51
|
Ricolo D, Deligiannaki M, Casanova J, Araújo S. Centrosome Amplification Increases Single-Cell Branching in Post-mitotic Cells. Curr Biol 2016; 26:2805-2813. [DOI: 10.1016/j.cub.2016.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/22/2016] [Accepted: 08/03/2016] [Indexed: 01/02/2023]
|
52
|
Morelli E, Mastrodonato V, Beznoussenko GV, Mironov AA, Tognon E, Vaccari T. An essential step of kinetochore formation controlled by the SNARE protein Snap29. EMBO J 2016; 35:2223-2237. [PMID: 27647876 PMCID: PMC5069552 DOI: 10.15252/embj.201693991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/16/2016] [Indexed: 12/31/2022] Open
Abstract
The kinetochore is an essential structure that mediates accurate chromosome segregation in mitosis and meiosis. While many of the kinetochore components have been identified, the mechanisms of kinetochore assembly remain elusive. Here, we identify a novel role for Snap29, an unconventional SNARE, in promoting kinetochore assembly during mitosis in Drosophila and human cells. Snap29 localizes to the outer kinetochore and prevents chromosome mis‐segregation and the formation of cells with fragmented nuclei. Snap29 promotes accurate chromosome segregation by mediating the recruitment of Knl1 at the kinetochore and ensuring stable microtubule attachments. Correct Knl1 localization to kinetochore requires human or Drosophila Snap29, and is prevented by a Snap29 point mutant that blocks Snap29 release from SNARE fusion complexes. Such mutant causes ectopic Knl1 recruitment to trafficking compartments. We propose that part of the outer kinetochore is functionally similar to membrane fusion interfaces.
Collapse
Affiliation(s)
- Elena Morelli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | - Emiliana Tognon
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Thomas Vaccari
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
53
|
Kwenda L, Collins CM, Dattoli AA, Dunleavy EM. Nucleolar activity and CENP-C regulate CENP-A and CAL1 availability for centromere assembly in meiosis. Development 2016; 143:1400-12. [PMID: 27095496 PMCID: PMC4852514 DOI: 10.1242/dev.130625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/19/2016] [Indexed: 11/20/2022]
Abstract
The centromere-specific histone CENP-A is the key epigenetic determinant of centromere identity. Whereas most histones are removed from mature sperm, CENP-A is retained to mark paternal centromeres. In Drosophila males we show that the centromere assembly factors CAL1 and CENP-C are required for meiotic chromosome segregation, CENP-A assembly and maintenance on sperm, as well as fertility. In meiosis, CENP-A accumulates with CAL1 in nucleoli. Furthermore, we show that CENP-C normally limits the release of CAL1 and CENP-A from nucleoli for proper centromere assembly in meiotic prophase I. Finally, we show that RNA polymerase I transcription is required for efficient CENP-A assembly in meiosis, as well as centromere tethering to nucleoli. Summary: Novel roles are uncovered for centromere assembly factors CENP-C and CAL1 in meiotic chromosome segregation, CENP-A assembly and maintenance of sperm, as well as fertility in Drosophila males.
Collapse
Affiliation(s)
- Lucretia Kwenda
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Caitriona M Collins
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Anna A Dattoli
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Elaine M Dunleavy
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
54
|
Co-evolving CENP-A and CAL1 Domains Mediate Centromeric CENP-A Deposition across Drosophila Species. Dev Cell 2016; 37:136-47. [PMID: 27093083 DOI: 10.1016/j.devcel.2016.03.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/04/2016] [Accepted: 03/22/2016] [Indexed: 11/20/2022]
Abstract
Centromeres mediate the conserved process of chromosome segregation, yet centromeric DNA and the centromeric histone, CENP-A, are rapidly evolving. The rapid evolution of Drosophila CENP-A loop 1 (L1) is thought to modulate the DNA-binding preferences of CENP-A to counteract centromere drive, the preferential transmission of chromosomes with expanded centromeric satellites. Consistent with this model, CENP-A from Drosophila bipectinata (bip) cannot localize to Drosophila melanogaster (mel) centromeres. We show that this result is due to the inability of the mel CENP-A chaperone, CAL1, to deposit bip CENP-A into chromatin. Co-expression of bip CENP-A and bip CAL1 in mel cells restores centromeric localization, and similar findings apply to other Drosophila species. We identify two co-evolving regions, CENP-A L1 and the CAL1 N terminus, as critical for lineage-specific CENP-A incorporation. Collectively, our data show that the rapid evolution of L1 modulates CAL1-mediated CENP-A assembly, suggesting an alternative mechanism for the suppression of centromere drive.
Collapse
|
55
|
Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy. Nat Commun 2016; 7:12619. [PMID: 27577169 PMCID: PMC5013662 DOI: 10.1038/ncomms12619] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer that contributes to tumour heterogeneity and other malignant properties. Aberrant centromere and kinetochore function causes CIN through chromosome missegregation, leading to aneuploidy, rearrangements and micronucleus formation. Here we develop a Centromere and kinetochore gene Expression Score (CES) signature that quantifies the centromere and kinetochore gene misexpression in cancers. High CES values correlate with increased levels of genomic instability and several specific adverse tumour properties, and prognosticate poor patient survival for breast and lung cancers, especially early-stage tumours. They also signify high levels of genomic instability that sensitize cancer cells to additional genotoxicity. Thus, the CES signature forecasts patient response to adjuvant chemotherapy or radiotherapy. Our results demonstrate the prognostic and predictive power of the CES, suggest a role for centromere misregulation in cancer progression, and support the idea that tumours with extremely high CIN are less tolerant to specific genotoxic therapies. Centromeres and kinetochores are important in maintaining chromosomal stability. Here, the authors show that overexpression of a subset of centromere and kinetochore genes is associated with chromosomal instability and mutation burden in cancer, and predict patient survival and response to genotoxic therapies.
Collapse
|
56
|
Licensing of Centromeric Chromatin Assembly through the Mis18α-Mis18β Heterotetramer. Mol Cell 2016; 61:774-787. [PMID: 26942680 DOI: 10.1016/j.molcel.2016.02.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/31/2015] [Accepted: 02/10/2016] [Indexed: 01/06/2023]
Abstract
Centromeres are specialized chromatin domains specified by the centromere-specific CENP-A nucleosome. The stable inheritance of vertebrate centromeres is an epigenetic process requiring deposition of new CENP-A nucleosomes by HJURP. We show HJURP is recruited to centromeres through a direct interaction between the HJURP centromere targeting domain and the Mis18α-β C-terminal coiled-coil domains. We demonstrate Mis18α and Mis18β form a heterotetramer through their C-terminal coiled-coil domains. Mis18α-β heterotetramer formation is required for Mis18BP1 binding and centromere recognition. S. pombe contains a single Mis18 isoform that forms a homotetramer, showing tetrameric Mis18 is conserved from fission yeast to humans. HJURP binding disrupts the Mis18α-β heterotetramer and removes Mis18α from centromeres. We propose stable binding of Mis18 to centromeres in telophase licenses them for CENP-A deposition. Binding of HJURP deposits CENP-A at centromeres and facilitates the removal of Mis18, restricting CENP-A deposition to a single event per cell cycle.
Collapse
|
57
|
Stellfox ME, Nardi IK, Knippler CM, Foltz DR. Differential Binding Partners of the Mis18α/β YIPPEE Domains Regulate Mis18 Complex Recruitment to Centromeres. Cell Rep 2016; 15:2127-2135. [PMID: 27239045 DOI: 10.1016/j.celrep.2016.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/18/2016] [Accepted: 04/26/2016] [Indexed: 11/29/2022] Open
Abstract
The Mis18 complex specifies the site of new CENP-A nucleosome assembly by recruiting the CENP-A-specific assembly factor HJURP (Holliday junction recognition protein). The human Mis18 complex consists of Mis18α, Mis18β, and Mis18 binding protein 1 (Mis18BP1/hsKNL2). Although Mis18α and Mis18β are highly homologous proteins, we find that their conserved YIPPEE domains mediate distinct interactions that are essential to link new CENP-A deposition to existing centromeres. We find that Mis18α directly interacts with the N terminus of Mis18BP1, whereas Mis18β directly interacts with CENP-C during G1 phase, revealing that these proteins have evolved to serve distinct functions in centromeres of higher eukaryotes. The N terminus of Mis18BP1, containing both the Mis18α and CENP-C binding domains, is necessary and sufficient for centromeric localization. Therefore, the Mis18 complex contains dual CENP-C recognition motifs that are combinatorially required to generate robust centromeric localization that leads to CENP-A deposition.
Collapse
Affiliation(s)
- Madison E Stellfox
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Isaac K Nardi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Christina M Knippler
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
58
|
Richter MM, Poznanski J, Zdziarska A, Czarnocki-Cieciura M, Lipinszki Z, Dadlez M, Glover DM, Przewloka MR. Network of protein interactions within the Drosophila inner kinetochore. Open Biol 2016; 6:150238. [PMID: 26911623 PMCID: PMC4772809 DOI: 10.1098/rsob.150238] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/01/2016] [Indexed: 12/27/2022] Open
Abstract
The kinetochore provides a physical connection between microtubules and the centromeric regions of chromosomes that is critical for their equitable segregation. The trimeric Mis12 sub-complex of the Drosophila kinetochore binds to the mitotic centromere using CENP-C as a platform. However, knowledge of the precise connections between Mis12 complex components and CENP-C has remained elusive despite the fundamental importance of this part of the cell division machinery. Here, we employ hydrogen-deuterium exchange coupled with mass spectrometry to reveal that Mis12 and Nnf1 form a dimer maintained by interacting coiled-coil (CC) domains within the carboxy-terminal parts of both proteins. Adjacent to these interacting CCs is a carboxy-terminal domain that also interacts with Nsl1. The amino-terminal parts of Mis12 and Nnf1 form a CENP-C-binding surface, which docks the complex and thus the entire kinetochore to mitotic centromeres. Mutational analysis confirms these precise interactions are critical for both structure and function of the complex. Thus, we conclude the organization of the Mis12-Nnf1 dimer confers upon the Mis12 complex a bipolar, elongated structure that is critical for kinetochore function.
Collapse
Affiliation(s)
- Magdalena M Richter
- Department of Genetics, University of Cambridge, Cambridge, UK Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | - Anna Zdziarska
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | - Mariusz Czarnocki-Cieciura
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Michal Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
59
|
McKinley KL, Cheeseman IM. The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 2015; 17:16-29. [PMID: 26601620 DOI: 10.1038/nrm.2015.5] [Citation(s) in RCA: 409] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The centromere is the region of the chromosome that directs its segregation in mitosis and meiosis. Although the functional importance of the centromere has been appreciated for more than 130 years, elucidating the molecular features and properties that enable centromeres to orchestrate chromosome segregation is an ongoing challenge. Most eukaryotic centromeres are defined epigenetically and require the presence of nucleosomes containing the histone H3 variant centromere protein A (CENP-A; also known as CENH3). Ongoing work is providing important molecular insights into the central requirements for centromere identity and propagation, and the mechanisms by which centromeres recruit kinetochores to connect to spindle microtubules.
Collapse
Affiliation(s)
- Kara L McKinley
- Whitehead Institute and Department of Biology, MIT, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute and Department of Biology, MIT, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
60
|
Boltengagen M, Huang A, Boltengagen A, Trixl L, Lindner H, Kremser L, Offterdinger M, Lusser A. A novel role for the histone acetyltransferase Hat1 in the CENP-A/CID assembly pathway in Drosophila melanogaster. Nucleic Acids Res 2015; 44:2145-59. [PMID: 26586808 PMCID: PMC4797270 DOI: 10.1093/nar/gkv1235] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/02/2015] [Indexed: 12/21/2022] Open
Abstract
The incorporation of CENP-A into centromeric chromatin is an essential prerequisite for kinetochore formation. Yet, the molecular mechanisms governing this process are surprisingly divergent in different organisms. While CENP-A loading mechanisms have been studied in some detail in mammals, there are still large gaps to our understanding of CENP-A/Cid loading pathways in Drosophila. Here, we report on the characterization and delineation of at least three different CENP-A preloading complexes in Drosophila. Two complexes contain the CENP-A chaperones CAL1, FACT and/or Caf1/Rbap48. Notably, we identified a novel complex consisting of the histone acetyltransferase Hat1, Caf1 and CENP-A/H4. We show that Hat1 is required for proper CENP-A loading into chromatin, since knock-down in S2 cells leads to reduced incorporation of newly synthesized CENP-A. In addition, we demonstrate that CENP-A/Cid interacts with the HAT1 complex via an N-terminal region, which is acetylated in cytoplasmic but not in nuclear CENP-A. Since Hat1 is not responsible for acetylation of CENP-A/Cid, these results suggest a histone acetyltransferase activity-independent escort function for Hat1. Thus, our results point toward intriguing analogies between the complex processing pathways of newly synthesized CENP-A and canonical histones.
Collapse
Affiliation(s)
- Mark Boltengagen
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anming Huang
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anastasiya Boltengagen
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Trixl
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Offterdinger
- Division of Neurobiochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
61
|
Barth TK, Schade GOM, Schmidt A, Vetter I, Wirth M, Heun P, Imhof A, Thomae AW. Identification of Drosophila centromere associated proteins by quantitative affinity purification-mass spectrometry. Data Brief 2015; 4:544-50. [PMID: 26306323 PMCID: PMC4536286 DOI: 10.1016/j.dib.2015.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 11/29/2022] Open
Abstract
Centromeres of higher eukaryotes are epigenetically defined by the centromere specific histone H3 variant CENP-ACID. CENP-ACID builds the foundation for the assembly of a large network of proteins. In contrast to mammalian systems, the protein composition of Drosophila centromeres has not been comprehensively investigated. Here we describe the proteome of Drosophila melanogaster centromeres as analyzed by quantitative affinity purification-mass spectrometry (AP-MS). The AP-MS input chromatin material was prepared from D. melanogaster cell lines expressing CENP-ACID or H3.3 fused to EGFP as baits. Centromere chromatin enriched proteins were identified based on their relative abundance in CENP-ACID–GFP compared to H3.3-GFP or mock affinity-purifications. The analysis yielded 86 proteins specifically enriched in centromere chromatin preparations. The data accompanying the manuscript on this approach (Barth et al., 2015, Proteomics 14:2167-78, DOI: 10.1002/pmic.201400052) has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD000758.
Collapse
Affiliation(s)
- Teresa K Barth
- Munich Center of Integrated Protein Science and Adolf-Butenandt Institute, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Georg O M Schade
- Max-Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Andreas Schmidt
- Munich Center of Integrated Protein Science and Adolf-Butenandt Institute, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Irene Vetter
- Munich Center of Integrated Protein Science and Adolf-Butenandt Institute, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Marc Wirth
- Munich Center of Integrated Protein Science and Adolf-Butenandt Institute, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Patrick Heun
- Max-Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Axel Imhof
- Munich Center of Integrated Protein Science and Adolf-Butenandt Institute, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Andreas W Thomae
- Munich Center of Integrated Protein Science and Adolf-Butenandt Institute, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| |
Collapse
|
62
|
Chen CC, Bowers S, Lipinszki Z, Palladino J, Trusiak S, Bettini E, Rosin L, Przewloka MR, Glover DM, O'Neill RJ, Mellone BG. Establishment of Centromeric Chromatin by the CENP-A Assembly Factor CAL1 Requires FACT-Mediated Transcription. Dev Cell 2015; 34:73-84. [PMID: 26151904 PMCID: PMC4495351 DOI: 10.1016/j.devcel.2015.05.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 04/09/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023]
Abstract
Centromeres are essential chromosomal structures that mediate accurate chromosome segregation during cell division. Centromeres are specified epigenetically by the heritable incorporation of the centromeric histone H3 variant CENP-A. While many of the primary factors that mediate centromeric deposition of CENP-A are known, the chromatin and DNA requirements of this process have remained elusive. Here, we uncover a role for transcription in Drosophila CENP-A deposition. Using an inducible ectopic centromere system that uncouples CENP-A deposition from endogenous centromere function and cell-cycle progression, we demonstrate that CENP-A assembly by its loading factor, CAL1, requires RNAPII-mediated transcription of the underlying DNA. This transcription depends on the CAL1 binding partner FACT, but not on CENP-A incorporation. Our work establishes RNAPII passage as a key step in chaperone-mediated CENP-A chromatin establishment and propagation.
Collapse
Affiliation(s)
- Chin-Chi Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Sarion Bowers
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Zoltan Lipinszki
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, P.O. Box 521, 6701 Szeged, Hungary
| | - Jason Palladino
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Sarah Trusiak
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Emily Bettini
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Leah Rosin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Barbara G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
63
|
Borg M, Berger F. Chromatin remodelling during male gametophyte development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:177-188. [PMID: 25892182 DOI: 10.1111/tpj.12856] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 05/28/2023]
Abstract
The plant life cycle alternates between a diploid sporophytic phase and haploid gametophytic phase, with the latter giving rise to the gametes. Male gametophyte development encompasses two mitotic divisions that results in a simple three-celled structure knows as the pollen grain, in which two sperm cells are encased within a larger vegetative cell. Both cell types exhibit a very different type of chromatin organization - highly condensed in sperm cell nuclei and highly diffuse in the vegetative cell. Distinct classes of histone variants have dynamic and differential expression in the two cell lineages of the male gametophyte. Here we review how the dynamics of histone variants are linked to reprogramming of chromatin activities in the male gametophyte, compaction of the sperm cell genome and zygotic transitions post-fertilization.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| |
Collapse
|
64
|
Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture. Proc Natl Acad Sci U S A 2015; 112:8656-60. [PMID: 26124146 DOI: 10.1073/pnas.1506351112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centromeres play a pivotal role in maintaining genome integrity by facilitating the recruitment of kinetochore and sister-chromatid cohesion proteins, both required for correct chromosome segregation. Centromeres are epigenetically specified by the presence of the histone H3 variant (CENH3). In this study, we investigate the role of the highly conserved γ-tubulin complex protein 3-interacting proteins (GIPs) in Arabidopsis centromere regulation. We show that GIPs form a complex with CENH3 in cycling cells. GIP depletion in the gip1gip2 knockdown mutant leads to a decreased CENH3 level at centromeres, despite a higher level of Mis18BP1/KNL2 present at both centromeric and ectopic sites. We thus postulate that GIPs are required to ensure CENH3 deposition and/or maintenance at centromeres. In addition, the recruitment at the centromere of other proteins such as the CENP-C kinetochore component and the cohesin subunit SMC3 is impaired in gip1gip2. These defects in centromere architecture result in aneuploidy due to severely altered centromeric cohesion. Altogether, we ascribe a central function to GIPs for the proper recruitment and/or stabilization of centromeric proteins essential in the specification of the centromere identity, as well as for centromeric cohesion in somatic cells.
Collapse
|
65
|
Falk SJ, Guo LY, Sekulic N, Smoak EM, Mani T, Logsdon GA, Gupta K, Jansen LET, Van Duyne GD, Vinogradov SA, Lampson MA, Black BE. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science 2015; 348:699-703. [PMID: 25954010 DOI: 10.1126/science.1259308] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inheritance of each chromosome depends upon its centromere. A histone H3 variant, centromere protein A (CENP-A), is essential for epigenetically marking centromere location. We find that CENP-A is quantitatively retained at the centromere upon which it is initially assembled. CENP-C binds to CENP-A nucleosomes and is a prime candidate to stabilize centromeric chromatin. Using purified components, we find that CENP-C reshapes the octameric histone core of CENP-A nucleosomes, rigidifies both surface and internal nucleosome structure, and modulates terminal DNA to match the loose wrap that is found on native CENP-A nucleosomes at functional human centromeres. Thus, CENP-C affects nucleosome shape and dynamics in a manner analogous to allosteric regulation of enzymes. CENP-C depletion leads to rapid removal of CENP-A from centromeres, indicating their collaboration in maintaining centromere identity.
Collapse
Affiliation(s)
- Samantha J Falk
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucie Y Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nikolina Sekulic
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evan M Smoak
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomoyasu Mani
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Glennis A Logsdon
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Gregory D Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
66
|
Westhorpe FG, Fuller CJ, Straight AF. A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance. J Cell Biol 2015; 209:789-801. [PMID: 26076692 PMCID: PMC4477859 DOI: 10.1083/jcb.201503132] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022] Open
Abstract
Studying CENP-A nucleosome assembly in a cell-free system defines the role of existing CENP-A nucleosomes in centromere maintenance. Centromeres are defined by the presence of CENP-A nucleosomes in chromatin and are essential for accurate chromosome segregation. Centromeric chromatin epigenetically seeds new CENP-A nucleosome formation, thereby maintaining functional centromeres as cells divide. The features within centromeric chromatin that direct new CENP-A assembly remain unclear. Here, we developed a cell-free CENP-A assembly system that enabled the study of chromatin-bound CENP-A and soluble CENP-A separately. We show that two distinct domains of CENP-A within existing CENP-A nucleosomes are required for new CENP-A assembly and that CENP-A nucleosomes recruit the CENP-A assembly factors CENP-C and M18BP1 independently. Furthermore, we demonstrate that the mechanism of CENP-C recruitment to centromeres is dependent on the density of underlying CENP-A nucleosomes.
Collapse
Affiliation(s)
| | - Colin J Fuller
- Department of Biochemistry, Stanford University Medical School, Stanford, CA 94305
| | - Aaron F Straight
- Department of Biochemistry, Stanford University Medical School, Stanford, CA 94305
| |
Collapse
|
67
|
Discovering centromere proteins: from cold white hands to the A, B, C of CENPs. Nat Rev Mol Cell Biol 2015; 16:443-9. [PMID: 25991376 DOI: 10.1038/nrm4001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kinetochore is a complex molecular machine that directs chromosome segregation during mitosis. It is one of the most elaborate subcellular protein structures in eukaryotes, comprising more than 100 different proteins. Inner kinetochore proteins associate with specialized centromeric chromatin containing the histone H3 variant centromere protein A (CENP-A) in place of H3. Outer kinetochore proteins bind to microtubules and signal to delay anaphase onset when microtubules are absent. Since the first kinetochore proteins were discovered and cloned 30 years ago using autoimmune sera from patients with scleroderma-spectrum disease, much has been learnt about the composition, functions and regulation of this remarkable structure.
Collapse
|
68
|
Niikura Y, Kitagawa R, Ogi H, Abdulle R, Pagala V, Kitagawa K. CENP-A K124 Ubiquitylation Is Required for CENP-A Deposition at the Centromere. Dev Cell 2015; 32:589-603. [PMID: 25727006 PMCID: PMC4374629 DOI: 10.1016/j.devcel.2015.01.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/24/2014] [Accepted: 01/21/2015] [Indexed: 11/23/2022]
Abstract
CENP-A is a centromere-specific histone H3 variant that epigenetically determines centromere identity to ensure kinetochore assembly and proper chromosome segregation, but the precise mechanism of its specific localization within centromeric heterochromatin remains obscure. We have discovered that CUL4A-RBX1-COPS8 E3 ligase activity is required for CENP-A ubiquitylation on lysine 124 (K124) and CENP-A centromere localization. A mutation of CENP-A, K124R, reduces interaction with HJURP (a CENP-A-specific histone chaperone) and abrogates localization of CENP-A to the centromere. Addition of monoubiquitin is sufficient to restore CENP-A K124R to centromeres and the interaction with HJURP, indicating that "signaling" ubiquitylation is required for CENP-A loading at centromeres. The CUL4A-RBX1 complex is required for loading newly synthesized CENP-A and maintaining preassembled CENP-A at centromeres. Thus, CENP-A K124R ubiquitylation, mediated by the CUL4A-RBX1-COPS8 complex, is essential for CENP-A deposition at the centromere.
Collapse
Affiliation(s)
- Yohei Niikura
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Risa Kitagawa
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Hiroo Ogi
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Rashid Abdulle
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Vishwajeeth Pagala
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Katsumi Kitagawa
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
69
|
Gurard-Levin ZA, Quivy JP, Almouzni G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 2015; 83:487-517. [PMID: 24905786 DOI: 10.1146/annurev-biochem-060713-035536] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.
Collapse
Affiliation(s)
- Zachary A Gurard-Levin
- Institut Curie, Centre de Recherche; CNRS UMR 3664; Equipe Labellisée, Ligue contre le Cancer; and Université Pierre et Marie Curie, Paris F-75248, France;
| | | | | |
Collapse
|
70
|
Horard B, Loppin B. Histone storage and deposition in the early Drosophila embryo. Chromosoma 2015; 124:163-75. [PMID: 25563491 DOI: 10.1007/s00412-014-0504-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/18/2022]
Abstract
Drosophila development initiates with the formation of a diploid zygote followed by the rapid division of embryonic nuclei. This syncytial phase of development occurs almost entirely under maternal control and ends when the blastoderm embryo cellularizes and activates its zygotic genome. The biosynthesis and storage of histones in quantity sufficient for chromatin assembly of several thousands of genome copies represent a unique challenge for the developing embryo. In this article, we have reviewed our current understanding of the mechanisms involved in the production, storage, and deposition of histones in the fertilized egg and during the exponential amplification of cleavage nuclei.
Collapse
Affiliation(s)
- Béatrice Horard
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire-CNRS UMR5534, Université Claude Bernard Lyon 1, University of Lyon, 69100, Villeurbanne, France
| | | |
Collapse
|
71
|
Lipinszki Z, Lefevre S, Savoian MS, Singleton MR, Glover DM, Przewloka MR. Centromeric binding and activity of Protein Phosphatase 4. Nat Commun 2015; 6:5894. [PMID: 25562660 PMCID: PMC4354016 DOI: 10.1038/ncomms6894] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/18/2014] [Indexed: 02/02/2023] Open
Abstract
The cell division cycle requires tight coupling between protein phosphorylation and dephosphorylation. However, understanding the cell cycle roles of multimeric protein phosphatases has been limited by the lack of knowledge of how their diverse regulatory subunits target highly conserved catalytic subunits to their sites of action. Phosphoprotein phosphatase 4 (PP4) has been recently shown to participate in the regulation of cell cycle progression. We now find that the EVH1 domain of the regulatory subunit 3 of Drosophila PP4, Falafel (Flfl), directly interacts with the centromeric protein C (CENP-C). Unlike other EVH1 domains that interact with proline-rich ligands, the crystal structure of the Flfl amino-terminal EVH1 domain bound to a CENP-C peptide reveals a new target-recognition mode for the phosphatase subunit. We also show that binding of Flfl to CENP-C is required to bring PP4 activity to centromeres to maintain CENP-C and attached core kinetochore proteins at chromosomes during mitosis.
Collapse
Affiliation(s)
- Zoltan Lipinszki
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Stephane Lefevre
- Macromolecular Structure and Function Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, UK
| | - Matthew S. Savoian
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Martin R. Singleton
- Macromolecular Structure and Function Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, UK
| | - David M. Glover
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Marcin R. Przewloka
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
72
|
Dynamic Phosphorylation of CENP-A at Ser68 Orchestrates Its Cell-Cycle-Dependent Deposition at Centromeres. Dev Cell 2015; 32:68-81. [DOI: 10.1016/j.devcel.2014.11.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 10/14/2014] [Accepted: 11/19/2014] [Indexed: 11/23/2022]
|
73
|
Westhorpe FG, Straight AF. The centromere: epigenetic control of chromosome segregation during mitosis. Cold Spring Harb Perspect Biol 2014; 7:a015818. [PMID: 25414369 DOI: 10.1101/cshperspect.a015818] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A fundamental challenge for the survival of all organisms is maintaining the integrity of the genome in all cells. Cells must therefore segregate their replicated genome equally during each cell division. Eukaryotic organisms package their genome into a number of physically distinct chromosomes, which replicate during S phase and condense during prophase of mitosis to form paired sister chromatids. During mitosis, cells form a physical connection between each sister chromatid and microtubules of the mitotic spindle, which segregate one copy of each chromatid to each new daughter cell. The centromere is the DNA locus on each chromosome that creates the site of this connection. In this review, we present a brief history of centromere research and discuss our current knowledge of centromere establishment, maintenance, composition, structure, and function in mitosis.
Collapse
Affiliation(s)
- Frederick G Westhorpe
- Department of Biochemistry, Stanford University Medical School, Stanford, California 94305
| | - Aaron F Straight
- Department of Biochemistry, Stanford University Medical School, Stanford, California 94305
| |
Collapse
|
74
|
Abstract
Since discovery of the centromere-specific histone H3 variant CENP-A, centromeres have come to be defined as chromatin structures that establish the assembly site for the complex kinetochore machinery. In most organisms, centromere activity is defined epigenetically, rather than by specific DNA sequences. In this review, we describe selected classic work and recent progress in studies of centromeric chromatin with a focus on vertebrates. We consider possible roles for repetitive DNA sequences found at most centromeres, chromatin factors and modifications that assemble and activate CENP-A chromatin for kinetochore assembly, plus the use of artificial chromosomes and kinetochores to study centromere function.
Collapse
Affiliation(s)
- Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics and Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan.
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
| |
Collapse
|
75
|
Rošić S, Köhler F, Erhardt S. Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. ACTA ACUST UNITED AC 2014; 207:335-49. [PMID: 25365994 PMCID: PMC4226727 DOI: 10.1083/jcb.201404097] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SAT III RNA binds to the kinetochore component CENP-C and is required for correct assembly and function of the kinetochore at centromeres. Chromosome segregation requires centromeres on every sister chromatid to correctly form and attach the microtubule spindle during cell division. Even though centromeres are essential for genome stability, the underlying centromeric DNA is highly variable in sequence and evolves quickly. Epigenetic mechanisms are therefore thought to regulate centromeres. Here, we show that the 359-bp repeat satellite III (SAT III), which spans megabases on the X chromosome of Drosophila melanogaster, produces a long noncoding RNA that localizes to centromeric regions of all major chromosomes. Depletion of SAT III RNA causes mitotic defects, not only of the sex chromosome but also in trans of all autosomes. We furthermore find that SAT III RNA binds to the kinetochore component CENP-C, and is required for correct localization of the centromere-defining proteins CENP-A and CENP-C, as well as outer kinetochore proteins. In conclusion, our data reveal that SAT III RNA is an integral part of centromere identity, adding RNA to the complex epigenetic mark at centromeres in flies.
Collapse
Affiliation(s)
- Silvana Rošić
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany
| | - Florian Köhler
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sylvia Erhardt
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
76
|
Barth TK, Schade GOM, Schmidt A, Vetter I, Wirth M, Heun P, Thomae AW, Imhof A. Identification of novel Drosophila centromere-associated proteins. Proteomics 2014; 14:2167-78. [PMID: 24841622 DOI: 10.1002/pmic.201400052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/03/2014] [Accepted: 05/15/2014] [Indexed: 12/16/2022]
Abstract
Centromeres are chromosomal regions crucial for correct chromosome segregation during mitosis and meiosis. They are epigenetically defined by centromeric proteins such as the centromere-specific histone H3-variant centromere protein A (CENP-A). In humans, 16 additional proteins have been described to be constitutively associated with centromeres throughout the cell cycle, known as the constitutive centromere-associated network (CCAN). In contrast, only one additional constitutive centromeric protein is known in Drosophila melanogaster (D.mel), the conserved CCAN member CENP-C. To gain further insights into D.mel centromere composition and biology, we analyzed affinity-purified chromatin prepared from D.mel cell lines expressing green fluorescent protein tagged histone three variants by MS. In addition to already-known centromeric proteins, we identified novel factors that were repeatedly enriched in affinity purification-MS experiments. We analyzed the cellular localization of selected candidates by immunocytochemistry and confirmed localization to the centromere and other genomic regions for ten factors. Furthermore, RNA interference mediated depletion of CG2051, CG14480, and hyperplastic discs, three of our strongest candidates, leads to elevated mitotic defects. Knockdowns of these candidates neither impair the localization of several known kinetochore proteins nor CENP-A(CID) loading, suggesting their involvement in alternative pathways that contribute to proper centromere function. In summary, we provide a comprehensive analysis of the proteomic composition of Drosophila centromeres. All MS data have been deposited in the ProteomeXchange with identifier PXD000758 (http://proteomecentral.proteomexchange.org/dataset/PXD000758).
Collapse
Affiliation(s)
- Teresa K Barth
- Munich Center of Integrated Protein Science, Adolf-Butenandt Institute, Ludwig Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Bade D, Pauleau AL, Wendler A, Erhardt S. The E3 ligase CUL3/RDX controls centromere maintenance by ubiquitylating and stabilizing CENP-A in a CAL1-dependent manner. Dev Cell 2014; 28:508-19. [PMID: 24636256 DOI: 10.1016/j.devcel.2014.01.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 11/09/2013] [Accepted: 01/30/2014] [Indexed: 01/03/2023]
Abstract
Centromeres are defined by the presence of the histone H3 variant CENP-A in a subset of centromeric nucleosomes. CENP-A deposition to centromeres depends on a specialized loading factor from yeast to humans that is called CAL1 in Drosophila. Here, we show that CAL1 directly interacts with RDX, an adaptor for CUL3-mediated ubiquitylation. However, CAL1 is not a substrate of the CUL3/RDX ligase but functions as an additional substrate-specifying factor for the CUL3/RDX-mediated ubiquitylation of CENP-A. Remarkably, ubiquitylation of CENP-A by CUL3/RDX does not trigger its degradation but stabilizes CENP-A and CAL1. Loss of RDX leads to a rapid degradation of CAL1 and CENP-A and to massive chromosome segregation defects during development. Essentially, we identified a proteolysis-independent role of ubiquitin conjugation in centromere regulation that is essential for the maintenance of the centromere-defining protein CENP-A and its loading factor CAL1.
Collapse
Affiliation(s)
- Debora Bade
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH-Alliance, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Anne-Laure Pauleau
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH-Alliance, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Astrid Wendler
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH-Alliance, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Sylvia Erhardt
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH-Alliance, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
78
|
Chen CC, Dechassa ML, Bettini E, Ledoux MB, Belisario C, Heun P, Luger K, Mellone BG. CAL1 is the Drosophila CENP-A assembly factor. ACTA ACUST UNITED AC 2014; 204:313-29. [PMID: 24469636 PMCID: PMC3912524 DOI: 10.1083/jcb.201305036] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Representing a unique family of histone assembly factors, CAL1 assembles the histone H3 variant CENP-A on centromeric DNA in Drosophila. Centromeres are specified epigenetically by the incorporation of the histone H3 variant CENP-A. In humans, amphibians, and fungi, CENP-A is deposited at centromeres by the HJURP/Scm3 family of assembly factors, but homologues of these chaperones are absent from a number of major eukaryotic lineages such as insects, fish, nematodes, and plants. In Drosophila, centromeric deposition of CENP-A requires the fly-specific protein CAL1. Here, we show that targeting CAL1 to noncentromeric DNA in Drosophila cells is sufficient to heritably recruit CENP-A, kinetochore proteins, and microtubule attachments. CAL1 selectively interacts with CENP-A and is sufficient to assemble CENP-A nucleosomes that display properties consistent with left-handed octamers. The CENP-A assembly activity of CAL1 resides within an N-terminal domain, whereas the C terminus mediates centromere recognition through an interaction with CENP-C. Collectively, this work identifies the “missing” CENP-A chaperone in flies, revealing fundamental conservation between insect and vertebrate centromere-specification mechanisms.
Collapse
Affiliation(s)
- Chin-Chi Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Centromere proteins CENP-C and CAL1 functionally interact in meiosis for centromere clustering, pairing, and chromosome segregation. Proc Natl Acad Sci U S A 2013; 110:19878-83. [PMID: 24248385 DOI: 10.1073/pnas.1320074110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Meiotic chromosome segregation involves pairing and segregation of homologous chromosomes in the first division and segregation of sister chromatids in the second division. Although it is known that the centromere and kinetochore are responsible for chromosome movement in meiosis as in mitosis, potential specialized meiotic functions are being uncovered. Centromere pairing early in meiosis I, even between nonhomologous chromosomes, and clustering of centromeres can promote proper homolog associations in meiosis I in yeast, plants, and Drosophila. It was not known, however, whether centromere proteins are required for this clustering. We exploited Drosophila mutants for the centromere proteins centromere protein-C (CENP-C) and chromosome alignment 1 (CAL1) to demonstrate that a functional centromere is needed for centromere clustering and pairing. The cenp-C and cal1 mutations result in C-terminal truncations, removing the domains through which these two proteins interact. The mutants show striking genetic interactions, failing to complement as double heterozygotes, resulting in disrupted centromere clustering and meiotic nondisjunction. The cluster of meiotic centromeres localizes to the nucleolus, and this association requires centromere function. In Drosophila, synaptonemal complex (SC) formation can initiate from the centromere, and the SC is retained at the centromere after it disassembles from the chromosome arms. Although functional CENP-C and CAL1 are dispensable for assembly of the SC, they are required for subsequent retention of the SC at the centromere. These results show that integral centromere proteins are required for nuclear position and intercentromere associations in meiosis.
Collapse
|
80
|
Abstract
Nearly all cell division mutants in Drosophila were recovered in late larval/pupal lethal screens, with less than 10 embryonic lethal mutants identified, because larval development occurs without a requirement for cell division. Only cells in the nervous system and the imaginal cells that generate the adult body divide during larval stages, with larval tissues growing by increasing ploidy rather than cell number. Thus, most mutants perturbing mitosis or the cell cycle do not manifest a phenotype until the adult body differentiates in late larval and pupal stages. To identify cell-cycle components whose maternal pools are depleted in embryogenesis or that have specific functions in embryogenesis, we screened for mutants defective in cell division during embryogenesis. Five new alleles of Cyclin E were recovered, ranging from a missense mutation that is viable to stop codons causing embryonic lethality. These permitted us to investigate the requirements for Cyclin E function in neuroblast cell fate determination, a role previously shown for a null Cyclin E allele. The mutations causing truncation of the protein affect cell fate of the NB6-4 neuroblast, whereas the weak missense mutation has no effect. We identified mutations in the pavarotti (pav) and tumbleweed (tum) genes needed for cytokinesis by a phenotype of large and multinucleate cells in the embryonic epidermis and nervous system. Other mutations affecting the centromere protein CAL1 and the kinetochore protein Spc105R caused mitotic defects in the nervous system.
Collapse
|
81
|
Filipescu D, Szenker E, Almouzni G. Developmental roles of histone H3 variants and their chaperones. Trends Genet 2013; 29:630-40. [PMID: 23830582 DOI: 10.1016/j.tig.2013.06.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/14/2013] [Accepted: 06/03/2013] [Indexed: 11/27/2022]
Abstract
Animal development and lifetime potential exploit a balance between the stability and plasticity of cellular identity. Within the nucleus, this is controlled by an interplay involving lineage-specific transcription factors and chromatin dynamics. Histone H3 variants contribute to chromatin dynamics through the timing and sites of their incorporation, promoted by dedicated histone chaperones. Moreover, their individual modifications and binding partners provide distinct features at defined genomic loci. We highlight here the importance of the H3.3 replacement variant for the nuclear reprogramming that occurs during gametogenesis, fertilization, and germline establishment. Furthermore, we describe how the recently characterized H3.3 dynamics associated with gastrulation, myogenesis, or neurogenesis underline the role of chromatin changes in cell differentiation. Finally, we discuss the challenges of maintaining centromeric identity through propagation of the centromeric CenH3 variant in different cell types. Future challenges will be to gain a comprehensive picture of H3 variants and their chaperones during development and differentiation.
Collapse
Affiliation(s)
- Dan Filipescu
- Institut Curie, Centre de Recherche, Paris F-75248 Cedex 05, France; CNRS, UMR218, Paris F-75248 Cedex 05, France
| | | | | |
Collapse
|
82
|
Abstract
The ubiquitin-proteasome system plays a pivotal role in the sequence of events leading to cell division known as the cell cycle. Not only does ubiquitin-mediated proteolysis constitute a critical component of the core oscillator that drives the cell cycle in all eukaryotes, it is also central to the mechanisms that ensure that the integrity of the genome is maintained. These functions are primarily carried out by two families of E3 ubiquitin ligases, the Skp/cullin/F-box-containing and anaphase-promoting complex/cyclosome complexes. However, beyond those functions associated with regulation of central cell cycle events, many peripheral cell cycle-related processes rely on ubiquitylation for signaling, homeostasis, and dynamicity, involving additional types of ubiquitin ligases and regulators. We are only beginning to understand the diversity and complexity of this regulation.
Collapse
Affiliation(s)
- Leonardo K Teixeira
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
83
|
Hypermorphic expression of centromeric retroelement-encoded small RNAs impairs CENP-A loading. Chromosome Res 2013; 21:49-62. [PMID: 23392618 DOI: 10.1007/s10577-013-9337-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 01/01/2023]
Abstract
The proper functioning of centromeres requires a complex cascade of epigenetic events involving chromatin and kinetochore assembly; however, the precise mechanism by which this cascade proceeds is unknown. The pivotal event during kinetochore formation is the "loading," or deposition, of CENP-A. This histone H3 variant is specific to centromeres and replaces conventional H3 in centromeric chromatin. Failure to load CENP-A into mammalian centromeres in late telophase/early G1 of the cell cycle leads to malsegregation and cell division defects in subsequent cell cycles. Mounting evidence supports the hypothesis that an RNA component is involved, although how RNAs participate in centromere formation in mammals has remained unknown. Using the marsupial model, the tammar wallaby, we show that centromeric retroelements produce small RNAs and that hypermorphic expression of these centromeric small RNAs results in disruption of CENP-A localization. We propose that tight regulation of the processing of this new class of small RNAs, crasiRNAs, is an integral component of the epigenetic framework necessary for centromere establishment.
Collapse
|
84
|
Lidsky PV, Sprenger F, Lehner CF. Distinct modes of centromere protein dynamics during cell cycle progression in Drosophila S2R+ cells. J Cell Sci 2013; 126:4782-93. [DOI: 10.1242/jcs.134122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centromeres are specified epigenetically in animal cells. Therefore, faithful chromosome inheritance depends critically on the accurate maintenance of epigenetic centromere marks during progression through the cell cycle. Clarification of the mechanisms that control centromere protein behavior during the cell cycle should profit from the relative simplicity of the protein cast at Drosophila centromeres. Thus we have analyzed the dynamics of the three key players Cid/Cenp-A, Cenp-C and Cal1 in S2R+ cells using quantitative microscopy and fluorescence recovery after photobleaching in combination with novel fluorescent cell cycle markers. As revealed by the observed protein abundances and mobilities, centromeres proceed through at least five distinct states during the cell cycle, distinguished in part by unexpected Cid behavior. In addition to the predominant Cid loading onto centromeres during G1, a considerable but transient increase was detected during early mitosis. Low level of Cid loading was detected in late S and G2, starting at the reported time of centromere DNA replication. Our results disclose the complexities of Drosophila centromere protein dynamics and its intricate coordination with cell cycle progression.
Collapse
|
85
|
Abstract
The kinetochore forms the site of attachment for mitotic spindle microtubules
driving chromosome segregation. The interdependent protein interactions in this
large structure have made it difficult to dissect the function of its
components. In this issue, Hori et al. (2013. J. Cell Biol.
http://dx.doi.org/10.1083/jcb.201210106) present a novel and powerful
methodology to address the sufficiency of individual proteins for the creation
of a functional de novo centromere.
Collapse
Affiliation(s)
- Ana Stankovic
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | | |
Collapse
|
86
|
Dunleavy EM, Beier NL, Gorgescu W, Tang J, Costes SV, Karpen GH. The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C. PLoS Biol 2012; 10:e1001460. [PMID: 23300382 PMCID: PMC3531500 DOI: 10.1371/journal.pbio.1001460] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/13/2012] [Indexed: 01/16/2023] Open
Abstract
CENP-A (CID in flies) is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote.
Collapse
Affiliation(s)
- Elaine M. Dunleavy
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Nicole L. Beier
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Walter Gorgescu
- Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jonathan Tang
- Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sylvain V. Costes
- Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Gary H. Karpen
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
87
|
Raychaudhuri N, Dubruille R, Orsi GA, Bagheri HC, Loppin B, Lehner CF. Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-A presence in Drosophila sperm. PLoS Biol 2012; 10:e1001434. [PMID: 23300376 PMCID: PMC3531477 DOI: 10.1371/journal.pbio.1001434] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/17/2012] [Indexed: 01/28/2023] Open
Abstract
In Drosophila melanogaster, as in many animal and plant species, centromere identity is specified epigenetically. In proliferating cells, a centromere-specific histone H3 variant (CenH3), named Cid in Drosophila and Cenp-A in humans, is a crucial component of the epigenetic centromere mark. Hence, maintenance of the amount and chromosomal location of CenH3 during mitotic proliferation is important. Interestingly, CenH3 may have different roles during meiosis and the onset of embryogenesis. In gametes of Caenorhabditis elegans, and possibly in plants, centromere marking is independent of CenH3. Moreover, male gamete differentiation in animals often includes global nucleosome for protamine exchange that potentially could remove CenH3 nucleosomes. Here we demonstrate that the control of Cid loading during male meiosis is distinct from the regulation observed during the mitotic cycles of early embryogenesis. But Cid is present in mature sperm. After strong Cid depletion in sperm, paternal centromeres fail to integrate into the gonomeric spindle of the first mitosis, resulting in gynogenetic haploid embryos. Furthermore, after moderate depletion, paternal centromeres are unable to re-acquire normal Cid levels in the next generation. We conclude that Cid in sperm is an essential component of the epigenetic centromere mark on paternal chromosomes and it exerts quantitative control over centromeric Cid levels throughout development. Hence, the amount of Cid that is loaded during each cell cycle appears to be determined primarily by the preexisting centromeric Cid, with little flexibility for compensation of accidental losses.
Collapse
Affiliation(s)
- Nitika Raychaudhuri
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - Raphaelle Dubruille
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon I, Villeurbanne, France
| | - Guillermo A. Orsi
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon I, Villeurbanne, France
| | - Homayoun C. Bagheri
- Institute of Evolutionary Biology and Environmental Studies (IEES), University of Zurich, Zurich, Switzerland
| | - Benjamin Loppin
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon I, Villeurbanne, France
| | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
88
|
Phansalkar R, Lapierre P, Mellone BG. Evolutionary insights into the role of the essential centromere protein CAL1 in Drosophila. Chromosome Res 2012; 20:493-504. [PMID: 22820845 DOI: 10.1007/s10577-012-9299-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Centromeres are essential cis-elements on chromosomes that are crucial for the stable transmission of genetic information during mitotic and meiotic cell divisions. Different species employ a variety of centromere configurations, from small genetically defined centromeres in budding yeast to holocentric centromeres that occupy entire chromosomes in Caenorhabditis, yet the incorporation of nucleosomes containing the essential centromere-specific histone H3 variant CENP-A is a common feature of centromeres in all eukaryotes. In vertebrates and fungi, CENP-A is specifically deposited at centromeres by a conserved chaperone, called HJURP or Scm3, respectively. Surprisingly, homologs of these proteins have not been identified in Drosophila, Caenorhabditis, or plants. How CENP-A is targeted to centromeres in these organisms is not known. The Drosophila centromeric protein CAL1, found only in the Diptera genus, is essential for CENP-A localization, is recruited to centromeres at a similar time as CENP-A, and interacts with CENP-A in both chromatin and pre-nucleosomal complexes, making it a strong candidate for a CENP-A chaperone in this lineage. Here, we discuss the conservation and evolution of this essential centromere factor and report the identification of a "Scm3-domain"-like region with similarity to the corresponding region of fungal Scm3 as well as a shared predicted alpha-helical structure. Given the lack of common ancestry between Scm3 and CAL1, we propose that an optimal CENP-A binding region was independently acquired by CAL1, which caused the loss of an ancestral Scm3 protein from the Diptera lineage.
Collapse
Affiliation(s)
- Ragini Phansalkar
- Department of Molecular and Cell Biology, University of Connecticut, 354 Mansfield Road, U2131, R247, Storrs, CT 06269, USA
| | | | | |
Collapse
|
89
|
Quénet D, Dalal Y. The CENP-A nucleosome: a dynamic structure and role at the centromere. Chromosome Res 2012; 20:465-79. [PMID: 22825424 DOI: 10.1007/s10577-012-9301-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The centromere is a specialized locus that directs the formation of the kinetochore protein complex for correct chromosome segregation. The specific centromere histone H3 variant CENP-A has been described as the epigenetic mark of this chromatin region. Several laboratories have explored its properties, its partners, and its role in centromere formation. Specifically, two types of CENP-A nucleosomes have been described, suggesting there may be more complexity involved in centromere structure than previously thought. Recent work adds to this paradox by questioning the role of CENP-A as a unique centromeric mark and highlighting the assembly of a functional kinetochore in the absence of CENP-A. In this review, we discuss recent literature on the CENP-A nucleosomes and the debate on its role in kinetochore formation and centromere identity.
Collapse
Affiliation(s)
- Delphine Quénet
- Laboratory of Receptor Biology & Gene Expression-NCI-NIH, Building 41, Room B901, 41 Library Drive MSC 5055, Bethesda, MD 20892, USA
| | | |
Collapse
|
90
|
Abstract
All living organisms require accurate mechanisms to faithfully inherit their genetic material during cell division. The centromere is a unique locus on each chromosome that supports a multiprotein structure called the kinetochore. During mitosis, the kinetochore is responsible for connecting chromosomes to spindle microtubules, allowing faithful segregation of the duplicated genome. In most organisms, centromere position and function is not defined by the local DNA sequence context but rather by an epigenetic chromatin-based mechanism. Centromere protein A (CENP-A) is central to this process, as chromatin assembled from this histone H3 variant is essential for assembly of the centromere complex, as well as for its epigenetic maintenance. As a major determinant of centromere function, CENP-A assembly requires tight control, both in its specificity for the centromere and in timing of assembly. In the last few years, there have been several new insights into the molecular mechanism that allow this process to occur. We will review these here and discuss the general implications of the mechanism of cell cycle coupling of centromere inheritance.
Collapse
|
91
|
Smith KM, Galazka JM, Phatale PA, Connolly LR, Freitag M. Centromeres of filamentous fungi. Chromosome Res 2012; 20:635-56. [PMID: 22752455 DOI: 10.1007/s10577-012-9290-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How centromeres are assembled and maintained remains one of the fundamental questions in cell biology. Over the past 20 years, the idea of centromeres as precise genetic loci has been replaced by the realization that it is predominantly the protein complement that defines centromere localization and function. Thus, placement and maintenance of centromeres are excellent examples of epigenetic phenomena in the strict sense. In contrast, the highly derived "point centromeres" of the budding yeast Saccharomyces cerevisiae and its close relatives are counter-examples for this general principle of centromere maintenance. While we have learned much in the past decade, it remains unclear if mechanisms for epigenetic centromere placement and maintenance are shared among various groups of organisms. For that reason, it seems prudent to examine species from many different phylogenetic groups with the aim to extract comparative information that will yield a more complete picture of cell division in all eukaryotes. This review addresses what has been learned by studying the centromeres of filamentous fungi, a large, heterogeneous group of organisms that includes important plant, animal and human pathogens, saprobes, and symbionts that fulfill essential roles in the biosphere, as well as a growing number of taxa that have become indispensable for industrial use.
Collapse
Affiliation(s)
- Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7305, USA
| | | | | | | | | |
Collapse
|
92
|
A role for the CAL1-partner Modulo in centromere integrity and accurate chromosome segregation in Drosophila. PLoS One 2012; 7:e45094. [PMID: 23028777 PMCID: PMC3448598 DOI: 10.1371/journal.pone.0045094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/16/2012] [Indexed: 01/21/2023] Open
Abstract
The relationship between the nucleolus and the centromere, although documented, remains one of the most elusive aspects of centromere assembly and maintenance. Here we identify the nucleolar protein, Modulo, in complex with CAL1, a factor essential for the centromeric deposition of the centromere-specific histone H3 variant, CID, in Drosophila. Notably, CAL1 localizes to both centromeres and the nucleolus. Depletion of Modulo, by RNAi, results in defective recruitment of newly-synthesized CAL1 at the centromere. Furthermore, depletion of Modulo negatively affects levels of CID at the centromere and results in chromosome missegregation. Interestingly, examination of Modulo localization during mitosis reveals it localizes to the chromosome periphery but not the centromere. Combined, the data suggest that rather than a direct regulatory role at the centromere, it is the nucleolar function of modulo which is regulating the assembly of the centromere by directing the localization of CAL1. We propose that a functional link between the nucleolus and centromere assembly exists in Drosophila, which is regulated by Modulo.
Collapse
|
93
|
Shao H, Ma C, Zhang X, Li R, Miller AL, Bement WM, Liu XJ. Aurora B regulates spindle bipolarity in meiosis in vertebrate oocytes. Cell Cycle 2012; 11:2672-80. [PMID: 22751439 DOI: 10.4161/cc.21016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aurora B (Aur-B) plays multiple roles in mitosis, of which the best known are to ensure bi-orientation of sister chromatids by destabilizing incorrectly attached kinetochore microtubules and to participate in cytokinesis. Studies in Xenopus egg extracts, however, have indicated that Aur-B and the chromosome passenger complex play an important role in stabilizing chromosome-associated spindle microtubules. Aur-B stabilizes spindle microtubules in the egg extracts by inhibiting the catastrophe kinesin MCAK. Whether or not Aur-B plays a similar role in intact oocytes remains unknown. Here we have employed a dominant-negative Aur-B mutant (Aur-B122R, in which the ATP-binding lysine(122) is replaced with arginine) to investigate the function of Aur-B in spindle assembly in Xenopus oocytes undergoing meiosis. Overexpression of Aur-B122R results in short bipolar spindles or monopolar spindles, with higher concentrations of Aur-B122R producing mostly the latter. Simultaneous inhibition of MCAK translation in oocytes overexpressing Aur-B122R results in suppression of monopolar phenotype, suggesting that Aur-B regulates spindle bipolarity by inhibiting MCAK. Furthermore, recombinant MCAK-4A protein, which lacks all four Aur-B phosphoryaltion sites and is therefore insensitive to Aur-B inhibition but not wild-type MCAK, recapitulated the monopolar phenotype in the oocytes. These results suggest that in vertebrate oocytes that lack centrosomes, one major function of Aur-B is to stabilize chromosome-associated spindle microtubules to ensure spindle bipolarity.
Collapse
Affiliation(s)
- Hua Shao
- Ottawa Hospital Research Institute, Ottawa Hospital Civic Campus, Ottawa, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
94
|
Stellfox ME, Bailey AO, Foltz DR. Putting CENP-A in its place. Cell Mol Life Sci 2012; 70:387-406. [PMID: 22729156 DOI: 10.1007/s00018-012-1048-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/15/2012] [Accepted: 06/01/2012] [Indexed: 01/19/2023]
Abstract
The centromere is the chromosomal region that directs kinetochore assembly during mitosis in order to facilitate the faithful segregation of sister chromatids. The location of the human centromere is epigenetically specified. The presence of nucleosomes that contain the histone H3 variant, CENP-A, are thought to be the epigenetic mark that indicates active centromeres. Maintenance of centromeric identity requires the deposition of new CENP-A nucleosomes with each cell cycle. During S-phase, existing CENP-A nucleosomes are divided among the daughter chromosomes, while new CENP-A nucleosomes are deposited during early G1. The specific assembly of CENP-A nucleosomes at centromeres requires the Mis18 complex, which recruits the CENP-A assembly factor, HJURP. We will review the unique features of centromeric chromatin as well as the mechanism of CENP-A nucleosome deposition. We will also highlight a few recent discoveries that begin to elucidate the factors that temporally and spatially control CENP-A deposition.
Collapse
Affiliation(s)
- Madison E Stellfox
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, PO Box 800733, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
95
|
Bodor DL, Rodríguez MG, Moreno N, Jansen LET. Analysis of protein turnover by quantitative SNAP-based pulse-chase imaging. CURRENT PROTOCOLS IN CELL BIOLOGY 2012; Chapter 8:Unit8.8. [PMID: 23129118 DOI: 10.1002/0471143030.cb0808s55] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Assessment of protein dynamics in living cells is crucial for understanding their biological properties and functions. The SNAP-tag, a self labeling suicide enzyme, presents a tool with unique features that can be adopted for determining protein dynamics in living cells. Here we present detailed protocols for the use of SNAP in fluorescent pulse-chase and quench-chase-pulse experiments. These time-slicing methods provide powerful tools to assay and quantify the fate and turnover rate of proteins of different ages. We cover advantages and pitfalls of SNAP-tagging in fixed- and live-cell studies and evaluate the recently developed fast-acting SNAPf variant. In addition, to facilitate the analysis of protein turnover datasets, we present an automated algorithm for spot recognition and quantification.
Collapse
Affiliation(s)
- Dani L Bodor
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | |
Collapse
|
96
|
Leblond GG, Sarazin H, Li R, Suzuki M, Ueno N, Liu XJ. Translation of incenp during oocyte maturation is required for embryonic development in Xenopus laevis. Biol Reprod 2012; 86:161, 1-8. [PMID: 22378760 DOI: 10.1095/biolreprod.111.097972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The chromosome passenger complex (CPC) consists of Aurora-B kinase and several other subunits. One of these, incenp, binds Aurora-B and regulates its kinase activity. During Xenopus oocyte maturation, incenp accumulates through translation, contributing to aurora-b activation. A previous study has demonstrated that inhibition of incenp translation during oocyte maturation diminishes aurora-b activation but does not interfere with oocyte maturation, characterized by normal maturation-specific cyclin-b phosphorylation, degradation, and resynthesis. Here we have extended these findings, showing that inhibition of incenp translation during oocyte maturation did not interfere with meiosis I or II, as indicated by the normal emission of the first polar body and metaphase II arrest, followed by the successful emission of the second polar body upon parthenogenetic egg activation. Most importantly, however, when transferred to host frogs and subsequently ovulated, the incenp-deficient eggs were fertilized but failed to undergo mitotic cleavage. Thus, translation of incenp during oocyte maturation appears to be part of oocyte cytoplasmic maturation, preparing the egg for the rapid mitosis following fertilization.
Collapse
|
97
|
Nechemia-Arbely Y, Fachinetti D, Cleveland DW. Replicating centromeric chromatin: spatial and temporal control of CENP-A assembly. Exp Cell Res 2012; 318:1353-60. [PMID: 22561213 DOI: 10.1016/j.yexcr.2012.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 11/17/2022]
Abstract
The centromere is the fundamental unit for insuring chromosome inheritance. This complex region has a distinct type of chromatin in which histone H3 is replaced by a structurally different homologue identified in humans as CENP-A. In metazoans, specific DNA sequences are neither required nor sufficient for centromere identity. Rather, an epigenetic mark comprised of CENP-A containing chromatin is thought to be the major determinant of centromere identity. In this view, CENP-A deposition and chromatin assembly are fundamental processes for the maintenance of centromeric identity across mitotic and meiotic divisions. Several lines of evidence support CENP-A deposition in metazoans occurring at only one time in the cell cycle. Such cell cycle-dependent loading of CENP-A is found in divergent species from human to fission yeast, albeit with differences in the cell cycle point at which CENP-A is assembled. Cell cycle dependent CENP-A deposition requires multiple assembly factors for its deposition and maintenance. This review discusses the regulation of new CENP-A deposition and its relevance to centromere identity and inheritance.
Collapse
Affiliation(s)
- Yael Nechemia-Arbely
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
98
|
Coffman VC, Wu P, Parthun MR, Wu JQ. CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast. ACTA ACUST UNITED AC 2012; 195:563-72. [PMID: 22084306 PMCID: PMC3257534 DOI: 10.1083/jcb.201106078] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The stoichiometries of kinetochores and their constituent proteins in yeast and vertebrate cells were determined using the histone H3 variant CENP-A, known as Cse4 in budding yeast, as a counting standard. One Cse4-containing nucleosome exists in the centromere (CEN) of each chromosome, so it has been assumed that each anaphase CEN/kinetochore cluster contains 32 Cse4 molecules. We report that anaphase CEN clusters instead contained approximately fourfold more Cse4 in Saccharomyces cerevisiae and ~40-fold more CENP-A (Cnp1) in Schizosaccharomyces pombe than predicted. These results suggest that the number of CENP-A molecules exceeds the number of kinetochore-microtubule (MT) attachment sites on each chromosome and that CENP-A is not the sole determinant of kinetochore assembly sites in either yeast. In addition, we show that fission yeast has enough Dam1-DASH complex for ring formation around attached MTs. The results of this study suggest the need for significant revision of existing CEN/kinetochore architectural models.
Collapse
Affiliation(s)
- Valerie C Coffman
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
99
|
Assembly of Drosophila centromeric nucleosomes requires CID dimerization. Mol Cell 2011; 45:263-9. [PMID: 22209075 DOI: 10.1016/j.molcel.2011.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 08/16/2011] [Accepted: 11/23/2011] [Indexed: 11/24/2022]
Abstract
Centromeres are essential chromosomal regions required for kinetochore assembly and chromosome segregation. The composition and organization of centromeric nucleosomes containing the essential histone H3 variant CENP-A (CID in Drosophila) is a fundamental, unresolved issue. Using immunoprecipitation of CID mononucleosomes and cysteine crosslinking, we demonstrate that centromeric nucleosomes contain CID dimers in vivo. Furthermore, CID dimerization and centromeric targeting require a residue implicated in formation of the four-helix bundle, which mediates intranucleosomal H3 dimerization and nucleosome integrity. Taken together, our findings suggest that CID nucleosomes are octameric in vivo and that CID dimerization is essential for correct centromere assembly.
Collapse
|
100
|
Pauleau AL, Erhardt S. Centromere regulation: new players, new rules, new questions. Eur J Cell Biol 2011; 90:805-10. [PMID: 21684630 DOI: 10.1016/j.ejcb.2011.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/15/2011] [Accepted: 04/19/2011] [Indexed: 01/12/2023] Open
Abstract
Centromeres support the assembly of the kinetochore on every chromosome and are therefore essential for the proper segregation of sister chromatids during cell division. Centromere identity is regulated epigenetically through the presence of the histone H3 variant CENP-A. CENP-A regulation and incorporation specifically into centromeric nucleosomes are the matter of intensive studies in many different model organisms. Here we briefly review the current knowledge in centromere biology with a focus on Drosophila melanogaster and how these insights lead to new rules and challenges.
Collapse
Affiliation(s)
- Anne-Laure Pauleau
- CellNetworks-Cluster of Excellence and ZMBH-DKFZ-Alliance, ZMBH, Heidelberg University, Im Neuenheimer Feld 282, Heidelberg, Germany
| | | |
Collapse
|