzel has been reproduced in vitro by culturing myotubes aneurally on laminin-coated substrate. It was proposed that the formation of complex AChR clusters is regulated by a MuSK-dependent muscle intrinsic program. To elucidate the structure–function role of MuSK in the aneural maturation of AChR pretzels, we used muscle cell lines expressing MuSK mutant and chimeric proteins. Here we report, that besides its role during agrin-induced AChR clustering, MuSK kinase activity is also necessary for substrate-dependent cluster formation. Constitutive-active MuSK induces larger AChR clusters, a faster cluster maturation on laminin and increases the anchorage of AChRs to the cytoskeleton compared to MuSK wild-type. In addition, we find that the juxtamembrane region of MuSK, which has previously been shown to regulate agrin-induced AChR clustering, is unable to induce complex AChR clusters on laminin substrate. Most interestingly, MuSK kinase activity is not sufficient for laminin-dependent AChR cluster formation since the MuSK ectodomain is also required suggesting a so far undiscovered instructive role for the extracellular domain of MuSK.
Collapse
|
77
|
Nishimune H. Molecular mechanism of active zone organization at vertebrate neuromuscular junctions. Mol Neurobiol 2011; 45:1-16. [PMID: 22135013 DOI: 10.1007/s12035-011-8216-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/24/2011] [Indexed: 02/08/2023]
Abstract
Organization of presynaptic active zones is essential for development, plasticity, and pathology of the nervous system. Recent studies indicate a trans-synaptic molecular mechanism that organizes the active zones by connecting the pre- and the postsynaptic specialization. The presynaptic component of this trans-synaptic mechanism is comprised of cytosolic active zone proteins bound to the cytosolic domains of voltage-dependent calcium channels (P/Q-, N-, and L-type) on the presynaptic membrane. The postsynaptic component of this mechanism is the synapse organizer (laminin β2) that is expressed by the postsynaptic cell and accumulates specifically on top of the postsynaptic specialization. The pre- and the postsynaptic components interact directly between the extracellular domains of calcium channels and laminin β2 to anchor the presynaptic protein complex in front of the postsynaptic specialization. Hence, the presynaptic calcium channel functions as a scaffolding protein for active zone organization and as an ion-conducting channel for synaptic transmission. In contrast to the requirement of calcium influx for synaptic transmission, the formation of the active zone does not require the calcium influx through the calcium channels. Importantly, the active zones of adult synapses are not stable structures and require maintenance for their integrity. Furthermore, aging or diseases of the central and peripheral nervous system impair the active zones. This review will focus on the molecular mechanisms that organize the presynaptic active zones and summarize recent findings at the neuromuscular junctions and other synapses.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, and Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical School, 3901 Rainbow Blvd., MS 3051, HLSIC Rm. 2073, Kansas City, KS 66160, USA.
| |
Collapse
|
78
|
Myers JP, Santiago-Medina M, Gomez TM. Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions. Dev Neurobiol 2011; 71:901-23. [PMID: 21714101 PMCID: PMC3192254 DOI: 10.1002/dneu.20931] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing neurons use a combination of guidance cues to assemble a functional neural network. A variety of proteins immobilized within the extracellular matrix (ECM) provide specific binding sites for integrin receptors on neurons. Integrin receptors on growth cones associate with a number of cytosolic adaptor and signaling proteins that regulate cytoskeletal dynamics and cell adhesion. Recent evidence suggests that soluble growth factors and classic axon guidance cues may direct axon pathfinding by controlling integrin-based adhesion. Moreover, because classic axon guidance cues themselves are immobilized within the ECM and integrins modulate cellular responses to many axon guidance cues, interactions between activated receptors modulate cell signals and adhesion. Ultimately, growth cones control axon outgrowth and pathfinding behaviors by integrating distinct biochemical signals to promote the proper assembly of the nervous system. In this review, we discuss our current understanding how ECM proteins and their associated integrin receptors control neural network formation.
Collapse
Affiliation(s)
- Jonathan P Myers
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
79
|
Mate SE, Brown KJ, Hoffman EP. Integrated genomics and proteomics of the Torpedo californica electric organ: concordance with the mammalian neuromuscular junction. Skelet Muscle 2011; 1:20. [PMID: 21798097 PMCID: PMC3156643 DOI: 10.1186/2044-5040-1-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/04/2011] [Indexed: 11/25/2022] Open
Abstract
Background During development, the branchial mesoderm of Torpedo californica transdifferentiates into an electric organ capable of generating high voltage discharges to stun fish. The organ contains a high density of cholinergic synapses and has served as a biochemical model for the membrane specialization of myofibers, the neuromuscular junction (NMJ). We studied the genome and proteome of the electric organ to gain insight into its composition, to determine if there is concordance with skeletal muscle and the NMJ, and to identify novel synaptic proteins. Results Of 435 proteins identified, 300 mapped to Torpedo cDNA sequences with ≥2 peptides. We identified 14 uncharacterized proteins in the electric organ that are known to play a role in acetylcholine receptor clustering or signal transduction. In addition, two human open reading frames, C1orf123 and C6orf130, showed high sequence similarity to electric organ proteins. Our profile lists several proteins that are highly expressed in skeletal muscle or are muscle specific. Synaptic proteins such as acetylcholinesterase, acetylcholine receptor subunits, and rapsyn were present in the electric organ proteome but absent in the skeletal muscle proteome. Conclusions Our integrated genomic and proteomic analysis supports research describing a muscle-like profile of the organ. We show that it is a repository of NMJ proteins but we present limitations on its use as a comprehensive model of the NMJ. Finally, we identified several proteins that may become candidates for signaling proteins not previously characterized as components of the NMJ.
Collapse
Affiliation(s)
- Suzanne E Mate
- Department of Biochemistry and Molecular Genetics, IBS, George Washington University, Washington DC, USA
| | | | | |
Collapse
|
80
|
Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, Kanagawa M, Beltrán-Valero de Bernabé D, Gündeşli H, Willer T, Satz JS, Crawford RW, Burden SJ, Kunz S, Oldstone MBA, Accardi A, Talim B, Muntoni F, Topaloğlu H, Dinçer P, Campbell KP. A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med 2011; 364:939-46. [PMID: 21388311 PMCID: PMC3071687 DOI: 10.1056/nejmoa1006939] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dystroglycan, which serves as a major extracellular matrix receptor in muscle and the central nervous system, requires extensive O-glycosylation to function. We identified a dystroglycan missense mutation (Thr192→Met) in a woman with limb-girdle muscular dystrophy and cognitive impairment. A mouse model harboring this mutation recapitulates the immunohistochemical and neuromuscular abnormalities observed in the patient. In vitro and in vivo studies showed that the mutation impairs the receptor function of dystroglycan in skeletal muscle and brain by inhibiting the post-translational modification, mediated by the glycosyltransferase LARGE, of the phosphorylated O-mannosyl glycans on α-dystroglycan that is required for high-affinity binding to laminin.
Collapse
Affiliation(s)
- Yuji Hara
- Department of Molecular Physiology and Biophysics, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Gawlik KI, Durbeej M. Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skelet Muscle 2011; 1:9. [PMID: 21798088 PMCID: PMC3156650 DOI: 10.1186/2044-5040-1-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/01/2011] [Indexed: 11/10/2022] Open
Abstract
Laminin-211 is a cell-adhesion molecule that is strongly expressed in the basement membrane of skeletal muscle. By binding to the cell surface receptors dystroglycan and integrin α7β1, laminin-211 is believed to protect the muscle fiber from damage under the constant stress of contractions, and to influence signal transmission events. The importance of laminin-211 in skeletal muscle is evident from merosin-deficient congenital muscular dystrophy type 1A (MDC1A), in which absence of the α2 chain of laminin-211 leads to skeletal muscle dysfunction. MDC1A is the commonest form of congenital muscular dystrophy in the European population. Severe hypotonia, progressive muscle weakness and wasting, joint contractures and consequent impeded motion characterize this incurable disorder, which causes great difficulty in daily life and often leads to premature death. Mice with laminin α2 chain deficiency have analogous phenotypes, and are reliable models for studies of disease mechanisms and potential therapeutic approaches. In this review, we introduce laminin-211 and describe its structure, expression pattern in developing and adult muscle and its receptor interactions. We will also discuss the molecular pathogenesis of MDC1A and advances toward the development of treatment.
Collapse
Affiliation(s)
- Kinga I Gawlik
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | | |
Collapse
|
82
|
Calcium channels link the muscle-derived synapse organizer laminin β2 to Bassoon and CAST/Erc2 to organize presynaptic active zones. J Neurosci 2011; 31:512-25. [PMID: 21228161 DOI: 10.1523/jneurosci.3771-10.2011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synapse formation requires the organization of presynaptic active zones, the synaptic vesicle release sites, in precise apposition to postsynaptic neurotransmitter receptor clusters; however, the molecular mechanisms responsible for these processes remain unclear. Here, we show that P/Q-type and N-type voltage-dependent calcium channels (VDCCs) play essential roles as scaffolding proteins in the organization of presynaptic active zones. The neuromuscular junction of double knock-out mice for P/Q- and N-type VDCCs displayed a normal size but had significantly reduced numbers of active zones and docked vesicles and featured an attenuation of the active-zone proteins Bassoon, Piccolo, and CAST/Erc2. Consistent with this phenotype, direct interactions of the VDCC β1b or β4 subunits and the active zone-specific proteins Bassoon or CAST/Erc2 were confirmed by immunoprecipitation. A decrease in the number of active zones caused by a loss of presynaptic VDCCs resembled the pathological conditions observed in the autoimmune neuromuscular disorder Lambert-Eaton myasthenic syndrome. At the synaptic cleft of double knock-out mice, we also observed a decrease of the synaptic organizer laminin β2 protein, an extracellular ligand of P/Q- and N-type VDCCs. However, the transcription level of laminin β2 did not decrease in double knock-out mice, suggesting that the synaptic accumulation of laminin β2 protein required its interaction with presynaptic VDCCs. These results suggest that presynaptic VDCCs link the target-derived synapse organizer laminin β2 to active-zone proteins and function as scaffolding proteins to anchor active-zone proteins to the presynaptic membrane.
Collapse
|
83
|
Abstract
Major peripheral nerve injuries are often associated with devastating functional deficits. Current management techniques fail to achieve adequate functional neural regeneration, and the development of adjunct therapies is necessary to improve outcomes. Recent efforts at enhancing the regeneration rate of peripheral nerves and developing axonal guidance channels or conduits have had limited success. The neuromuscular junction serves as the interface between the peripheral nerves and muscle. This critical area undergoes significant changes following peripheral nerve injury and induces end-organ atrophy after denervation, which limits the chance of true functional regeneration. Stabilization of the neuromuscular junction may be an important adjunct in peripheral nerve repair and should be explored as a method of managing major nerve injuries.
Collapse
|
84
|
Barros CS, Franco SJ, Müller U. Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol 2011; 3:a005108. [PMID: 21123393 DOI: 10.1101/cshperspect.a005108] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An astonishing number of extracellular matrix glycoproteins are expressed in dynamic patterns in the developing and adult nervous system. Neural stem cells, neurons, and glia express receptors that mediate interactions with specific extracellular matrix molecules. Functional studies in vitro and genetic studies in mice have provided evidence that the extracellular matrix affects virtually all aspects of nervous system development and function. Here we will summarize recent findings that have shed light on the specific functions of defined extracellular matrix molecules on such diverse processes as neural stem cell differentiation, neuronal migration, the formation of axonal tracts, and the maturation and function of synapses in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Claudia S Barros
- The Scripps Research Institute, Department of Cell Biology, Dorris Neuroscience Center, La Jolla, California 92037, USA
| | | | | |
Collapse
|
85
|
Muscle-derived collagen XIII regulates maturation of the skeletal neuromuscular junction. J Neurosci 2010; 30:12230-41. [PMID: 20844119 DOI: 10.1523/jneurosci.5518-09.2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Formation, maturation, stabilization, and functional efficacy of the neuromuscular junction (NMJ) are orchestrated by transsynaptic and autocrine signals embedded within the synaptic cleft. Here, we demonstrate that collagen XIII, a nonfibrillar transmembrane collagen, is another such signal. We show that collagen XIII is expressed by muscle and its ectodomain can be proteolytically shed into the extracellular matrix. The collagen XIII protein was found present in the postsynaptic membrane and synaptic basement membrane. To identify a role for collagen XIII at the NMJ, mice were generated lacking this collagen. Morphological and ultrastructural analysis of the NMJ revealed incomplete adhesion of presynaptic and postsynaptic specializations in collagen XIII-deficient mice of both genders. Strikingly, Schwann cells erroneously enwrapped nerve terminals and invaginated into the synaptic cleft, resulting in a decreased contact surface for neurotransmission. Consistent with morphological findings, electrophysiological studies indicated both postsynaptic and presynaptic defects in Col13a1(-/-) mice, such as decreased amplitude of postsynaptic potentials, diminished probabilities of spontaneous release and reduced readily releasable neurotransmitter pool. To identify the role of collagen XIII at the NMJ, shed ectodomain of collagen XIII was applied to cultured myotubes, and it was found to advance acetylcholine receptor (AChR) cluster maturation. Together with the delay in AChR cluster development observed in collagen XIII-deficient mutants in vivo, these results suggest that collagen XIII plays an autocrine role in postsynaptic maturation of the NMJ. Altogether, the results presented here reveal that collagen XIII is a novel muscle-derived cue necessary for the maturation and function of the vertebrate NMJ.
Collapse
|
86
|
Leonoudakis D, Singh M, Mohajer R, Mohajer P, Fata JE, Campbell KP, Muschler JL. Dystroglycan controls signaling of multiple hormones through modulation of STAT5 activity. J Cell Sci 2010; 123:3683-92. [PMID: 20940259 DOI: 10.1242/jcs.070680] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Receptors for basement membrane (BM) proteins, including dystroglycan (DG), coordinate tissue development and function by mechanisms that are only partially defined. To further elucidate these mechanisms, we generated a conditional knockout of DG in the epithelial compartment of the mouse mammary gland. Deletion of DG caused an inhibition of mammary epithelial outgrowth and a failure of lactation. Surprisingly, loss of DG in vivo did not disrupt normal tissue architecture or BM formation, even though cultured Dag1-null epithelial cells failed to assemble laminin-111 at the cell surface. The absence of DG was, however, associated with a marked loss in activity of signal transducer and activator of transcription 5 (STAT5). Loss of DG perturbed STAT5 signaling induced by either prolactin or growth hormone. We found that DG regulates signaling by both hormones in a manner that is dependent on laminin-111 binding, but independent of the DG cytoplasmic domain, suggesting that it acts via a co-receptor mechanism reliant on DG-mediated laminin assembly. These results demonstrate a requirement for DG in the growth and function of a mammalian epithelial tissue in vivo. Moreover, we reveal a selective role for DG in the control of multiple STAT5-dependent hormone signaling pathways, with implications for numerous diseases in which DG function is compromised.
Collapse
Affiliation(s)
- Dmitri Leonoudakis
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Sherry DM, Murray AR, Kanan Y, Arbogast KL, Hamilton RA, Fliesler SJ, Burns ME, Moore KL, Al-Ubaidi MR. Lack of protein-tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy. Eur J Neurosci 2010; 32:1461-72. [PMID: 21039965 DOI: 10.1111/j.1460-9568.2010.07431.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To investigate the role(s) of protein-tyrosine sulfation in the retina, we examined retinal function and structure in mice lacking tyrosylprotein sulfotransferases (TPST) 1 and 2. Tpst double knockout (DKO; Tpst1(-/-) /Tpst2 (-/-) ) retinas had drastically reduced electroretinographic responses, although their photoreceptors exhibited normal responses in single cell recordings. These retinas appeared normal histologically; however, the rod photoreceptors had ultrastructurally abnormal outer segments, with membrane evulsions into the extracellular space, irregular disc membrane spacing and expanded intradiscal space. Photoreceptor synaptic terminals were disorganized in Tpst DKO retinas, but established ultrastructurally normal synapses, as did bipolar and amacrine cells; however, the morphology and organization of neuronal processes in the inner retina were abnormal. These results indicate that protein-tyrosine sulfation is essential for proper outer segment morphogenesis and synaptic function, but is not critical for overall retinal structure or synapse formation, and may serve broader functions in neuronal development and maintenance.
Collapse
Affiliation(s)
- David M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, BMSB 781, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Carlson SS, Valdez G, Sanes JR. Presynaptic calcium channels and α3-integrins are complexed with synaptic cleft laminins, cytoskeletal elements and active zone components. J Neurochem 2010; 115:654-66. [PMID: 20731762 DOI: 10.1111/j.1471-4159.2010.06965.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
At chemical synapses, synaptic cleft components interact with elements of the nerve terminal membrane to promote differentiation and regulate function. Laminins containing the β2 subunit are key cleft components, and they act in part by binding the pore-forming subunit of a pre-synaptic voltage-gated calcium channel (Ca(v)α) (Nishimune et al. 2004). In this study, we identify Ca(v)α-associated intracellular proteins that may couple channel-anchoring to assembly or stabilization of neurotransmitter release sites called active zones. Using Ca(v)α-antibodies, we isolated a protein complex from Torpedo electric organ synapses, which resemble neuromuscular junctions but are easier to isolate in bulk. We identified 10 components of the complex: six cytoskeletal proteins (α2/β2 spectrins, plectin 1, AHNAK/desmoyokin, dystrophin, and myosin 1), two active zone components (bassoon and piccolo), synaptic laminin, and a calcium channel β subunit. Immunocytochemistry confirmed these proteins in electric organ synapses, and PCR analysis revealed their expression by developing mammalian motor neurons. Finally, we show that synaptic laminins also interact with pre-synaptic integrins containing the α3 subunit. Together with our previous finding that a distinct synaptic laminin interacts with SV2 on nerve terminals (Son et al. 2000), our results identify three paths by which synaptic cleft laminins can send developmentally important signals to nerve terminals.
Collapse
Affiliation(s)
- Steven S Carlson
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
89
|
Kruegel J, Miosge N. Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci 2010; 67:2879-95. [PMID: 20428923 PMCID: PMC2921489 DOI: 10.1007/s00018-010-0367-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 01/11/2023]
Abstract
More than three decades ago, basement membranes (BMs) were described as membrane-like structures capable of isolating a cell from and connecting a cell to its environment. Since this time, it has been revealed that BMs are specialized extracellular matrices (sECMs) with unique components that support important functions including differentiation, proliferation, migration, and chemotaxis of cells during development. The composition of these sECM is as unique as the tissues to which they are localized, opening the possibility that such matrices can fulfill distinct functions. Changes in BM composition play significant roles in facilitating the development of various diseases. Furthermore, tissues have to provide sECM for their stem cells during development and for their adult life. Here, we briefly review the latest research on these unique sECM and their components with a special emphasis on embryonic and adult stem cells and their niches.
Collapse
Affiliation(s)
- Jenny Kruegel
- Tissue Regeneration Work Group, Department of Prosthodontics, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Nicolai Miosge
- Tissue Regeneration Work Group, Department of Prosthodontics, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
90
|
Wu H, Xiong WC, Mei L. To build a synapse: signaling pathways in neuromuscular junction assembly. Development 2010; 137:1017-33. [PMID: 20215342 DOI: 10.1242/dev.038711] [Citation(s) in RCA: 379] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synapses, as fundamental units of the neural circuitry, enable complex behaviors. The neuromuscular junction (NMJ) is a synapse type that forms between motoneurons and skeletal muscle fibers and that exhibits a high degree of subcellular specialization. Aided by genetic techniques and suitable animal models, studies in the past decade have brought significant progress in identifying NMJ components and assembly mechanisms. This review highlights recent advances in the study of NMJ development, focusing on signaling pathways that are activated by diffusible cues, which shed light on synaptogenesis in the brain and contribute to a better understanding of muscular dystrophy.
Collapse
Affiliation(s)
- Haitao Wu
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
91
|
Shi L, Butt B, Ip FCF, Dai Y, Jiang L, Yung WH, Greenberg ME, Fu AKY, Ip NY. Ephexin1 is required for structural maturation and neurotransmission at the neuromuscular junction. Neuron 2010; 65:204-16. [PMID: 20152127 DOI: 10.1016/j.neuron.2010.01.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2009] [Indexed: 12/24/2022]
Abstract
The maturation of neuromuscular junctions (NMJs) requires the topological transformation of postsynaptic acetylcholine receptor (AChR)-containing structures from a simple plaque to an elaborate structure composed of pretzel-like branches. This maturation process results in the precise apposition of the presynaptic and postsynaptic specializations. However, little is known about the molecular mechanisms underlying the plaque-to-pretzel transition of AChR clusters. In this study, we identify an essential role for the RhoGEF ephexin1 in the maturation of AChR clusters. Adult ephexin1(-/-) mice exhibit severe muscle weakness and impaired synaptic transmission at the NMJ. Intriguingly, when ephexin1 expression is deficient in vivo, the NMJ fails to mature into the pretzel-like shape, and such abnormalities can be rescued by re-expression of ephexin1. We further demonstrate that ephexin1 regulates the stability of AChR clusters in a RhoA-dependent manner. Taken together, our findings reveal an indispensible role for ephexin1 in regulating the structural maturation and neurotransmission of NMJs.
Collapse
Affiliation(s)
- Lei Shi
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Gingras J, Rioux RM, Cuvelier D, Geisse NA, Lichtman JW, Whitesides GM, Mahadevan L, Sanes JR. Controlling the orientation and synaptic differentiation of myotubes with micropatterned substrates. Biophys J 2010; 97:2771-9. [PMID: 19917231 DOI: 10.1016/j.bpj.2009.08.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/03/2009] [Accepted: 08/17/2009] [Indexed: 01/16/2023] Open
Abstract
Micropatterned poly(dimethylsiloxane) substrates fabricated by soft lithography led to large-scale orientation of myoblasts in culture, thereby controlling the orientation of the myotubes they formed. Fusion occurred on many chemically identical surfaces in which varying structures were arranged in square or hexagonal lattices, but only a subset of patterned surfaces yielded aligned myotubes. Remarkably, on some substrates, large populations of myotubes oriented at a reproducible acute angle to the lattice of patterned features. A simple geometrical model predicts the angle and extent of orientation based on maximizing the contact area between the myoblasts and patterned topographic surfaces. Micropatterned substrates also provided short-range cues that influenced higher-order functions such as the localization of focal adhesions and accumulation of postsynaptic acetylcholine receptors. Our results represent what we believe is a new approach for musculoskeletal tissue engineering, and our model sheds light on mechanisms of myotube alignment in vivo.
Collapse
Affiliation(s)
- Jacinthe Gingras
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Su J, Gorse K, Ramirez F, Fox MA. Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses. J Comp Neurol 2010; 518:229-53. [PMID: 19937713 DOI: 10.1002/cne.22228] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) molecules contribute to the formation and maintenance of synapses in the mammalian nervous system. We previously discovered a family of nonfibrillar collagens that organize synaptic differentiation at the neuromuscular junction (NMJ). Although many NMJ-organizing cues contribute to central nervous system (CNS) synaptogenesis, whether similar roles for collagens exist at central synapses remained unclear. In the present study we discovered that col19a1, the gene encoding nonfibrillar collagen XIX, is expressed by subsets of hippocampal neurons. Colocalization with the interneuron-specific enzyme glutamate decarboxylase 67 (Gad67), but not other cell-type-specific markers, suggests that hippocampal expression of col19a1 is restricted to interneurons. However, not all hippocampal interneurons express col19a1 mRNA; subsets of neuropeptide Y (NPY)-, somatostatin (Som)-, and calbindin (Calb)-immunoreactive interneurons express col19a1, but those containing parvalbumin (Parv) or calretinin (Calr) do not. To assess whether collagen XIX is required for the normal formation of hippocampal synapses, we examined synaptic morphology and composition in targeted mouse mutants lacking collagen XIX. We show here that subsets of synaptotagmin 2 (Syt2)-containing hippocampal nerve terminals appear malformed in the absence of collagen XIX. The presence of Syt2 in inhibitory hippocampal synapses, the altered distribution of Gad67 in collagen XIX-deficient subiculum, and abnormal levels of gephyrin in collagen XIX-deficient hippocampal extracts all suggest inhibitory synapses are affected by the loss of collagen XIX. Together, these data not only reveal that collagen XIX is expressed by central neurons, but show for the first time that a nonfibrillar collagen is necessary for the formation of hippocampal synapses.
Collapse
Affiliation(s)
- Jianmin Su
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
94
|
The developmental roles of the extracellular matrix: beyond structure to regulation. Cell Tissue Res 2009; 339:93-110. [PMID: 19885678 DOI: 10.1007/s00441-009-0893-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022]
Abstract
Cells in multicellular organisms are surrounded by a complex three-dimensional macromolecular extracellular matrix (ECM). This matrix, traditionally thought to serve a structural function providing support and strength to cells within tissues, is increasingly being recognized as having pleiotropic effects in development and growth. Elucidation of the role that the ECM plays in developmental processes has been significantly advanced by studying the phenotypic and developmental consequences of specific genetic alterations of ECM components in the mouse. These studies have revealed the enormous contribution of the ECM to the regulation of key processes in morphogenesis and organogenesis, such as cell adhesion, proliferation, specification, migration, survival, and differentiation. The ECM interacts with signaling molecules and morphogens thereby modulating their activities. This review considers these advances in our understanding of the function of ECM proteins during development, extending beyond their structural capacity, to embrace their new roles in intercellular signaling.
Collapse
|
95
|
The developmental roles of the extracellular matrix: beyond structure to regulation. Cell Tissue Res 2009. [DOI: 10.1007/s00441-009-0893-8 doi:dx.doi.org] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
96
|
Podosomes are present in a postsynaptic apparatus and participate in its maturation. Proc Natl Acad Sci U S A 2009; 106:18373-8. [PMID: 19822767 DOI: 10.1073/pnas.0910391106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A critical step in synapse formation is the clustering of neurotransmitter receptors in the postsynaptic membrane, directly opposite the nerve terminal. At the neuromuscular junction, a widely studied model synapse, acetylcholine receptors (AChRs) initially aggregate to form an ovoid postsynaptic plaque. As the synapse matures, the plaque becomes perforated and is eventually transformed into a complex, branched structure. We found that this transformation also occurs in myotubes cultured in the absence of neurons, and used this system to seek machinery that orchestrates postsynaptic maturation. We show that perforations in the AChR aggregate bear structures resembling podosomes, dynamic actin-rich adhesive organelles involved in matrix remodeling in non-neuronal cells but not described in neural structures. The location and dynamics of synaptic podosomes are spatiotemporally correlated with changes in AChR aggregate topology, and pharmacological disruption of podosomes leads to rapid alterations in AChR organization. Our results indicate that synaptic podosomes play critical roles in maturation of the postsynaptic membrane.
Collapse
|
97
|
Abstract
In 1990, the role of basement membranes in human disease was established by the identification of COL4A5 mutations in Alport's syndrome. Since then, the number of diseases caused by mutations in basement membrane components has steadily increased as has our understanding of the roles of basement membranes in organ development and function. However, many questions remain as to the molecular and cellular consequences of these mutations and the way in which they lead to the observed disease phenotypes. Despite this, exciting progress has recently been made with potential treatment options for some of these so far incurable diseases.
Collapse
|
98
|
Huzé C, Bauché S, Richard P, Chevessier F, Goillot E, Gaudon K, Ben Ammar A, Chaboud A, Grosjean I, Lecuyer HA, Bernard V, Rouche A, Alexandri N, Kuntzer T, Fardeau M, Fournier E, Brancaccio A, Rüegg MA, Koenig J, Eymard B, Schaeffer L, Hantaï D. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet 2009; 85:155-67. [PMID: 19631309 DOI: 10.1016/j.ajhg.2009.06.015] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/16/2009] [Accepted: 06/23/2009] [Indexed: 11/16/2022] Open
Abstract
We report the case of a congenital myasthenic syndrome due to a mutation in AGRN, the gene encoding agrin, an extracellular matrix molecule released by the nerve and critical for formation of the neuromuscular junction. Gene analysis identified a homozygous missense mutation, c.5125G>C, leading to the p.Gly1709Arg variant. The muscle-biopsy specimen showed a major disorganization of the neuromuscular junction, including changes in the nerve-terminal cytoskeleton and fragmentation of the synaptic gutters. Experiments performed in nonmuscle cells or in cultured C2C12 myotubes and using recombinant mini-agrin for the mutated and the wild-type forms showed that the mutated form did not impair the activation of MuSK or change the total number of induced acetylcholine receptor aggregates. A solid-phase assay using the dystrophin glycoprotein complex showed that the mutation did not affect the binding of agrin to alpha-dystroglycan. Injection of wild-type or mutated agrin into rat soleus muscle induced the formation of nonsynaptic acetylcholine receptor clusters, but the mutant protein specifically destabilized the endogenous neuromuscular junctions. Importantly, the changes observed in rat muscle injected with mutant agrin recapitulated the pre- and post-synaptic modifications observed in the patient. These results indicate that the mutation does not interfere with the ability of agrin to induce postsynaptic structures but that it dramatically perturbs the maintenance of the neuromuscular junction.
Collapse
MESH Headings
- Adult
- Agrin/chemistry
- Agrin/genetics
- Agrin/metabolism
- Animals
- Biopsy
- Cell Line
- DNA Mutational Analysis
- Dystroglycans/metabolism
- Female
- Humans
- Male
- Models, Chemical
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/surgery
- Muscle, Skeletal/ultrastructure
- Mutation, Missense
- Myasthenic Syndromes, Congenital/genetics
- Neuromuscular Junction/genetics
- Neuromuscular Junction/metabolism
- Neuromuscular Junction/physiology
- Neuromuscular Junction/ultrastructure
- Pedigree
- Protein Structure, Tertiary
- Rats
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/metabolism
- Receptors, Cholinergic/physiology
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Synapses/metabolism
Collapse
Affiliation(s)
- Caroline Huzé
- Equipe Différenciation Neuromusculaire, UMR 5239, Ecole Normale Supérieure Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Jarad G, Miner JH. The Pax3-Cre transgene exhibits a rostrocaudal gradient of expression in the skeletal muscle lineage. Genesis 2009; 47:1-6. [PMID: 18942111 DOI: 10.1002/dvg.20447] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pax3-Cre (P3Pro-Cre) transgenic mice have been used for conditional gene deletion and/or lineage tracing in derivatives of neural crest, neural tube, metanephric mesenchyme, and ureteric mesenchyme. However, the extent of its expression in skeletal muscle has not been reported. We investigated the expression of P3Pro-Cre in the skeletal muscle lineage using the R26R reporter and found an unexpected rostrocaudal gradient of expression. By X-gal staining, head, neck, forelimb, diaphragm, and most of the chest wall muscles did not show evidence of Cre expression, whereas all muscle groups posterior of the diaphragm stained blue. Intercostal muscles exhibited a rostrocaudal gradient of staining. The consistency of this expression pattern was demonstrated by using P3Pro-Cre to mutate a conditional dystroglycan allele. The result was loss of dystroglycan from caudal muscles, which exhibited the histological signs of muscle fiber injury and regeneration characteristic of muscular dystrophy. The lack of dystroglycan in regenerating myofibers suggests that the P3Pro-Cre transgene is active in satellite cells and/or in their precursors. In contrast, rostral muscles, including feeding and breathing muscles, maintained dystroglycan expression and were spared from disease. Accordingly, the mutants were viable for over a year. Its unique gradient of activity makes the P3Pro-Cre transgene a previously unappreciated yet powerful tool for manipulating gene expression in skeletal muscle and its precursors.
Collapse
|
100
|
Noël G, Tham DKL, Moukhles H. Interdependence of laminin-mediated clustering of lipid rafts and the dystrophin complex in astrocytes. J Biol Chem 2009; 284:19694-704. [PMID: 19451651 DOI: 10.1074/jbc.m109.010090] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Astrocyte endfeet surrounding blood vessels are active domains involved in water and potassium ion transport crucial to the maintenance of water and potassium ion homeostasis in brain. A growing body of evidence points to a role for dystroglycan and its interaction with perivascular laminin in the targeting of the dystrophin complex and the water-permeable channel, aquaporin 4 (AQP4), at astrocyte endfeet. However, the mechanisms underlying such compartmentalization remain poorly understood. In the present study we found that AQP4 resided in Triton X-100-insoluble fraction, whereas dystroglycan was recovered in the soluble fraction in astrocytes. Cholesterol depletion resulted in the translocation of a pool of AQP4 to the soluble fraction indicating that its distribution is indeed associated with cholesterol-rich membrane domains. Upon laminin treatment AQP4 and the dystrophin complex, including dystroglycan, reorganized into laminin-associated clusters enriched for the lipid raft markers GM1 and flotillin-1 but not caveolin-1. Reduced diffusion rates of GM1 in the laminin-induced clusters were indicative of the reorganization of raft components in these domains. In addition, both cholesterol depletion and dystroglycan silencing reduced the number and area of laminin-induced clusters of GM1, AQP4, and dystroglycan. These findings demonstrate the interdependence between laminin binding to dystroglycan and GM1-containing lipid raft reorganization and provide novel insight into the dystrophin complex regulation of AQP4 polarization in astrocytes.
Collapse
Affiliation(s)
- Geoffroy Noël
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | | | |
Collapse
|